about summary refs log tree commit diff stats
path: root/transect/001help.cc
diff options
context:
space:
mode:
authorKartik Agaram <vc@akkartik.com>2019-03-12 18:56:55 -0700
committerKartik Agaram <vc@akkartik.com>2019-03-12 19:14:12 -0700
commit4a943d4ed313eff001504c2b5c472266e86a38af (patch)
treea5757233a8c81b303a808f251180c7344071ed51 /transect/001help.cc
parent43711b0e9f18e0225ce14687fb6ea0902aa6fc61 (diff)
downloadmu-4a943d4ed313eff001504c2b5c472266e86a38af.tar.gz
5001 - drop the :(scenario) DSL
I've been saying for a while[1][2][3] that adding extra abstractions makes
things harder for newcomers, and adding new notations doubly so. And then
I notice this DSL in my own backyard. Makes me feel like a hypocrite.

[1] https://news.ycombinator.com/item?id=13565743#13570092
[2] https://lobste.rs/s/to8wpr/configuration_files_are_canary_warning
[3] https://lobste.rs/s/mdmcdi/little_languages_by_jon_bentley_1986#c_3miuf2

The implementation of the DSL was also highly hacky:

a) It was happening in the tangle/ tool, but was utterly unrelated to tangling
layers.

b) There were several persnickety constraints on the different kinds of
lines and the specific order they were expected in. I kept finding bugs
where the translator would silently do the wrong thing. Or the error messages
sucked, and readers may be stuck looking at the generated code to figure
out what happened. Fixing error messages would require a lot more code,
which is one of my arguments against DSLs in the first place: they may
be easy to implement, but they're hard to design to go with the grain of
the underlying platform. They require lots of iteration. Is that effort
worth prioritizing in this project?

On the other hand, the DSL did make at least some readers' life easier,
the ones who weren't immediately put off by having to learn a strange syntax.
There were fewer quotes to parse, fewer backslash escapes.

Anyway, since there are also people who dislike having to put up with strange
syntaxes, we'll call that consideration a wash and tear this DSL out.

