//: instructions that (immediately) contain an argument to act with
:(before "End Initialize Op Names")
put_new(Name, "81", "combine rm32 with imm32 based on subop (add/sub/and/or/xor/cmp)");
:(scenario add_imm32_to_r32)
% Reg[EBX].i = 1;
== 0x1
# op ModR/M SIB displacement immediate
81 c3 0a 0b 0c 0d # add 0x0d0c0b0a to EBX
# ModR/M in binary: 11 (direct mode) 000 (add imm32) 011 (dest EBX)
+run: combine imm32 with r/m32
+run: r/m32 is EBX
+run: imm32 is 0x0d0c0b0a
+run: subop add
+run: storing 0x0d0c0b0b
:(before "End Single-Byte Opcodes")
case 0x81: { // combine imm32 with r/m32
trace(90, "run") << "combine imm32 with r/m32" << end();
const uint8_t modrm = next();
int32_t* arg1 = effective_address(modrm);
const int32_t arg2 = next32();
trace(90, "run") << "imm32 is 0x" << HEXWORD << arg2 << end();
const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits
switch (subop) {
case 0:
trace(90, "run") << "subop add" << end();
BINARY_ARITHMETIC_OP(+, *arg1, arg2);
break;
// End Op 81 Subops
default:
cerr << "unrecognized subop for opcode 81: " << NUM(subop) << '\n';
exit(1);
}
break;
}
//:
:(scenario add_imm32_to_mem_at_r32)
% Reg[EBX].i = 0x2000;
== 0x01 # code segment
# op ModR/M SIB displacement immediate
81 03 0a 0b 0c 0d # add 0x0d0c0b0a to *EBX
# ModR/M in binary: 00 (indirect mode) 000 (add imm32) 011 (dest EBX)
== 0x2000 # data segment
01 00 00 00 # 1
+run: combine imm32 with r/m32
+run: effective address is 0x00002000 (EBX)
+run: imm32 is 0x0d0c0b0a
+run: subop add
+run: storing 0x0d0c0b0b
//:: subtract
:(before "End Initialize Op Names")
put_new(Name, "2d", "subtract imm32 from EAX (sub)");
:(scenario subtract_imm32_from_eax)
% Reg[EAX].i = 0x0d0c0baa;
== 0x1
# op ModR/M SIB displacement immediate
2d 0a 0b 0c 0d # subtract 0x0d0c0b0a from EAX
+run: subtract imm32 0x0d0c0b0a from EAX
+run: storing 0x000000a0
:(before "End Single-Byte Opcodes")
case 0x2d: { // subtract imm32 from EAX
const int32_t arg2 = next32();
trace(90, "run") << "subtract imm32 0x" << HEXWORD << arg2 << " from EAX" << end();
BINARY_ARITHMETIC_OP(-, Reg[EAX].i, arg2);
break;
}
//:
:(scenario subtract_imm32_from_mem_at_r32)
% Reg[EBX].i = 0x2000;
== 0x01 # code segment
# op ModR/M SIB displacement immediate
81 2b 01 00 00 00 # subtract 1 from *EBX
# ModR/M in binary: 00 (indirect mode) 101 (subtract imm32) 011 (dest EBX)
== 0x2000 # data segment
0a 00 00 00 # 10
+run: combine imm32 with r/m32
+run: effective address is 0x00002000 (EBX)
+run: imm32 is 0x00000001
+run: subop subtract
+run: storing 0x00000009
:(before "End Op 81 Subops")
case 5: {
trace(90, "run") << "subop subtract" << end();
BINARY_ARITHMETIC_OP(-, *arg1, arg2);
break;
}
//:
:(scenario subtract_imm32_from_r32)
% Reg[EBX].i = 10;
== 0x1
# op ModR/M SIB displacement immediate
81 eb 01 00 00 00 # subtract 1 from EBX
# ModR/M in binary: 11 (direct mode) 101 (subtract imm32) 011 (dest EBX)
+run: combine imm32 with r/m32
+run: r/m32 is EBX
