//: Beginning of "level 2": tagging bytes with metadata around what field of
//: an x86 instruction they're for.
//:
//: The x86 instruction set is variable-length, and how a byte is interpreted
//: affects later instruction boundaries. A lot of the pain in programming
//: machine code stems from computer and programmer going out of sync on what
//: a byte means. The miscommunication is usually not immediately caught, and
//: metastasizes at runtime into kilobytes of misinterpreted instructions.
//:
//: To mitigate these issues, we'll start programming in terms of logical
//: operands rather than physical bytes. Some operands are smaller than a
//: byte, and others may consist of multiple bytes. This layer will correctly
//: pack and order the bytes corresponding to the operands in an instruction.
:(before "End Help Texts")
put(Help, "instructions",
"Each x86 instruction consists of an instruction or opcode and some number\n"
"of operands.\n"
"Each operand has a type. An instruction won't have more than one operand of\n"
"any type.\n"
"Each instruction has some set of allowed operand types. It'll reject others.\n"
"The complete list of operand types: mod, subop, r32 (register), rm32\n"
"(register or memory), scale, index, base, disp8, disp16, disp32, imm8,\n"
"imm32.\n"
"Each of these has its own help page. Try reading 'subx help mod' next.\n"
);
:(before "End Help Contents")
cerr << " instructions\n";
:(scenario pack_immediate_constants)
== 0x1
# instruction effective address operand displacement immediate
# op subop mod rm32 base index scale r32
# 1-3 bytes 3 bits 2 bits 3 bits 3 bits 3 bits 2 bits 2 bits 0/1/2/4 bytes 0/1/2/4 bytes
bb 0x2a/imm32 # copy 42 to EBX
+transform: packing instruction 'bb 0x2a/imm32'
+transform: instruction after packing: 'bb 2a 00 00 00'
+run: copy imm32 0x0000002a to EBX
//: complete set of valid operand types
:(before "End Globals")
set<string> Instruction_operands;
:(before "End One-time Setup")
Instruction_operands.insert("subop");
Instruction_operands.insert("mod");
Instruction_operands.insert("rm32");
Instruction_operands.insert("base");
Instruction_operands.insert("index");
Instruction_operands.insert("scale");
Instruction_operands.insert("r32");
Instruction_operands.insert("disp8");
Instruction_operands.insert("disp16");
Instruction_operands.insert("disp32");
Instruction_operands.insert("imm8");
Instruction_operands.insert("imm32");
:(before "End Help Texts")
init_operand_type_help();
:(code)
void init_operand_type_help() {
put(Help, "mod",
"2-bit operand controlling the _addressing mode_ of many instructions,\n"
"to determine how to compute the _effective address_ to look up memory at\n"
"based on the 'rm32' operand and potentially others.\n"
"\n"
"If mod = 3, just operate on the contents of the register specified by rm32\n"
" (direct mode).\n"
"If mod = 2, effective address is usually* rm32 + disp32\n"
" (indirect mode with displacement).\n"
"If mod = 1, effective address is usually* rm32 + disp8\n"
" (indirect mode with displacement).\n"
"If mod = 0, effective address is usually* rm32 (indirect mode).\n"
"(* - The exception is when rm32 is '4'. Register 4 is the stack pointer (ESP).\n"
" Using it as an address gets more involved. For more details,\n"
" try reading the help pages for 'base', 'index' and 'scale'.)\n"
"\n"
"For complete details consult the IA-32 software developer's manual, table 2-2,\n"
"\"32-bit addressing forms with the ModR/M byte\".\n"
" https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf\n"
);
put(Help, "subop",
"Additional 3-bit operand for determining the instruction when the opcode is 81, 8f or ff.\n"
"Can't coexist with operand of type 'r32' in a single instruction, because the two use the same bits.\n"
);
put(Help, "r32",
