diff options
author | Kartik Agaram <vc@akkartik.com> | 2019-05-13 22:34:31 -0700 |
---|---|---|
committer | Kartik Agaram <vc@akkartik.com> | 2019-05-13 22:57:14 -0700 |
commit | 56a0f3c560b9763c1aafdf7898d134b57277ff5e (patch) | |
tree | 3156b6bf3e48737f9a79e81112e7a24268c93d5d /subx/015immediate_addressing.cc | |
parent | c12e85e1038f1118da0e22a810801b402a67a444 (diff) | |
parent | 3cf8a4548fd31d4e6f221bbcc643b365264a649c (diff) | |
download | mu-56a0f3c560b9763c1aafdf7898d134b57277ff5e.tar.gz |
Merge branch 'dquotes' into dquotes-1
dquotes.subx is now segfaulting after this merge. Seems to be trying to use addresses from the old stack.
Diffstat (limited to 'subx/015immediate_addressing.cc')
-rw-r--r-- | subx/015immediate_addressing.cc | 526 |
1 files changed, 447 insertions, 79 deletions
diff --git a/subx/015immediate_addressing.cc b/subx/015immediate_addressing.cc index 18cd5334..4210c024 100644 --- a/subx/015immediate_addressing.cc +++ b/subx/015immediate_addressing.cc @@ -1,6 +1,78 @@ //: instructions that (immediately) contain an argument to act with :(before "End Initialize Op Names") +put_new(Name, "05", "add imm32 to EAX (add)"); + +:(before "End Single-Byte Opcodes") +case 0x05: { // add imm32 to EAX + int32_t signed_arg2 = next32(); + trace(Callstack_depth+1, "run") << "add imm32 0x" << HEXWORD << signed_arg2 << " to EAX" << end(); + int32_t signed_result = Reg[EAX].i + signed_arg2; + SF = (signed_result < 0); + ZF = (signed_result == 0); + int64_t signed_full_result = static_cast<int64_t>(Reg[EAX].i) + signed_arg2; + OF = (signed_result != signed_full_result); + // set CF + uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2); + uint32_t unsigned_result = Reg[EAX].u + unsigned_arg2; + uint64_t unsigned_full_result = static_cast<uint64_t>(Reg[EAX].u) + unsigned_arg2; + CF = (unsigned_result != unsigned_full_result); + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); + Reg[EAX].i = signed_result; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end(); + break; +} + +:(code) +void test_add_imm32_to_EAX_signed_overflow() { + Reg[EAX].i = 0x7fffffff; // largest positive signed integer + run( + "== 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 05 01 00 00 00 \n" // add 1 to EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: add imm32 0x00000001 to EAX\n" + "run: SF=1; ZF=0; CF=0; OF=1\n" + "run: storing 0x80000000\n" + ); +} + +void test_add_imm32_to_EAX_unsigned_overflow() { + Reg[EAX].u = 0xffffffff; // largest unsigned number + Reg[EBX].u = 1; + run( + "== 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 05 01 00 00 00 \n" // add 1 to EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: add imm32 0x00000001 to EAX\n" + "run: SF=0; ZF=1; CF=1; OF=0\n" + "run: storing 0x00000000\n" + ); +} + +void test_add_imm32_to_EAX_unsigned_and_signed_overflow() { + Reg[EAX].u = 0x80000000; // smallest negative signed integer + run( + "== 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 05 00 00 00 80 \n" // add 0x80000000 to EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: add imm32 0x80000000 to EAX\n" + "run: SF=0; ZF=1; CF=1; OF=1\n" + "run: storing 0x00000000\n" + ); +} + +//: + +:(before "End Initialize Op Names") put_new(Name, "81", "combine rm32 with imm32 based on subop (add/sub/and/or/xor/cmp)"); :(code) @@ -10,7 +82,7 @@ void test_add_imm32_to_r32() { "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 c3 0a 0b 0c 0d\n" // add 0x0d0c0b0a to EBX - // ModR/M in binary: 11 (direct mode) 000 (add imm32) 011 (dest EBX) + // ModR/M in binary: 11 (direct mode) 000 (subop add) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" @@ -25,15 +97,29 @@ void test_add_imm32_to_r32() { case 0x81: { // combine imm32 with r/m32 trace(Callstack_depth+1, "run") << "combine imm32 with r/m32" << end(); const uint8_t modrm = next(); - int32_t* arg1 = effective_address(modrm); - const int32_t arg2 = next32(); - trace(Callstack_depth+1, "run") << "imm32 is 0x" << HEXWORD << arg2 << end(); + int32_t* signed_arg1 = effective_address(modrm); + const int32_t signed_arg2 = next32(); + trace(Callstack_depth+1, "run") << "imm32 is 0x" << HEXWORD << signed_arg2 << end(); const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits switch (subop) { - case 0: + case 0: { trace(Callstack_depth+1, "run") << "subop add" << end(); - BINARY_ARITHMETIC_OP(+, *arg1, arg2); + int32_t signed_result = *signed_arg1 + signed_arg2; + SF = (signed_result < 0); + ZF = (signed_result == 0); + int64_t signed_full_result = static_cast<int64_t>(*signed_arg1) + signed_arg2; + OF = (signed_result != signed_full_result); + // set CF + uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1); + uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2); + uint32_t unsigned_result = unsigned_arg1 + unsigned_arg2; + uint64_t unsigned_full_result = static_cast<uint64_t>(unsigned_arg1) + unsigned_arg2; + CF = (unsigned_result != unsigned_full_result); + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); + *signed_arg1 = signed_result; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); break; + } // End Op 81 Subops default: cerr << "unrecognized subop for opcode 81: " << NUM(subop) << '\n'; @@ -42,6 +128,61 @@ case 0x81: { // combine imm32 with r/m32 break; } +:(code) +void test_add_imm32_to_r32_signed_overflow() { + Reg[EBX].i = 0x7fffffff; // largest positive signed integer + run( + "== 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 81 c3 01 00 00 00\n" // add 1 to EBX + // ModR/M in binary: 11 (direct mode) 000 (subop add) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: combine imm32 with r/m32\n" + "run: r/m32 is EBX\n" + "run: imm32 is 0x00000001\n" + "run: subop add\n" + "run: SF=1; ZF=0; CF=0; OF=1\n" + "run: storing 0x80000000\n" + ); +} + +void test_add_imm32_to_r32_unsigned_overflow() { + Reg[EBX].u = 0xffffffff; // largest unsigned number + run( + "== 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 81 c3 01 00 00 00\n" // add 1 to EBX + // ModR/M in binary: 11 (direct mode) 011 (subop add) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: combine imm32 with r/m32\n" + "run: r/m32 is EBX\n" + "run: imm32 is 0x00000001\n" + "run: subop add\n" + "run: SF=0; ZF=1; CF=1; OF=0\n" + "run: storing 0x00000000\n" + ); +} + +void test_add_imm32_to_r32_unsigned_and_signed_overflow() { + Reg[EBX].u = 0x80000000; // smallest negative signed integer + run( + "== 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 81 c3 00 00 00 80\n" // add 0x80000000 to EBX + // ModR/M in binary: 11 (direct mode) 011 (subop add) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: combine imm32 with r/m32\n" + "run: r/m32 is EBX\n" + "run: imm32 is 0x80000000\n" + "run: subop add\n" + "run: SF=0; ZF=1; CF=1; OF=1\n" + "run: storing 0x00000000\n" + ); +} + //: :(code) @@ -51,7 +192,7 @@ void test_add_imm32_to_mem_at_r32() { "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 03 0a 0b 0c 0d \n" // add 0x0d0c0b0a to *EBX - // ModR/M in binary: 00 (indirect mode) 000 (add imm32) 011 (dest EBX) + // ModR/M in binary: 00 (indirect mode) 000 (subop add) 011 (dest EBX) "== 0x2000\n" // data segment "01 00 00 00\n" // 0x00000001 ); @@ -70,7 +211,7 @@ void