+run: imm32 is 0x00000001
+run: subop subtract
+run: storing 0x00000009
//:: shift left
:(before "End Initialize Op Names")
put_new(Name, "c1", "shift rm32 by imm8 bits depending on subop (sal/sar/shl/shr)");
:(scenario shift_left_r32_with_imm8)
% Reg[EBX].i = 13;
== 0x1
# op ModR/M SIB displacement immediate
c1 e3 01 # negate EBX
# ModR/M in binary: 11 (direct mode) 100 (subop shift left) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: shift left by CL bits
+run: storing 0x0000001a
:(before "End Single-Byte Opcodes")
case 0xc1: {
const uint8_t modrm = next();
trace(90, "run") << "operate on r/m32" << end();
int32_t* arg1 = effective_address(modrm);
const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits
switch (subop) {
case 4: { // shift left r/m32 by CL
trace(90, "run") << "subop: shift left by CL bits" << end();
uint8_t count = next() & 0x1f;
// OF is only defined if count is 1
if (count == 1) {
bool msb = (*arg1 & 0x80000000) >> 1;
bool pnsb = (*arg1 & 0x40000000);
OF = (msb != pnsb);
}
*arg1 = (*arg1 << count);
ZF = (*arg1 == 0);
SF = (*arg1 < 0);
trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << end();
break;
}
// End Op c1 Subops
default:
cerr << "unrecognized subop for opcode c1: " << NUM(subop) << '\n';
exit(1);
}
break;
}
//:: shift right arithmetic
:(scenario shift_right_arithmetic_r32_with_imm8)
% Reg[EBX].i = 26;
== 0x1
# op ModR/M SIB displacement immediate
c1 fb 01 # negate EBX
# ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: shift right by CL bits, while preserving sign
+run: storing 0x0000000d
:(before "End Op c1 Subops")
case 7: { // shift right r/m32 by CL, preserving sign
trace(90, "run") << "subop: shift right by CL bits, while preserving sign" << end();
uint8_t count = next() & 0x1f;
*arg1 = (*arg1 >> count);
ZF = (*arg1 == 0);
SF = (*arg1 < 0);
// OF is only defined if count is 1
if (count == 1) OF = false;
trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << end();
break;
}
:(scenario shift_right_arithmetic_odd_r32_with_imm8)
% Reg[EBX].i = 27;
== 0x1
# op ModR/M SIB displacement immediate
c1 fb 01 # negate EBX
# ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: shift right by CL bits, while preserving sign
# result: 13
+run: storing 0x0000000d
:(scenario shift_right_arithmetic_negative_r32_with_imm8)
% Reg[EBX].i = 0xfffffffd; // -3
== 0x1
# op ModR/M SIB displacement immediate
c1 fb 01 # negate EBX
# ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: shift right by CL bits, while preserving sign
# result: -2
+run: storing 0xfffffffe
//:: shift right logical
:(scenario shift_right_logical_r32_with_imm8)
% Reg[EBX].i = 26;
== 0x1
# op ModR/M SIB displacement immediate
c1 eb 01 # negate EBX
# ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: shift right by CL bits, while padding zeroes
+run: storing 0x0000000d
:(before "End Op c1 Subops")
case 5: { // shift right r/m32 by CL, preserving sign
