about summary refs log tree commit diff stats
path: root/035address.cc
diff options
context:
space:
mode:
authorKartik Agaram <vc@akkartik.com>2018-06-17 16:23:14 -0700
committerKartik Agaram <vc@akkartik.com>2018-06-17 16:23:14 -0700
commitf5ee2463d00bdf1810c615555e91d993aa1032c3 (patch)
tree29d9b8500b15acdfcf9f0ecebaad657ab47b9179 /035address.cc
parent92a3d0824b37e564f3d5bb7e042f97f991f25416 (diff)
downloadmu-f5ee2463d00bdf1810c615555e91d993aa1032c3.tar.gz
4264
Undo the relayout of 4259.
Diffstat (limited to '035address.cc')
-rw-r--r--035address.cc334
1 files changed, 0 insertions, 334 deletions
diff --git a/035address.cc b/035address.cc
deleted file mode 100644
index bce51b2e..00000000
--- a/035address.cc
+++ /dev/null
@@ -1,334 +0,0 @@
-//: Addresses help us spend less time copying data around.
-
-//: So far we've been operating on primitives like numbers and characters, and
-//: we've started combining these primitives together into larger logical
-//: units (containers or arrays) that may contain many different primitives at
-//: once. Containers and arrays can grow quite large in complex programs, and
-//: we'd like some way to efficiently share them between recipes without
-//: constantly having to make copies. Right now 'next-ingredient' and 'return'
-//: copy data across recipe boundaries. To avoid copying large quantities of
-//: data around, we'll use *addresses*. An address is a bookmark to some
-//: arbitrary quantity of data (the *payload*). It's a primitive, so it's as
-//: efficient to copy as a number. To read or modify the payload 'pointed to'
-//: by an address, we'll perform a *lookup*.
-//:
-//: The notion of 'lookup' isn't an instruction like 'add' or 'subtract'.
-//: Instead it's an operation that can be performed when reading any of the
-//: ingredients of an instruction, and when writing to any of the products. To
-//: write to the payload of an ingredient rather than its value, simply add
-//: the /lookup property to it. Modern computers provide efficient support for
-//: addresses and lookups, making this a realistic feature.
-
-//: todo: give 'new' a custodian ingredient. Following malloc/free is a temporary hack.
-
-:(scenario new)
-# call 'new' two times with identical types without modifying the results; you
-# should get back different results
-def main [
-  1:address:num/raw <- new number:type
-  2:address:num/raw <- new number:type
-  3:bool/raw <- equal 1:address:num/raw, 2:address:num/raw
-]
-+mem: storing 0 in location 3
-
-:(scenario new_array)
-# call 'new' with a second ingredient to allocate an array of some type rather than a single copy
-def main [
-  1:address:array:num/raw <- new number:type, 5
-  2:address:num/raw <- new number:type
-  3:num/raw <- subtract 2:address:num/raw, 1:address:array:num/raw
-]
-+run: {1: ("address" "array" "number"), "raw": ()} <- new {number: "type"}, {5: "literal"}
-+mem: array length is 5
-# don't forget the extra location for array length
-+mem: storing 6 in location 3
-
-:(scenario dilated_reagent_with_new)
-def main [
-  1:address:address:num <- new {(address number): type}
-]
-+new: size of '(address number)' is 1
-
-//: 'new' takes a weird 'type' as its first ingredient; don't error on it
-:(before "End Mu Types Initialization")
-put(Type_ordinal, "type", 0);
-:(code)
-bool is_mu_type_literal(const reagent& r) {
-  return is_literal(r) && r.type && r.type->name == "type";
-}
-
-:(before "End Primitive Recipe Declarations")
-NEW,
-:(before "End Primitive Recipe Numbers")
-put(Recipe_ordinal, "new", NEW);
-:(before "End Primitive Recipe Checks")
-case NEW: {
-  const recipe& caller = get(Recipe, r);
-  if (inst.ingredients.empty() || SIZE(inst.ingredients) > 2) {
-    raise << maybe(caller.name) << "'new' requires one or two ingredients, but got '" << to_original_string(inst) << "'\n" << end();
-    break;
-  }
-  // End NEW Check Special-cases
-  const reagent& type = inst.ingredients.at(0);
-  if (!is_mu_type_literal(type)) {
-    raise << maybe(caller.name) << "first ingredient of 'new' should be a type, but got '" << type.original_string << "'\n" << end();
-    break;
-  }
-  if (SIZE(inst.ingredients) > 1 && !is_mu_number(inst.ingredients.at(1))) {
-    raise << maybe(caller.name) << "second ingredient of 'new' should be a number (array length), but got '" << type.original_string << "'\n" << end();
-    break;
-  }
-  if (inst.products.empty()) {