test_add_imm32_to_mem_at_r32() { put_new(Name, "2d", "subtract imm32 from EAX (sub)"); :(code) -void test_subtract_imm32_from_eax() { +void test_subtract_imm32_from_EAX() { Reg[EAX].i = 0x0d0c0baa; run( "== 0x1\n" // code segment @@ -85,22 +226,79 @@ void test_subtract_imm32_from_eax() { :(before "End Single-Byte Opcodes") case 0x2d: { // subtract imm32 from EAX - const int32_t arg2 = next32(); - trace(Callstack_depth+1, "run") << "subtract imm32 0x" << HEXWORD << arg2 << " from EAX" << end(); - BINARY_ARITHMETIC_OP(-, Reg[EAX].i, arg2); + const int32_t signed_arg2 = next32(); + trace(Callstack_depth+1, "run") << "subtract imm32 0x" << HEXWORD << signed_arg2 << " from EAX" << end(); + int32_t signed_result = Reg[EAX].i - signed_arg2; + SF = (signed_result < 0); + ZF = (signed_result == 0); + int64_t signed_full_result = static_cast<int64_t>(Reg[EAX].i) - signed_arg2; + OF = (signed_result != signed_full_result); + // set CF + uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2); + uint32_t unsigned_result = Reg[EAX].u - unsigned_arg2; + uint64_t unsigned_full_result = static_cast<uint64_t>(Reg[EAX].u) - unsigned_arg2; + CF = (unsigned_result != unsigned_full_result); + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); + Reg[EAX].i = signed_result; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end(); break; } +:(code) +void test_subtract_imm32_from_EAX_signed_overflow() { + Reg[EAX].i = 0x80000000; // smallest negative signed integer + run( + "== 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 2d ff ff ff 7f \n" // subtract largest positive signed integer from EAX + // ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: subtract imm32 0x7fffffff from EAX\n" + "run: SF=0; ZF=0; CF=0; OF=1\n" + "run: storing 0x00000001\n" + ); +} + +void test_subtract_imm32_from_EAX_unsigned_overflow() { + Reg[EAX].i = 0; + run( + "== 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 2d 01 00 00 00 \n" // subtract 1 from EAX + // ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: subtract imm32 0x00000001 from EAX\n" + "run: SF=1; ZF=0; CF=1; OF=0\n" + "run: storing 0xffffffff\n" + ); +} + +void test_subtract_imm32_from_EAX_signed_and_unsigned_overflow() { + Reg[EAX].i = 0; + run( + "== 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 2d 00 00 00 80 \n" // subtract smallest negative signed integer from EAX + // ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: subtract imm32 0x80000000 from EAX\n" + "run: SF=1; ZF=0; CF=1; OF=1\n" + "run: storing 0x80000000\n" + ); +} + //: -:(code) void test_subtract_imm32_from_mem_at_r32() { Reg[EBX].i = 0x2000; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 2b 01 00 00 00 \n" // subtract 1 from *EBX - // ModR/M in binary: 00 (indirect mode) 101 (subtract imm32) 011 (dest EBX) + // ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX) "== 0x2000\n" // data segment "0a 00 00 00\n" // 0x0000000a ); @@ -116,20 +314,96 @@ void test_subtract_imm32_from_mem_at_r32() { :(before "End Op 81 Subops") case 5: { trace(Callstack_depth+1, "run") << "subop subtract" << end(); - BINARY_ARITHMETIC_OP(-, *arg1, arg2); + int32_t signed_result = *signed_arg1 - signed_arg2; + SF = (signed_result < 0); + ZF = (signed_result == 0); + int64_t signed_full_result = static_cast<int64_t>(*signed_arg1) - signed_arg2; + OF = (signed_result != signed_full_result); + // set CF + uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1); + uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2); + uint32_t unsigned_result = unsigned_arg1 - unsigned_arg2; + uint64_t unsigned_full_result = static_cast<uint64_t>(unsigned_arg1) - unsigned_arg2; + CF = (unsigned_result != unsigned_full_result); + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); + *signed_arg1 = signed_result; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); break; } +:(code) +void test_subtract_imm32_from_mem_at_r32_signed_overflow() { + Reg[EBX].i = 0x2000; + run( + "== 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 81 2b ff ff ff 7f \n" // subtract largest positive signed integer from *EBX + // ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX) + "== 0x2000\n" // data segment + "00 00 00 80\n" // smallest negative signed integer + ); + CHECK_TRACE_CONTENTS( + "run: combine imm32 with r/m32\n" + "run: effective address is 0x00002000 (EBX)\n" + "run: effective address contains 80000000\n" + "run: imm32 is 0x7fffffff\n" + "run: subop subtract\n" + "run: SF=0; ZF=0; CF=0; OF=1\n" + "run: storing 0x00000001\n" + ); +} + +void test_subtract_imm32_from_mem_at_r32_unsigned_overflow() { + Reg[EBX].i = 0x2000; + run( + "== 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 81 2b 01 00 00 00 \n" // subtract 1 from *EBX + // ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX) + "== 0x2000\n" // data segment + "00 00 00 00\n" // 0 + ); + CHECK_TRACE_CONTENTS( + "run: combine imm32 with r/m32\n" + "run: effective address is 0x00002000 (EBX)\n" + "run: effective address contains 0\n" + "run: imm32 is 0x00000001\n" + "run: subop subtract\n" + "run: SF=1; ZF=0; CF=1; OF=0\n" + "run: storing 0xffffffff\n" + ); +} + +void test_subtract_imm32_from_mem_at_r32_signed_and_unsigned_overflow() { + Reg[EBX].i = 0x2000; + run( + "== 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 81 2b 00 00 00 80 \n" // subtract smallest negative signed integer from *EBX + // ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX) + "== 0x2000\n" // data segment + "00 00 00 00\n" // 0 + ); + CHECK_TRACE_CONTENTS( + "run: combine imm32 with r/m32\n" + "run: effective address is 0x00002000 (EBX)\n" + "run: effective address contains 0\n" + "run: imm32 is 0x80000000\n" + "run: subop subtract\n" + "run: SF=1; ZF=0; CF=1; OF=1\n" + "run: storing 0x80000000\n" + ); +} + //: -:(code) void test_subtract_imm32_from_r32() { Reg[EBX].i = 10; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 eb 01 00 00 00 \n" // subtract 1 from EBX - // ModR/M in binary: 11 (direct mode) 101 (subtract imm32) 011 (dest EBX) + // ModR/M in binary: 11 (direct mode) 101 (subop subtract) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" @@ -338,7 +612,7 @@ void test_shift_right_logical_negative_r32_with_imm8() { put_new(Name, "25", "EAX = bitwise AND of imm32 with EAX (and)"); :(code) -void test_and_imm32_with_eax() { +void test_and_EAX_with_imm32() { Reg[EAX].i = 0xff; run( "== 0x1\n" // code segment @@ -353,9 +627,17 @@ void test_and_imm32_with_eax() { :(before "End Single-Byte Opcodes") case 0x25: { // and imm32 with EAX - const int32_t arg2 = next32(); - trace(Callstack_depth+1, "run") << "and imm32 0x" << HEXWORD << arg2 << " with EAX" << end(); - BINARY_BITWISE_OP(&, Reg[EAX].i, arg2); + // bitwise ops technically operate on unsigned numbers, but it makes no + // difference + const int32_t signed_arg2 = next32(); + trace(Callstack_depth+1, "run") << "and imm32 0x" << HEXWORD << signed_arg2 << " with EAX" << end(); + Reg[EAX].i &= signed_arg2; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end(); + SF = (Reg[EAX].i >> 31); + ZF = (Reg[EAX].i == 0); + CF = false; + OF = false; + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } @@ -368,7 +650,7 @@ void