trace(90, "run") << "subop: shift right by CL bits, while padding zeroes" << end();
uint8_t count = next() & 0x1f;
// OF is only defined if count is 1
if (count == 1) {
bool msb = (*arg1 & 0x80000000) >> 1;
bool pnsb = (*arg1 & 0x40000000);
OF = (msb != pnsb);
}
uint32_t* uarg1 = reinterpret_cast<uint32_t*>(arg1);
*uarg1 = (*uarg1 >> count);
ZF = (*uarg1 == 0);
// result is always positive by definition
SF = false;
trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << end();
break;
}
:(scenario shift_right_logical_odd_r32_with_imm8)
% Reg[EBX].i = 27;
== 0x1
# op ModR/M SIB displacement immediate
c1 eb 01 # negate EBX
# ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: shift right by CL bits, while padding zeroes
# result: 13
+run: storing 0x0000000d
:(scenario shift_right_logical_negative_r32_with_imm8)
% Reg[EBX].i = 0xfffffffd;
== 0x1
# op ModR/M SIB displacement immediate
c1 eb 01 # negate EBX
# ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: shift right by CL bits, while padding zeroes
+run: storing 0x7ffffffe
//:: and
:(before "End Initialize Op Names")
put_new(Name, "25", "EAX = bitwise AND of imm32 with EAX (and)");
:(scenario and_imm32_with_eax)
% Reg[EAX].i = 0xff;
== 0x1
# op ModR/M SIB displacement immediate
25 0a 0b 0c 0d # and 0x0d0c0b0a with EAX
+run: and imm32 0x0d0c0b0a with EAX
+run: storing 0x0000000a
:(before "End Single-Byte Opcodes")
case 0x25: { // and imm32 with EAX
const int32_t arg2 = next32();
trace(90, "run") << "and imm32 0x" << HEXWORD << arg2 << " with EAX" << end();
BINARY_BITWISE_OP(&, Reg[EAX].i, arg2);
break;
}
//:
:(scenario and_imm32_with_mem_at_r32)
% Reg[EBX].i = 0x2000;
== 0x01 # code segment
# op ModR/M SIB displacement immediate
81 23 0a 0b 0c 0d # and 0x0d0c0b0a with *EBX
# ModR/M in binary: 00 (indirect mode) 100 (and imm32) 011 (dest EBX)
== 0x2000 # data segment
ff 00 00 00 # 0xff
+run: combine imm32 with r/m32
+run: effective address is 0x00002000 (EBX)
+run: imm32 is 0x0d0c0b0a
+run: subop and
+run: storing 0x0000000a
:(before "End Op 81 Subops")
case 4: {
trace(90, "run") << "subop and" << end();
BINARY_BITWISE_OP(&, *arg1, arg2);
break;
}
//:
:(scenario and_imm32_with_r32)
% Reg[EBX].i = 0xff;
== 0x1
# op ModR/M SIB displacement immediate
81 e3 0a 0b 0c 0d # and 0x0d0c0b0a with EBX
# ModR/M in binary: 11 (direct mode) 100 (and imm32) 011 (dest EBX)
+run: combine imm32 with r/m32
+run: r/m32 is EBX
+run: imm32 is 0x0d0c0b0a
+run: subop and
+run: storing 0x0000000a
//:: or
:(before "End Initialize Op Names")
put_new(Name, "0d", "EAX = bitwise OR of imm32 with EAX (or)");
:(scenario or_imm32_with_eax)
% Reg[EAX].i = 0xd0c0b0a0;
== 0x1
# op ModR/M SIB displacement immediate
0d 0a 0b 0c 0d # or 0x0d0c0b0a with EAX
+run: or imm32 0x0d0c0b0a with EAX
+run: storing 0xddccbbaa
:(before "End Single-Byte Opcodes")
case 0x0d: { // or imm32 with EAX
const int32_t arg2 = next32();