-    raise << maybe(caller.name) << "result of 'new' should never be ignored\n" << end();
-    break;
-  }
-  if (!product_of_new_is_valid(inst)) {
-    raise << maybe(caller.name) << "product of 'new' has incorrect type: '" << to_original_string(inst) << "'\n" << end();
-    break;
-  }
-  break;
-}
-:(code)
-bool product_of_new_is_valid(const instruction& inst) {
-  reagent/*copy*/ product = inst.products.at(0);
-  // Update NEW product in Check
-  if (!product.type || product.type->atom || product.type->left->value != Address_type_ordinal)
-    return false;
-  drop_from_type(product, "address");
-  if (SIZE(inst.ingredients) > 1) {
-    // array allocation
-    if (!product.type || product.type->atom || product.type->left->value != Array_type_ordinal)
-      return false;
-    drop_from_type(product, "array");
-  }
-  reagent/*local*/ expected_product(new_type_tree(inst.ingredients.at(0).name));
-  return types_strictly_match(product, expected_product);
-}
-
-void drop_from_type(reagent& r, string expected_type) {
-  assert(!r.type->atom);
-  if (r.type->left->name != expected_type) {
-    raise << "can't drop2 " << expected_type << " from '" << to_string(r) << "'\n" << end();
-    return;
-  }
-  // r.type = r.type->right
-  type_tree* tmp = r.type;
-  r.type = tmp->right;
-  tmp->right = NULL;
-  delete tmp;
-  // if (!r.type->right) r.type = r.type->left
-  assert(!r.type->atom);
-  if (r.type->right) return;
-  tmp = r.type;
-  r.type = tmp->left;
-  tmp->left = NULL;
-  delete tmp;
-}
-
-:(scenario new_returns_incorrect_type)
-% Hide_errors = true;
-def main [
-  1:bool <- new num:type
-]
-+error: main: product of 'new' has incorrect type: '1:bool <- new num:type'
-
-:(scenario new_discerns_singleton_list_from_atom_container)
-% Hide_errors = true;
-def main [
-  1:address:num/raw <- new {(num): type}  # should be '{num: type}'
-]
-+error: main: product of 'new' has incorrect type: '1:address:num/raw <- new {(num): type}'
-
-:(scenario new_with_type_abbreviation)
-def main [
-  1:address:num/raw <- new num:type
-]
-$error: 0
-
-:(scenario new_with_type_abbreviation_inside_compound)
-def main [
-  {1: (address address number), raw: ()} <- new {(& num): type}
-]
-$error: 0
-
-//: To implement 'new', a Mu transform turns all 'new' instructions into
-//: 'allocate' instructions that precompute the amount of memory they want to
-//: allocate.
-
-//: Ensure that we never call 'allocate' directly, and that there's no 'new'
-//: instructions left after the transforms have run.
-:(before "End Primitive Recipe Checks")
-case ALLOCATE: {
-  raise << "never call 'allocate' directly'; always use 'new'\n" << end();
-  break;
-}
-:(before "End Primitive Recipe Implementations")
-case NEW: {
-  raise << "no implementation for 'new'; why wasn't it translated to 'allocate'? Please save a copy of your program and send it to Kartik.\n" << end();
-  break;
-}
-
-:(after "Transform.push_back(check_instruction)")  // check_instruction will guard against direct 'allocate' instructions below
-Transform.push_back(transform_new_to_allocate);  // idempotent
-
-:(code)
-void transform_new_to_allocate(const recipe_ordinal r) {
-  trace(9991, "transform") << "--- convert 'new' to 'allocate' for recipe " << get(Recipe, r).name << end();
-  for (int i = 0;  i < SIZE(get(Recipe, r).steps);  ++i) {
-    instruction& inst = get(Recipe, r).steps.at(i);
-    // Convert 'new' To 'allocate'
-    if (inst.name == "new") {
-      if (inst.ingredients.empty()) return;  // error raised elsewhere
-      inst.operation = ALLOCATE;
-      type_tree* type = new_type_tree(inst.ingredients.at(0).name);
-      inst.ingredients.at(0).set_value(size_of(type));
-      trace(9992, "new") << "size of '" << inst.ingredients.at(0).name << "' is " << inst.ingredients.at(0).value << end();
-      delete type;
-    }
-  }
-}
-
-//: implement 'allocate' based on size
-
-:(before "End Globals")
-extern const int Reserved_for_tests = 1000;
-int Memory_allocated_until = Reserved_for_tests;
-int Initial_memory_per_routine = 100000;
-:(before "End Reset")
-Memory_allocated_until = Reserved_for_tests;
-Initial_memory_per_routine = 100000;
-:(before "End routine Fields")
-int alloc, alloc_max;
-:(before "End routine Constructor")
-alloc = Memory_allocated_until;
-Memory_allocated_until += Initial_memory_per_routine;
-alloc_max = Memory_allocated_until;
-trace("new") << "routine allocated memory from " << alloc << " to " << alloc_max << end();