test_and_imm32_with_mem_at_r32() { "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 23 0a 0b 0c 0d \n" // and 0x0d0c0b0a with *EBX - // ModR/M in binary: 00 (indirect mode) 100 (and imm32) 011 (dest EBX) + // ModR/M in binary: 00 (indirect mode) 100 (subop and) 011 (dest EBX) "== 0x2000\n" // data segment "ff 00 00 00\n" // 0x000000ff ); @@ -384,7 +666,15 @@ void test_and_imm32_with_mem_at_r32() { :(before "End Op 81 Subops") case 4: { trace(Callstack_depth+1, "run") << "subop and" << end(); - BINARY_BITWISE_OP(&, *arg1, arg2); + // bitwise ops technically operate on unsigned numbers, but it makes no + // difference + *signed_arg1 &= signed_arg2; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); + SF = (*signed_arg1 >> 31); + ZF = (*signed_arg1 == 0); + CF = false; + OF = false; + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } @@ -397,7 +687,7 @@ void test_and_imm32_with_r32() { "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 e3 0a 0b 0c 0d \n" // and 0x0d0c0b0a with EBX - // ModR/M in binary: 11 (direct mode) 100 (and imm32) 011 (dest EBX) + // ModR/M in binary: 11 (direct mode) 100 (subop and) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" @@ -414,7 +704,7 @@ void test_and_imm32_with_r32() { put_new(Name, "0d", "EAX = bitwise OR of imm32 with EAX (or)"); :(code) -void test_or_imm32_with_eax() { +void test_or_EAX_with_imm32() { Reg[EAX].i = 0xd0c0b0a0; run( "== 0x1\n" // code segment @@ -429,9 +719,17 @@ void test_or_imm32_with_eax() { :(before "End Single-Byte Opcodes") case 0x0d: { // or imm32 with EAX - const int32_t arg2 = next32(); - trace(Callstack_depth+1, "run") << "or imm32 0x" << HEXWORD << arg2 << " with EAX" << end(); - BINARY_BITWISE_OP(|, Reg[EAX].i, arg2); + // bitwise ops technically operate on unsigned numbers, but it makes no + // difference + const int32_t signed_arg2 = next32(); + trace(Callstack_depth+1, "run") << "or imm32 0x" << HEXWORD << signed_arg2 << " with EAX" << end(); + Reg[EAX].i |= signed_arg2; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end(); + SF = (Reg[EAX].i >> 31); + ZF = (Reg[EAX].i == 0); + CF = false; + OF = false; + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } @@ -444,7 +742,7 @@ void test_or_imm32_with_mem_at_r32() { "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 0b 0a 0b 0c 0d \n" // or 0x0d0c0b0a with *EBX - // ModR/M in binary: 00 (indirect mode) 001 (or imm32) 011 (dest EBX) + // ModR/M in binary: 00 (indirect mode) 001 (subop or) 011 (dest EBX) "== 0x2000\n" // data segment "a0 b0 c0 d0\n" // 0xd0c0b0a0 ); @@ -460,7 +758,15 @@ void test_or_imm32_with_mem_at_r32() { :(before "End Op 81 Subops") case 1: { trace(Callstack_depth+1, "run") << "subop or" << end(); - BINARY_BITWISE_OP(|, *arg1, arg2); + // bitwise ops technically operate on unsigned numbers, but it makes no + // difference + *signed_arg1 |= signed_arg2; \ + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); \ + SF = (*signed_arg1 >> 31); \ + ZF = (*signed_arg1 == 0); \ + CF = false; \ + OF = false; \ + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); \ break; } @@ -471,7 +777,7 @@ void test_or_imm32_with_r32() { "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 cb 0a 0b 0c 0d \n" // or 0x0d0c0b0a with EBX - // ModR/M in binary: 11 (direct mode) 001 (or imm32) 011 (dest EBX) + // ModR/M in binary: 11 (direct mode) 001 (subop or) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" @@ -488,7 +794,7 @@ void test_or_imm32_with_r32() { put_new(Name, "35", "EAX = bitwise XOR of imm32 with EAX (xor)"); :(code) -void test_xor_imm32_with_eax() { +void test_xor_EAX_with_imm32() { Reg[EAX].i = 0xddccb0a0; run( "== 