trace(90, "run") << "or imm32 0x" << HEXWORD << arg2 << " with EAX" << end();
BINARY_BITWISE_OP(|, Reg[EAX].i, arg2);
break;
}
//:
:(scenario or_imm32_with_mem_at_r32)
% Reg[EBX].i = 0x2000;
== 0x01 # code segment
# op ModR/M SIB displacement immediate
81 0b 0a 0b 0c 0d # or 0x0d0c0b0a with *EBX
# ModR/M in binary: 00 (indirect mode) 001 (or imm32) 011 (dest EBX)
== 0x2000 # data segment
a0 b0 c0 d0 # 0xd0c0b0a0
+run: combine imm32 with r/m32
+run: effective address is 0x00002000 (EBX)
+run: imm32 is 0x0d0c0b0a
+run: subop or
+run: storing 0xddccbbaa
:(before "End Op 81 Subops")
case 1: {
trace(90, "run") << "subop or" << end();
BINARY_BITWISE_OP(|, *arg1, arg2);
break;
}
:(scenario or_imm32_with_r32)
% Reg[EBX].i = 0xd0c0b0a0;
== 0x1
# op ModR/M SIB displacement immediate
81 cb 0a 0b 0c 0d # or 0x0d0c0b0a with EBX
# ModR/M in binary: 11 (direct mode) 001 (or imm32) 011 (dest EBX)
+run: combine imm32 with r/m32
+run: r/m32 is EBX
+run: imm32 is 0x0d0c0b0a
+run: subop or
+run: storing 0xddccbbaa
//:: xor
:(before "End Initialize Op Names")
put_new(Name, "35", "EAX = bitwise XOR of imm32 with EAX (xor)");
:(scenario xor_imm32_with_eax)
% Reg[EAX].i = 0xddccb0a0;
== 0x1
# op ModR/M SIB displacement immediate
35 0a 0b 0c 0d # xor 0x0d0c0b0a with EAX
+run: xor imm32 0x0d0c0b0a with EAX
+run: storing 0xd0c0bbaa
:(before "End Single-Byte Opcodes")
case 0x35: { // xor imm32 with EAX
const int32_t arg2 = next32();
trace(90, "run") << "xor imm32 0x" << HEXWORD << arg2 << " with EAX" << end();
BINARY_BITWISE_OP(^, Reg[EAX].i, arg2);
break;
}
//:
:(scenario xor_imm32_with_mem_at_r32)
% Reg[EBX].i = 0x2000;
== 0x01 # code segment
# op ModR/M SIB displacement immediate
81 33 0a 0b 0c 0d # xor 0x0d0c0b0a with *EBX
# ModR/M in binary: 00 (indirect mode) 110 (xor imm32) 011 (dest EBX)
== 0x2000 # data segment
a0 b0 c0 d0 # 0xd0c0b0a0
+run: combine imm32 with r/m32
+run: effective address is 0x00002000 (EBX)
+run: imm32 is 0x0d0c0b0a
+run: subop xor
+run: storing 0xddccbbaa
:(before "End Op 81 Subops")
case 6: {
trace(90, "run") << "subop xor" << end();
BINARY_BITWISE_OP(^, *arg1, arg2);
break;
}
:(scenario xor_imm32_with_r32)
% Reg[EBX].i = 0xd0c0b0a0;
== 0x1
# op ModR/M SIB displacement immediate
81 f3 0a 0b 0c 0d # xor 0x0d0c0b0a with EBX
# ModR/M in binary: 11 (direct mode) 110 (xor imm32) 011 (dest EBX)
+run: combine imm32 with r/m32
+run: r/m32 is EBX
+run: imm32 is 0x0d0c0b0a
+run: subop xor
+run: storing 0xddccbbaa
//:: compare (cmp)
:(before "End Initialize Op Names")
put_new(Name, "3d", "compare: set SF if EAX < imm32 (cmp)");
:(scenario compare_imm32_with_eax_greater)
% Reg[EAX].i = 0x0d0c0b0a;
== 0x1
# op ModR/M SIB displacement immediate
3d 07 0b 0c 0d # compare 0x0d0c0b07 with EAX
+run: compare EAX and imm32 0x0d0c0b07
+run: SF=0; ZF=0; OF=0
:(before "End Single-Byte Opcodes")
case 0x3d: { // compare EAX with imm32
const int32_t arg1 = Reg[EAX].i;
const int32_t arg2 = next32();