"3-bit operand specifying a register operand used directly, without any further addressing modes.\n"
);
put(Help, "rm32",
"32-bit value in register or memory. The precise details of its construction depend on the eponymous 3-bit\n"
"'rm32' operand, the 'mod' operand, and also potentially the 'SIB' operands ('scale', 'index' and 'base')\n"
"and a displacement ('disp8' or 'disp32').\n"
"For complete details consult the IA-32 software developer's manual, table 2-2,\n"
"\"32-bit addressing forms with the ModR/M byte\".\n"
" https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf\n"
);
put(Help, "base",
"Additional 3-bit operand (when 'rm32' is 4 unless 'mod' is 3) specifying the register containing an address to look up.\n"
"This address may be further modified by 'index' and 'scale' operands.\n"
" effective address = base + index*scale + displacement (disp8 or disp32)\n"
"For complete details consult the IA-32 software developer's manual, table 2-3,\n"
"\"32-bit addressing forms with the SIB byte\".\n"
" https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf\n"
);
put(Help, "index",
"Optional 3-bit operand (when 'rm32' is 4 unless 'mod' is 3) that can be added to the 'base' operand to compute the 'effective address' at which to look up memory.\n"
" effective address = base + index*scale + displacement (disp8 or disp32)\n"
"For complete details consult the IA-32 software developer's manual, table 2-3,\n"
"\"32-bit addressing forms with the SIB byte\".\n"
" https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf\n"
);
put(Help, "scale",
"Optional 2-bit operand (when 'rm32' is 4 unless 'mod' is 3) that can be multiplied to the 'index' operand before adding the result to the 'base' operand to compute the _effective address_ to operate on.\n"
" effective address = base + index * scale + displacement (disp8 or disp32)\n"
"For complete details consult the IA-32 software developer's manual, table 2-3,\n"
"\"32-bit addressing forms with the SIB byte\".\n"
" https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf\n"
);
put(Help, "disp8",
"8-bit value to be added in many instructions.\n"
);
put(Help, "disp16",
"16-bit value to be added in many instructions.\n"
);
put(Help, "disp32",
"32-bit value to be added in many instructions.\n"
);
put(Help, "imm8",
"8-bit value for many instructions.\n"
);
put(Help, "imm32",
"32-bit value for many instructions.\n"
);
}
//:: transform packing operands into bytes in the right order
:(after "Begin Transforms")
// Begin Level-2 Transforms
Transform.push_back(pack_operands);
// End Level-2 Transforms
:(code)
void pack_operands(program& p) {
if (p.segments.empty()) return;
segment& code = p.segments.at(0);
// Pack Operands(segment code)
trace(99, "transform") << "-- pack operands" << end();
for (int i = 0; i < SIZE(code.lines); ++i) {
line& inst = code.lines.at(i);
if (all_hex_bytes(inst)) continue;
trace(99, "transform") << "packing instruction '" << to_string(/*with metadata*/inst) << "'" << end();
pack_operands(inst);
trace(99, "transform") << "instruction after packing: '" << to_string(/*without metadata*/inst.words) << "'" << end();
}
}
void pack_operands(line& inst) {
line new_inst;
add_opcodes(inst, new_inst);
add_modrm_byte(inst, new_inst);
add_sib_byte(inst, new_inst);
add_disp_bytes(inst, new_inst);
add_imm_bytes(inst, new_inst);
inst.words.swap(new_inst.words);
}
void add_opcodes(const line& in, line& out) {
out.words.push_back(in.words.at(0));
if (in.words.at(0).data == "0f" || in.words.at(0).data == "f2" || in.words.at(0).data == "f3")
out.words.push_back(in.words.at(1));
if (in.words.at(0).data == "f3" && in.words.at(1).data == "0f")
out.words.push_back(in.words.at(2));
if (in.words.at(0).data == "f2" && in.words.at(1).data == "0f")
out.words.push_back(in.words.at(2));
}