0x1\n" // code segment @@ -503,9 +809,17 @@ void test_xor_imm32_with_eax() { :(before "End Single-Byte Opcodes") case 0x35: { // xor imm32 with EAX - const int32_t arg2 = next32(); - trace(Callstack_depth+1, "run") << "xor imm32 0x" << HEXWORD << arg2 << " with EAX" << end(); - BINARY_BITWISE_OP(^, Reg[EAX].i, arg2); + // bitwise ops technically operate on unsigned numbers, but it makes no + // difference + const int32_t signed_arg2 = next32(); + trace(Callstack_depth+1, "run") << "xor imm32 0x" << HEXWORD << signed_arg2 << " with EAX" << end(); + Reg[EAX].i ^= signed_arg2; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end(); + SF = (Reg[EAX].i >> 31); + ZF = (Reg[EAX].i == 0); + CF = false; + OF = false; + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } @@ -518,7 +832,7 @@ void test_xor_imm32_with_mem_at_r32() { "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 33 0a 0b 0c 0d \n" // xor 0x0d0c0b0a with *EBX - // ModR/M in binary: 00 (indirect mode) 110 (xor imm32) 011 (dest EBX) + // ModR/M in binary: 00 (indirect mode) 110 (subop xor) 011 (dest EBX) "== 0x2000\n" // data segment "a0 b0 c0 d0\n" // 0xd0c0b0a0 ); @@ -534,7 +848,15 @@ void test_xor_imm32_with_mem_at_r32() { :(before "End Op 81 Subops") case 6: { trace(Callstack_depth+1, "run") << "subop xor" << end(); - BINARY_BITWISE_OP(^, *arg1, arg2); + // bitwise ops technically operate on unsigned numbers, but it makes no + // difference + *signed_arg1 ^= signed_arg2; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); + SF = (*signed_arg1 >> 31); + ZF = (*signed_arg1 == 0); + CF = false; + OF = false; + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } @@ -545,7 +867,7 @@ void test_xor_imm32_with_r32() { "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 f3 0a 0b 0c 0d \n" // xor 0x0d0c0b0a with EBX - // ModR/M in binary: 11 (direct mode) 110 (xor imm32) 011 (dest EBX) + // ModR/M in binary: 11 (direct mode) 110 (subop xor) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" @@ -562,49 +884,96 @@ void test_xor_imm32_with_r32() { put_new(Name, "3d", "compare: set SF if EAX < imm32 (cmp)"); :(code) -void test_compare_imm32_with_eax_greater() { +void test_compare_EAX_with_imm32_greater() { Reg[EAX].i = 0x0d0c0b0a; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate - " 3d 07 0b 0c 0d \n" // compare 0x0d0c0b07 with EAX + " 3d 07 0b 0c 0d \n" // compare EAX with 0x0d0c0b07 ); CHECK_TRACE_CONTENTS( - "run: compare EAX and imm32 0x0d0c0b07\n" - "run: SF=0; ZF=0; OF=0\n" + "run: compare EAX with imm32 0x0d0c0b07\n" + "run: SF=0; ZF=0; CF=0; OF=0\n" ); } :(before "End Single-Byte Opcodes") case 0x3d: { // compare EAX with imm32 - const int32_t arg1 = Reg[EAX].i; - const int32_t arg2 = next32(); - trace(Callstack_depth+1, "run") << "compare EAX and imm32 0x" << HEXWORD << arg2 << end(); - const int32_t tmp1 = arg1 - arg2; - SF = (tmp1 < 0); - ZF = (tmp1 == 0); - const int64_t tmp2 = arg1 - arg2; - OF = (tmp1 != tmp2); - trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end(); + const int32_t signed_arg1 = Reg[EAX].i; + const int32_t signed_arg2 = next32(); + trace(Callstack_depth+1, "run") << "compare EAX with imm32 0x" << HEXWORD << signed_arg2 << end(); + const int32_t signed_difference = signed_arg1 - signed_arg2; + SF = (signed_difference < 0); + ZF = (signed_difference == 0); + const int64_t full_signed_difference = static_cast<int64_t>(signed_arg1) - signed_arg2; + OF = (signed_difference != full_signed_difference); + const uint32_t unsigned_arg1 = static_cast<uint32_t>(signed_arg1); + const uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2); + const