trace(90, "run") << "compare EAX and imm32 0x" << HEXWORD << arg2 << end();
const int32_t tmp1 = arg1 - arg2;
SF = (tmp1 < 0);
ZF = (tmp1 == 0);
const int64_t tmp2 = arg1 - arg2;
OF = (tmp1 != tmp2);
trace(90, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end();
break;
}
:(scenario compare_imm32_with_eax_lesser)
% Reg[EAX].i = 0x0d0c0b07;
== 0x1
# op ModR/M SIB displacement immediate
3d 0a 0b 0c 0d # compare 0x0d0c0b0a with EAX
+run: compare EAX and imm32 0x0d0c0b0a
+run: SF=1; ZF=0; OF=0
:(scenario compare_imm32_with_eax_equal)
% Reg[EAX].i = 0x0d0c0b0a;
== 0x1
# op ModR/M SIB displacement immediate
3d 0a 0b 0c 0d # compare 0x0d0c0b0a with EAX
+run: compare EAX and imm32 0x0d0c0b0a
+run: SF=0; ZF=1; OF=0
//:
:(scenario compare_imm32_with_r32_greater)
% Reg[EBX].i = 0x0d0c0b0a;
== 0x1
# op ModR/M SIB displacement immediate
81 fb 07 0b 0c 0d # compare 0x0d0c0b07 with EBX
# ModR/M in binary: 11 (direct mode) 111 (compare imm32) 011 (dest EBX)
+run: combine imm32 with r/m32
+run: r/m32 is EBX
+run: imm32 is 0x0d0c0b07
+run: SF=0; ZF=0; OF=0
:(before "End Op 81 Subops")
case 7: {
trace(90, "run") << "subop compare" << end();
const int32_t tmp1 = *arg1 - arg2;
SF = (tmp1 < 0);
ZF = (tmp1 == 0);
const int64_t tmp2 = *arg1 - arg2;
OF = (tmp1 != tmp2);
trace(90, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end();
break;
}
:(scenario compare_imm32_with_r32_lesser)
% Reg[EBX].i = 0x0d0c0b07;
== 0x1
# op ModR/M SIB displacement immediate
81 fb 0a 0b 0c 0d # compare 0x0d0c0b0a with EBX
# ModR/M in binary: 11 (direct mode) 111 (compare imm32) 011 (dest EBX)
+run: combine imm32 with r/m32
+run: r/m32 is EBX
+run: imm32 is 0x0d0c0b0a
+run: SF=1; ZF=0; OF=0
:(scenario compare_imm32_with_r32_equal)
% Reg[EBX].i = 0x0d0c0b0a;
== 0x1
# op ModR/M SIB displacement immediate
81 fb 0a 0b 0c 0d # compare 0x0d0c0b0a with EBX
# ModR/M in binary: 11 (direct mode) 111 (compare imm32) 011 (dest EBX)
+run: combine imm32 with r/m32
+run: r/m32 is EBX
+run: imm32 is 0x0d0c0b0a
+run: SF=0; ZF=1; OF=0
:(scenario compare_imm32_with_mem_at_r32_greater)
% Reg[EBX].i = 0x2000;
== 0x01 # code segment
# op ModR/M SIB displacement immediate
81 3b 07 0b 0c 0d # compare 0x0d0c0b07 with *EBX
# ModR/M in binary: 00 (indirect mode) 111 (compare imm32) 011 (dest EBX)
== 0x2000 # data segment
0a 0b 0c 0d # 0x0d0c0b0a
+run: combine imm32 with r/m32
+run: effective address is 0x00002000 (EBX)
+run: imm32 is 0x0d0c0b07
+run: SF=0; ZF=0; OF=0
:(scenario compare_imm32_with_mem_at_r32_lesser)
% Reg[EBX].i = 0x2000;
== 0x01 # code segment
# op ModR/M SIB displacement immediate
81 3b 0a 0b 0c 0d # compare 0x0d0c0b0a with *EBX
# ModR/M in binary: 00 (indirect mode) 111 (compare imm32) 011 (dest EBX)
== 0x2000 # data segment
07 0b 0c 0d # 0x0d0c0b07
+run: combine imm32 with r/m32
+run: effective address is 0x00002000 (EBX)
+run: imm32 is 0x0d0c0b0a
+run: SF=1; ZF=0; OF=0
:(scenario compare_imm32_with_mem_at_r32_equal)
% Reg[EBX].i = 0x0d0c0b0a;