void add_modrm_byte(const line& in, line& out) {
uint8_t mod=0, reg_subop=0, rm32=0;
bool emit = false;
for (int i = 0; i < SIZE(in.words); ++i) {
const word& curr = in.words.at(i);
if (has_operand_metadata(curr, "mod")) {
mod = hex_byte(curr.data);
emit = true;
}
else if (has_operand_metadata(curr, "rm32")) {
rm32 = hex_byte(curr.data);
emit = true;
}
else if (has_operand_metadata(curr, "r32")) {
reg_subop = hex_byte(curr.data);
emit = true;
}
else if (has_operand_metadata(curr, "subop")) {
reg_subop = hex_byte(curr.data);
emit = true;
}
}
if (emit)
out.words.push_back(hex_byte_text((mod << 6) | (reg_subop << 3) | rm32));
}
void add_sib_byte(const line& in, line& out) {
uint8_t scale=0, index=0, base=0;
bool emit = false;
for (int i = 0; i < SIZE(in.words); ++i) {
const word& curr = in.words.at(i);
if (has_operand_metadata(curr, "scale")) {
scale = hex_byte(curr.data);
emit = true;
}
else if (has_operand_metadata(curr, "index")) {
index = hex_byte(curr.data);
emit = true;
}
else if (has_operand_metadata(curr, "base")) {
base = hex_byte(curr.data);
emit = true;
}
}
if (emit)
out.words.push_back(hex_byte_text((scale << 6) | (index << 3) | base));
}
void add_disp_bytes(const line& in, line& out) {
for (int i = 0; i < SIZE(in.words); ++i) {
const word& curr = in.words.at(i);
if (has_operand_metadata(curr, "disp8"))
emit_hex_bytes(out, curr, 1);
if (has_operand_metadata(curr, "disp16"))
emit_hex_bytes(out, curr, 2);
else if (has_operand_metadata(curr, "disp32"))
emit_hex_bytes(out, curr, 4);
}
}
void add_imm_bytes(const line& in, line& out) {
for (int i = 0; i < SIZE(in.words); ++i) {
const word& curr = in.words.at(i);
if (has_operand_metadata(curr, "imm8"))
emit_hex_bytes(out, curr, 1);
else if (has_operand_metadata(curr, "imm32"))
emit_hex_bytes(out, curr, 4);
}
}
void emit_hex_bytes(line& out, const word& w, int num) {
assert(num <= 4);
bool is_number = looks_like_hex_int(w.data);
if (num == 1 || !is_number) {
out.words.push_back(w); // preserve existing metadata
if (is_number)
out.words.back().data = hex_byte_to_string(parse_int(w.data));
return;
}
emit_hex_bytes(out, static_cast<uint32_t>(parse_int(w.data)), num);
}
void emit_hex_bytes(line& out, uint32_t val, int num) {
assert(num <= 4);
for (int i = 0; i < num; ++i) {
out.words.push_back(hex_byte_text(val & 0xff));
val = val >> 8;
}
}
word hex_byte_text(uint8_t val) {
word result;
result.data = hex_byte_to_string(val);
result.original = result.data+"/auto";
return result;
}
string hex_byte_to_string(uint8_t val) {
ostringstream out;
// uint8_t prints without padding, but int8_t will expand to 32 bits again
out << HEXBYTE << NUM(val);
return out.str();
}
string to_string(const vector<word>& in) {
ostringstream out;
for (int i = 0; i < SIZE(in); ++i) {
if (i > 0) out << ' ';
out << in.at(i).data;
}
return out.str();
}
:(before "End Unit Tests")
void test_preserve_metadata_when_emitting_single_byte() {
word in;
in.data = "f0";
in.original = "f0/foo";
line out;
emit_hex_bytes(out, in, 1);
CHECK_EQ(out.words.at(0).data, "f0");
CHECK_EQ(out.words.at(0).original, "f0/foo");
}
:(scenario pack_disp8)
== 0x1
74 2/disp8 # jump 2 bytes away if ZF is set
+transform: packing instruction '74 2/disp8'
+transform: instruction after packing: '74 02'
:(scenarios transform)
:(scenario pack_disp8_negative)
== 0x1
# running this will cause an infinite loop
74 -1/disp8 # jump 1 byte before if ZF is set
+transform: packing instruction '74 -1/disp8'
+transform: instruction after packing: '74 ff'
:(scenarios run)
//: helper for scenario
:(code)
void transform(const string& text_bytes) {
program p;
istringstream in(text_bytes);
parse(in, p);
if (trace_contains_errors()) return;
transform(p);
}
:(scenario pack_modrm_imm32)
== 0x1