uint32_t unsigned_difference = unsigned_arg1 - unsigned_arg2; + const uint64_t full_unsigned_difference = static_cast<uint64_t>(unsigned_arg1) - unsigned_arg2; + CF = (unsigned_difference != full_unsigned_difference); + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } :(code) -void test_compare_imm32_with_eax_lesser() { - Reg[EAX].i = 0x0d0c0b07; +void test_compare_EAX_with_imm32_lesser_unsigned_and_signed() { + Reg[EAX].i = 0x0a0b0c07; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate - " 3d 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with EAX + " 3d 0d 0c 0b 0a \n" // compare EAX with imm32 + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( - "run: compare EAX and imm32 0x0d0c0b0a\n" - "run: SF=1; ZF=0; OF=0\n" + "run: compare EAX with imm32 0x0a0b0c0d\n" + "run: SF=1; ZF=0; CF=1; OF=0\n" ); } -:(code) -void test_compare_imm32_with_eax_equal() { +void test_compare_EAX_with_imm32_lesser_unsigned_and_signed_due_to_overflow() { + Reg[EAX].i = 0x7fffffff; // largest positive signed integer + run( + "== 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 3d 00 00 00 80\n" // compare EAX with smallest negative signed integer + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: compare EAX with imm32 0x80000000\n" + "run: SF=1; ZF=0; CF=1; OF=1\n" + ); +} + +void test_compare_EAX_with_imm32_lesser_signed() { + Reg[EAX].i = 0xffffffff; // -1 + run( + "== 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 3d 01 00 00 00\n" // compare EAX with 1 + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: compare EAX with imm32 0x00000001\n" + "run: SF=1; ZF=0; CF=0; OF=0\n" + ); +} + +void test_compare_EAX_with_imm32_lesser_unsigned() { + Reg[EAX].i = 0x00000001; // 1 + run( + "== 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 3d ff ff ff ff\n" // compare EAX with -1 + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: compare EAX with imm32 0xffffffff\n" + "run: SF=0; ZF=0; CF=1; OF=0\n" + ); +} + +void test_compare_EAX_with_imm32_equal() { Reg[EAX].i = 0x0d0c0b0a; run( "== 0x1\n" // code segment @@ -612,39 +981,38 @@ void test_compare_imm32_with_eax_equal() { " 3d 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with EAX ); CHECK_TRACE_CONTENTS( - "run: compare EAX and imm32 0x0d0c0b0a\n" - "run: SF=0; ZF=1; OF=0\n" + "run: compare EAX with imm32 0x0d0c0b0a\n" + "run: SF=0; ZF=1; CF=0; OF=0\n" ); } //: -:(code) void test_compare_imm32_with_r32_greater() { Reg[EBX].i = 0x0d0c0b0a; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 fb 07 0b 0c 0d \n" // compare 0x0d0c0b07 with EBX - // ModR/M in binary: 11 (direct mode) 111 (compare imm32) 011 (dest EBX) + // ModR/M in binary: 11 (direct mode) 111 (subop compare) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: r/m32 is EBX\n" "run: imm32 is 0x0d0c0b07\n" - "run: SF=0; ZF=0; OF=0\n" + "run: SF=0; ZF=0; CF=0; OF=0\n" ); } :(before "End Op 81 Subops") case 7: { trace(Callstack_depth+1, "run") << "subop compare" << end(); - const int32_t tmp1 = *arg1 - arg2; + const int32_t tmp1 = *signed_arg1 - signed_arg2; SF = (tmp1 < 0); ZF = (tmp1 == 0); - const int64_t tmp2 = *arg1 - arg2; + const int64_t tmp2 = static_cast<int64_t>(*signed_arg1) - signed_arg2; OF = (tmp1 != tmp2); - trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end(); + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } @@ -655,13 +1023,13 @@ void test_compare_imm32_with_r32_lesser() { "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 fb 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with EBX - // ModR/M in binary: 11 (direct mode) 111 (compare imm32) 