% Reg[EBX].i = 0x2000;
== 0x01 # code segment
# op ModR/M SIB displacement immediate
81 3b 0a 0b 0c 0d # compare 0x0d0c0b0a with *EBX
# ModR/M in binary: 00 (indirect mode) 111 (compare imm32) 011 (dest EBX)
== 0x2000 # data segment
0a 0b 0c 0d # 0x0d0c0b0a
+run: combine imm32 with r/m32
+run: effective address is 0x00002000 (EBX)
+run: imm32 is 0x0d0c0b0a
+run: SF=0; ZF=1; OF=0
//:: copy (mov)
:(before "End Initialize Op Names")
put_new(Name, "b8", "copy imm32 to EAX (mov)");
put_new(Name, "b9", "copy imm32 to ECX (mov)");
put_new(Name, "ba", "copy imm32 to EDX (mov)");
put_new(Name, "bb", "copy imm32 to EBX (mov)");
put_new(Name, "bc", "copy imm32 to ESP (mov)");
put_new(Name, "bd", "copy imm32 to EBP (mov)");
put_new(Name, "be", "copy imm32 to ESI (mov)");
put_new(Name, "bf", "copy imm32 to EDI (mov)");
:(scenario copy_imm32_to_r32)
== 0x1
# op ModR/M SIB displacement immediate
bb 0a 0b 0c 0d # copy 0x0d0c0b0a to EBX
+run: copy imm32 0x0d0c0b0a to EBX
:(before "End Single-Byte Opcodes")
case 0xb8:
case 0xb9:
case 0xba:
case 0xbb:
case 0xbc:
case 0xbd:
case 0xbe:
case 0xbf: { // copy imm32 to r32
const uint8_t rdest = op & 0x7;
const int32_t src = next32();
trace(90, "run") << "copy imm32 0x" << HEXWORD << src << " to " << rname(rdest) << end();
Reg[rdest].i = src;
break;
}
//:
:(before "End Initialize Op Names")
put_new(Name, "c7", "copy imm32 to rm32 (mov)");
:(scenario copy_imm32_to_mem_at_r32)
% Reg[EBX].i = 0x60;
== 0x1
# op ModR/M SIB displacement immediate
c7 03 0a 0b 0c 0d # copy 0x0d0c0b0a to *EBX
# ModR/M in binary: 00 (indirect mode) 000 (unused) 011 (dest EBX)
+run: copy imm32 to r/m32
+run: effective address is 0x00000060 (EBX)
+run: imm32 is 0x0d0c0b0a
:(before "End Single-Byte Opcodes")
case 0xc7: { // copy imm32 to r32
const uint8_t modrm = next();
trace(90, "run") << "copy imm32 to r/m32" << end();
const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits
if (subop != 0) {
cerr << "unrecognized subop for opcode c7: " << NUM(subop) << " (only 0/copy currently implemented)\n";
exit(1);
}
int32_t* dest = effective_address(modrm);
const int32_t src = next32();
trace(90, "run") << "imm32 is 0x" << HEXWORD << src << end();
*dest = src;
break;
}
//:: push
:(before "End Initialize Op Names")
put_new(Name, "68", "push imm32 to stack (push)");
:(scenario push_imm32)
% Reg[ESP].u = 0x14;
== 0x1
# op ModR/M SIB displacement immediate
68 af 00 00 00 # push *EAX to stack
+run: push imm32 0x000000af
+run: ESP is now 0x00000010
+run: contents at ESP: 0x000000af
:(before "End Single-Byte Opcodes")
case 0x68: {
const uint32_t val = static_cast<uint32_t>(next32());
trace(90, "run") << "push imm32 0x" << HEXWORD << val << end();
//? cerr << "push: " << val << " => " << Reg[ESP].u << '\n';
push(val);
trace(90, "run") << "ESP is now 0x" << HEXWORD << Reg[ESP].u << end();
trace(90, "run") << "contents at ESP: 0x" << HEXWORD << read_mem_u32(Reg[ESP].u) << end();
break;
}