# instruction effective address operand displacement immediate
# op subop mod rm32 base index scale r32
# 1-3 bytes 3 bits 2 bits 3 bits 3 bits 3 bits 2 bits 2 bits 0/1/2/4 bytes 0/1/2/4 bytes
81 0/add/subop 3/mod/direct 3/ebx/rm32 1/imm32 # add 1 to EBX
+transform: packing instruction '81 0/add/subop 3/mod/direct 3/ebx/rm32 1/imm32'
+transform: instruction after packing: '81 c3 01 00 00 00'
:(scenario pack_imm32_large)
== 0x1
b9 0x080490a7/imm32 # copy to ECX
+transform: packing instruction 'b9 0x080490a7/imm32'
+transform: instruction after packing: 'b9 a7 90 04 08'
:(scenario pack_immediate_constants_hex)
== 0x1
# instruction effective address operand displacement immediate
# op subop mod rm32 base index scale r32
# 1-3 bytes 3 bits 2 bits 3 bits 3 bits 3 bits 2 bits 2 bits 0/1/2/4 bytes 0/1/2/4 bytes
bb 0x2a/imm32 # copy 42 to EBX
+transform: packing instruction 'bb 0x2a/imm32'
+transform: instruction after packing: 'bb 2a 00 00 00'
+run: copy imm32 0x0000002a to EBX
:(scenarios transform)
:(scenario pack_silently_ignores_non_hex)
% Hide_errors = true;
== 0x1
# instruction effective address operand displacement immediate
# op subop mod rm32 base index scale r32
# 1-3 bytes 3 bits 2 bits 3 bits 3 bits 3 bits 2 bits 2 bits 0/1/2/4 bytes 0/1/2/4 bytes
bb foo/imm32 # copy to EBX
+transform: packing instruction 'bb foo/imm32'
# no change (we're just not printing metadata to the trace)
+transform: instruction after packing: 'bb foo'
:(scenarios run)
:(scenario pack_flags_bad_hex)
% Hide_errors = true;
== 0x1
# instruction effective address operand displacement immediate
# op subop mod rm32 base index scale r32
# 1-3 bytes 3 bits 2 bits 3 bits 3 bits 3 bits 2 bits 2 bits 0/1/2/4 bytes 0/1/2/4 bytes
bb 0xfoo/imm32 # copy to EBX
+error: not a number: 0xfoo
//:: helpers
:(code)
bool all_hex_bytes(const line& inst) {
for (int i = 0; i < SIZE(inst.words); ++i)
if (!is_hex_byte(inst.words.at(i)))
return false;
return true;
}
bool is_hex_byte(const word& curr) {
if (contains_any_operand_metadata(curr))
return false;
if (SIZE(curr.data) != 2)
return false;
if (curr.data.find_first_not_of("0123456789abcdefABCDEF") != string::npos)
return false;
return true;
}
bool contains_any_operand_metadata(const word& word) {
for (int i = 0; i < SIZE(word.metadata); ++i)
if (Instruction_operands.find(word.metadata.at(i)) != Instruction_operands.end())
return true;
return false;
}
bool has_operand_metadata(const line& inst, const string& m) {
bool result = false;
for (int i = 0; i < SIZE(inst.words); ++i) {
if (!has_operand_metadata(inst.words.at(i), m)) continue;
if (result) {
raise << "'" << to_string(inst) << "' has conflicting " << m << " operands\n" << end();
return false;
}
result = true;
}
return result;
}
bool has_operand_metadata(const word& w, const string& m) {
bool result = false;
bool metadata_found = false;
for (int i = 0; i < SIZE(w.metadata); ++i) {
const string& curr = w.metadata.at(i);
if (Instruction_operands.find(curr) == Instruction_operands.end()) continue; // ignore unrecognized metadata
if (metadata_found) {
raise << "'" << w.original << "' has conflicting operand types; it should have only one\n" << end();
return false;
}
metadata_found = true;
result = (curr == m);
}
return result;
}
word metadata(const line& inst, const string& m) {
for (int i = 0; i < SIZE(inst.words); ++i)
if (has_operand_metadata(inst.words.at(i), m))
return inst.words.at(i);
assert(false);
}
bool looks_like_hex_int(const string& s) {
if (s.empty()) return false;
if (s.at(0) == '-' || s.at(0) == '+') return true;
if (isdigit(s.at(0))) return true; // includes '0x' prefix
// End looks_like_hex_int(s) Detectors
return false;
}
:(code)
string to_string(const line& inst) {
ostringstream out;
for (int i = 0; i < SIZE(inst.words); ++i) {
if (i > 0) out << ' ';
out << inst.words.at(i).original;
}
return out.str();
}