|
|
//: Start allowing us to not specify precise addresses for the start of each
//: segment.
//: This gives up a measure of control in placing code and data.
:(scenario segment_name)
== code
05/add 0x0d0c0b0a/imm32 # add 0x0d0c0b0a to EAX
# code starts at 0x08048000 + p_offset, which is 0x54 for a single-segment binary
+load: 0x08048054 -> 05
+load: 0x08048055 -> 0a
+load: 0x08048056 -> 0b
+load: 0x08048057 -> 0c
+load: 0x08048058 -> 0d
+run: add imm32 0x0d0c0b0a to reg EAX
+run: storing 0x0d0c0b0a
//: Update the parser to handle non-numeric segment name.
//:
//: We'll also support repeated segments with non-numeric names.
//: When we encounter a new reference to an existing segment we'll *prepend*
//: the new data to existing data for the segment.
:(before "End Globals")
map</*name*/string, int> Segment_index;
bool Currently_parsing_named_segment = false; // global to permit cross-layer communication
int Currently_parsing_segment_index = -1; // global to permit cross-layer communication
:(before "End Reset")
Segment_index.clear();
Currently_parsing_named_segment = false;
Currently_parsing_segment_index = -1;
:(before "End Segment Parsing Special-cases(segment_title)")
if (!starts_with(segment_title, "0x")) {
Currently_parsing_named_segment = true;
if (!contains_key(Segment_index, segment_title)) {
trace(99, "parse") << "new segment '" << segment_title << "'" << end();
if (segment_title == "code")
put(Segment_index, segment_title, 0);
else if (segment_title == "data")
put(Segment_index, segment_title, 1);
else
put(Segment_index, segment_title, max(2, SIZE(out.segments)));
out.segments.push_back(segment());
}
else {
trace(99, "parse") << "prepending to segment '" << segment_title << "'" << end();
}
Currently_parsing_segment_index = get(Segment_index, segment_title);
}
:(before "End flush(p, lines) Special-cases")
if (Currently_parsing_named_segment) {
if (p.segments.empty() || Currently_parsing_segment_index < 0) {
raise << "input does not start with a '==' section header\n" << end();
return;
}
trace(99, "parse") << "flushing to segment" << end();
vector<line>& curr_segment_data = p.segments.at(Currently_parsing_segment_index).lines;
curr_segment_data.insert(curr_segment_data.begin(), lines.begin(), lines.end());
lines.clear();
Currently_parsing_named_segment = false;
Currently_parsing_segment_index = -1;
return;
}
:(scenario repeated_segment_merges_data)
== code
05/add 0x0d0c0b0a/imm32 # add 0x0d0c0b0a to EAX
== code
2d/subtract 0xddccbbaa/imm32 # subtract 0xddccbbaa from EAX
+parse: new segment 'code'
+parse: prepending to segment 'code'
+load: 0x08048054 -> 2d
+load: 0x08048055 -> aa
+load: 0x08048056 -> bb
+load: 0x08048057 -> cc
+load: 0x08048058 -> dd
+load: 0x08048059 -> 05
+load: 0x0804805a -> 0a
+load: 0x0804805b -> 0b
+load: 0x0804805c -> 0c
+load: 0x0804805d -> 0d
//: compute segment address
:(before "End Level-2 Transforms")
Transform.push_back(compute_segment_starts);
:(code)
void compute_segment_starts(program& p) {
trace(99, "transform") << "-- compute segment addresses" << end();
uint32_t p_offset = /*size of ehdr*/0x34 + SIZE(p.segments)*0x20/*size of each phdr*/;
for (size_t i = 0; i < p.segments.size(); ++i) {
segment& curr = p.segments.at(i);
if (curr.start == 0) {
curr.start = CODE_START + i*SEGMENT_SIZE + p_offset;
trace(99, "transform") << "segment " << i << " begins at address 0x" << HEXWORD << curr.start << end();
}
p_offset += size_of(curr);
assert(p_offset < SEGMENT_SIZE); // for now we get less and less available space in each successive segment
}
}
uint32_t size_of(const segment& s) {
uint32_t sum = 0;
for (int i = 0; i < SIZE(s.lines); ++i)
sum += num_bytes(s.lines.at(i));
return sum;
}
// Assumes all bitfields are packed.
uint32_t num_bytes(const line& inst) {
uint32_t sum = 0;
for (int i = 0; i < SIZE(inst.words); ++i) {
const word& curr = inst.words.at(i);
if (has_operand_metadata(curr, "disp32") || has_operand_metadata(curr, "imm32")) // only multi-byte operands
sum += 4;
// End num_bytes(curr) Special-cases
else
sum++;
}
return sum;
}
//: Dependencies:
//: - We'd like to compute segment addresses before setting up global variables,
//: because computing addresses for global variables requires knowing where
//: the data segment starts.
//: - We'd like to finish expanding labels before computing segment addresses,
//: because it would make computing the sizes of segments more self-contained
//: (num_bytes).
//:
//: Decision: compute segment addresses before expanding labels, by being
//: aware in this layer of certain operand types that will eventually occupy
//: multiple bytes.
//:
//: The layer to expand labels later hooks into num_bytes() to teach this
//: layer that labels occupy zero space in the binary.
|