011 (dest EBX) + // ModR/M in binary: 11 (direct mode) 111 (subop compare) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: r/m32 is EBX\n" "run: imm32 is 0x0d0c0b0a\n" - "run: SF=1; ZF=0; OF=0\n" + "run: SF=1; ZF=0; CF=0; OF=0\n" ); } @@ -672,13 +1040,13 @@ void test_compare_imm32_with_r32_equal() { "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 fb 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with EBX - // ModR/M in binary: 11 (direct mode) 111 (compare imm32) 011 (dest EBX) + // ModR/M in binary: 11 (direct mode) 111 (subop compare) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: r/m32 is EBX\n" "run: imm32 is 0x0d0c0b0a\n" - "run: SF=0; ZF=1; OF=0\n" + "run: SF=0; ZF=1; CF=0; OF=0\n" ); } @@ -689,7 +1057,7 @@ void test_compare_imm32_with_mem_at_r32_greater() { "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 3b 07 0b 0c 0d \n" // compare 0x0d0c0b07 with *EBX - // ModR/M in binary: 00 (indirect mode) 111 (compare imm32) 011 (dest EBX) + // ModR/M in binary: 00 (indirect mode) 111 (subop compare) 011 (dest EBX) "== 0x2000\n" // data segment "0a 0b 0c 0d\n" // 0x0d0c0b0a ); @@ -697,7 +1065,7 @@ void test_compare_imm32_with_mem_at_r32_greater() { "run: combine imm32 with r/m32\n" "run: effective address is 0x00002000 (EBX)\n" "run: imm32 is 0x0d0c0b07\n" - "run: SF=0; ZF=0; OF=0\n" + "run: SF=0; ZF=0; CF=0; OF=0\n" ); } @@ -708,7 +1076,7 @@ void test_compare_imm32_with_mem_at_r32_lesser() { "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 3b 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with *EBX - // ModR/M in binary: 00 (indirect mode) 111 (compare imm32) 011 (dest EBX) + // ModR/M in binary: 00 (indirect mode) 111 (subop compare) 011 (dest EBX) "== 0x2000\n" // data segment "07 0b 0c 0d\n" // 0x0d0c0b07 ); @@ -716,7 +1084,7 @@ void test_compare_imm32_with_mem_at_r32_lesser() { "run: combine imm32 with r/m32\n" "run: effective address is 0x00002000 (EBX)\n" "run: imm32 is 0x0d0c0b0a\n" - "run: SF=1; ZF=0; OF=0\n" + "run: SF=1; ZF=0; CF=0; OF=0\n" ); } @@ -728,7 +1096,7 @@ void test_compare_imm32_with_mem_at_r32_equal() { "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 3b 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with *EBX - // ModR/M in binary: 00 (indirect mode) 111 (compare imm32) 011 (dest EBX) + // ModR/M in binary: 00 (indirect mode) 111 (subop compare) 011 (dest EBX) "== 0x2000\n" // data segment "0a 0b 0c 0d\n" // 0x0d0c0b0a ); @@ -736,14 +1104,14 @@ void test_compare_imm32_with_mem_at_r32_equal() { "run: combine imm32 with r/m32\n" "run: effective address is 0x00002000 (EBX)\n" "run: imm32 is 0x0d0c0b0a\n" - "run: SF=0; ZF=1; OF=0\n" + "run: SF=0; ZF=1; CF=0; OF=0\n" ); } //:: copy (mov) :(before "End Initialize Op Names") -put_new(Name, "b8", "copy imm32 to EAX (mov)"); +// b8 defined earlier to copy imm32 to EAX put_new(Name, "b9", "copy imm32 to ECX (mov)"); put_new(Name, "ba", "copy imm32 to EDX (mov)"); put_new(Name, "bb", "copy imm32 to EBX (mov)"); @@ -765,7 +1133,6 @@ void test_copy_imm32_to_r32() { } :(before "End Single-Byte Opcodes") -case 0xb8: case 0xb9: case 0xba: case 0xbb: @@ -824,7 +1191,8 @@ put_new(Name, "68", "push imm32 to stack (push)"); :(code) void test_push_imm32() { - Reg[ESP].u = 0x14; + Mem.push_back(vma(0xbd000000)); // manually allocate memory + Reg[ESP].u = 0xbd000014; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate @@ -832,7 +1200,7 @@ void test_push_imm32() { ); CHECK_TRACE_CONTENTS( "run: push imm32 0x000000af\n" - "run: ESP is now 0x00000010\n" + "run: ESP is now 0xbd000010\n" "run: contents at ESP: 0x000000af\n" ); } |