-
-:(before "End Primitive Recipe Declarations")
-ALLOCATE,
-:(before "End Primitive Recipe Numbers")
-put(Recipe_ordinal, "allocate", ALLOCATE);
-:(before "End Primitive Recipe Implementations")
-case ALLOCATE: {
-  // compute the space we need
-  int size = ingredients.at(0).at(0);
-  if (SIZE(ingredients) > 1) {
-    // array allocation
-    trace("mem") << "array length is " << ingredients.at(1).at(0) << end();
-    size = /*space for length*/1 + size*ingredients.at(1).at(0);
-  }
-  int result = allocate(size);
-  if (SIZE(current_instruction().ingredients) > 1) {
-    // initialize array length
-    trace("mem") << "storing " << ingredients.at(1).at(0) << " in location " << result << end();
-    put(Memory, result, ingredients.at(1).at(0));
-  }
-  products.resize(1);
-  products.at(0).push_back(result);
-  break;
-}
-:(code)
-int allocate(int size) {
-  trace("mem") << "allocating size " << size << end();
-//?   Total_alloc += size;
-//?   ++Num_alloc;
-  // Allocate Special-cases
-  // compute the region of memory to return
-  // really crappy at the moment
-  ensure_space(size);
-  const int result = Current_routine->alloc;
-  trace("mem") << "new alloc: " << result << end();
-  // initialize allocated space
-  for (int address = result;  address < result+size;  ++address) {
-    trace("mem") << "storing 0 in location " << address << end();
-    put(Memory, address, 0);
-  }
-  Current_routine->alloc += size;
-  // no support yet for reclaiming memory between routines
-  assert(Current_routine->alloc <= Current_routine->alloc_max);
-  return result;
-}
-
-//: statistics for debugging
-//? :(before "End Globals")
-//? int Total_alloc = 0;
-//? int Num_alloc = 0;
-//? int Total_free = 0;
-//? int Num_free = 0;
-//? :(before "End Reset")
-//? if (!Memory.empty()) {
-//?   cerr << Total_alloc << "/" << Num_alloc
-//?        << " vs " << Total_free << "/" << Num_free << '\n';
-//?   cerr << SIZE(Memory) << '\n';
-//? }
-//? Total_alloc = Num_alloc = Total_free = Num_free = 0;
-
-:(code)
-void ensure_space(int size) {
-  if (size > Initial_memory_per_routine) {
-    cerr << "can't allocate " << size << " locations, that's too much compared to " << Initial_memory_per_routine << ".\n";
-    exit(1);
-  }
-  if (Current_routine->alloc + size > Current_routine->alloc_max) {
-    // waste the remaining space and create a new chunk
-    Current_routine->alloc = Memory_allocated_until;
-    Memory_allocated_until += Initial_memory_per_routine;
-    Current_routine->alloc_max = Memory_allocated_until;
-    trace("new") << "routine allocated memory from " << Current_routine->alloc << " to " << Current_routine->alloc_max << end();
-  }
-}
-
-:(scenario new_initializes)
-% Memory_allocated_until = 10;
-% put(Memory, Memory_allocated_until, 1);
-def main [
-  1:address:num <- new number:type
-]
-+mem: storing 0 in location 10
-
-:(scenario new_size)
-def main [
-  11:address:num/raw <- new number:type
-  12:address:num/raw <- new number:type
-  13:num/raw <- subtract 12:address:num/raw, 11:address:num/raw
-]
-# size of number
-+mem: storing 1 in location 13
-
-:(scenario new_array_size)
-def main [
-  1:address:array:num/raw <- new number:type, 5
-  2:address:num/raw <- new number:type
-  3:num/raw <- subtract 2:address:num/raw, 1:address:array:num/raw
-]
-# 5 locations for array contents + array length
-+mem: storing 6 in location 3
-
-:(scenario new_empty_array)
-def main [
-  1:address:array:num/raw <- new number:type, 0
-  2:address:num/raw <- new number:type
-  3:num/raw <- subtract 2:address:num/raw, 1:address:array:num/raw
-]
-+run: {1: ("address" "array" "number"), "raw": ()} <- new {number: "type"}, {0: "literal"}
-+mem: array length is 0
-# one location for array length
-+mem: storing 1 in location 3
-
-//: If a routine runs out of its initial allocation, it should allocate more.
-:(scenario new_overflow)
-% Initial_memory_per_routine = 2;  // barely enough room for point allocation below
-def main [
-  1:address:num/raw <- new number:type
-  2:address:point/raw <- new point:type  # not enough room in initial page
-]
-+new: routine allocated memory from 1000 to 1002
-+new: routine allocated memory from 1002 to 1004
-
-:(scenario new_without_ingredient)
-% Hide_errors = true;
-def main [
-  1:address:number <- new  # missing ingredient
-]
-+error: main: 'new' requires one or two ingredients, but got '1:address:number <- new'