---

This commit was sheer drudgery. Hopefully it won't need to be redone with
a new DSL because I grow sick of backslashes.
Diffstat (limited to 'transect/001help.cc')
-rw-r--r--transect/001help.cc261
1 files changed, 0 insertions, 261 deletions
diff --git a/transect/001help.cc b/transect/001help.cc
deleted file mode 100644
index 3cab06d9..00000000
--- a/transect/001help.cc
+++ /dev/null
@@ -1,261 +0,0 @@
-//: Everything this project/binary supports.
-//: This should give you a sense for what to look forward to in later layers.
-
-:(before "End Commandline Parsing")
-if (argc <= 1 || is_equal(argv[1], "--help")) {
-  //: this is the functionality later layers will provide
-  // currently no automated tests for commandline arg parsing
-  if (argc <= 1) {
-    cerr << "Please provide a Mu program to run.\n"
-         << "\n";
-  }
-  cerr << "Usage:\n"
-       << "  mu [options] [test] [files]\n"
-       << "or:\n"
-       << "  mu [options] [test] [files] -- [ingredients for function/recipe 'main']\n"
-       << "Square brackets surround optional arguments.\n"
-       << "\n"
-       << "Examples:\n"
-       << "  To load files and run 'main':\n"
-       << "    mu file1.mu file2.mu ...\n"
-       << "  To run 'main' and dump a trace of all operations at the end:\n"
-       << "    mu --trace file1.mu file2.mu ...\n"
-       << "  To run all tests:\n"
-       << "    mu test\n"
-       << "  To load files and then run all tests:\n"
-       << "    mu test file1.mu file2.mu ...\n"
-       << "  To run a single Mu scenario:\n"
-       << "    mu test file1.mu file2.mu ... scenario\n"
-       << "  To run a single Mu scenario and dump a trace at the end:\n"
-       << "    mu --trace test file1.mu file2.mu ... scenario\n"
-       << "  To load files and run only the tests in explicitly loaded files (for apps):\n"
-       << "    mu --test-only-app test file1.mu file2.mu ...\n"
-       << "  To load all files with a numeric prefix in a directory:\n"
-       << "    mu directory1 directory2 ...\n"
-       << "  You can test directories just like files.\n"
-       << "    mu test directory1 directory2 ...\n"
-       << "  To pass ingredients to a mu program, provide them after '--':\n"
-       << "    mu file_or_dir1 file_or_dir2 ... -- ingredient1 ingredient2 ...\n"
-       << "  To see where a mu program is spending its time:\n"
-       << "    mu --profile file_or_dir1 file_or_dir2 ...\n"
-       << "  this slices and dices time spent in various profile.* output files\n"
-       << "\n"
-       << "  To browse a trace generated by a previous run:\n"
-       << "    mu browse-trace file\n"
-       ;
-  return 0;
-}
-
-//: Support for option parsing.
-//: Options always begin with '--' and are always the first arguments. An
-//: option will never follow a non-option.
-:(before "End Commandline Parsing")
-char** arg = &argv[1];
-while (argc > 1 && starts_with(*arg, "--")) {
-  if (false)
-    ;  // no-op branch just so any further additions can consistently always start with 'else'
-  // End Commandline Options(*arg)
-  else
-    cerr << "skipping unknown option " << *arg << '\n';
-  --argc;  ++argv;  ++arg;
-}
-
-//:: Helper function used by the above fragment of code (and later layers too,
-//:: who knows?).
-//: The :(code) directive appends function definitions to the end of the
-//: project. Regardless of where functions are defined, we can call them
-//: anywhere we like as long as we format the function header in a specific
-//: way: put it all on a single line without indent, end the line with ') {'
-//: and no trailing whitespace. As long as functions uniformly start this
-//: way, our 'build*' scripts contain a little command to automatically
-//: generate declarations for them.
-:(code)
-bool is_equal(char* s, const char* lit) {
-  return strncmp(s, lit, strlen(lit)) == 0;
-}
-
-bool starts_with(const string& s, const string& pat) {
-  string::const_iterator a=s.begin(), b=pat.begin();
-  for (/*nada*/;  a!=s.end() && b!=pat.end();  ++a, ++b)
-    if (*a != *b) return false;
-  return b == pat.end();
-}
-
-//: I'll throw some style conventions here for want of a better place for them.
-//: As a rule I hate style guides. Do what you want, that's my motto. But since
-//: we're dealing with C/C++, the one big thing we want to avoid is undefined
-//: behavior. If a compiler ever encounters undefined behavior it can make
-//: your program do anything it wants.
-//:
-//: For reference, my checklist of undefined behaviors to watch out for:
-//:   out-of-bounds access
-//:   uninitialized variables
-//:   use after free
-//:   dereferencing invalid pointers: null, a new of size 0, others
-//:
-//:   casting a large number to a type too small to hold it
-//:
-//:   integer overflow
-//:   division by zero and other undefined expressions
-//:   left-shift by negative count
-//:   shifting values by more than or equal to the number of bits they contain
-//:   bitwise operations on signed numbers
-//:
-//:   Converting pointers to types of different alignment requirements
-//:     T* -> void* -> T*: defined
-//:     T* -> U* -> T*: defined if non-function pointers and alignment requirements are same
-//:     function pointers may be cast to other function pointers
-//:
-//:       Casting a numeric value into a value that can't be represented by the target type (either directly or via static_cast)
-//:
-//: To guard against these, some conventions:
-//:
-//: 0. Initialize all primitive variables in functions and constructors.
-//:
-//: 1. Minimize use of pointers and pointer arithmetic. Avoid 'new' and
-//: 'delete' as far as possible. Rely on STL to perform memory management to
-//: avoid use-after-free issues (and memory leaks).
-//:
-//: 2. Avoid naked arrays to avoid out-of-bounds access. Never use operator[]
-//: except with map. Use at() with STL vectors and so on.
-//:
-//: 3. Valgrind all the things.
-//:
-//: 4. Avoid unsigned numbers. Not strictly an undefined-behavior issue, but
-//: the extra range doesn't matter, and it's one less confusing category of
-//: interaction gotchas to worry about.
-//:
-//: Corollary: don't use the size() method on containers, since it returns an
-//: unsigned and that'll cause warnings about mixing signed and unsigned,
-//: yadda-yadda. Instead use this macro below to perform an unsafe cast to
-//: signed. We'll just give up immediately if a container's ever too large.
-//: Basically, Mu is not concerned about this being a little slower than it
-//: could be. (https://gist.github.com/rygorous/e0f055bfb74e3d5f0af20690759de5a7)
-//:
-//: Addendum to corollary: We're going to uniformly use int everywhere, to
-//: indicate that we're oblivious to number size, and since Clang on 32-bit
-//: platforms doesn't yet support multiplication over 64-bit integers, and
-//: since multiplying two integers seems like a more common situation to end
-//: up in than integer overflow.
-:(before "End Includes")
-#define SIZE(X) (assert((X).size() < (1LL<<(sizeof(int)*8-2))), static_cast<int>((X).size()))
-
-//: 5. Integer overflow is guarded against at runtime using the -ftrapv flag
-//: to the compiler, supported by Clang (GCC version only works sometimes:
-//: http://stackoverflow.com/questions/20851061/how-to-make-gcc-ftrapv-work).
-:(before "atexit(reset)")
-initialize_signal_handlers();  // not always necessary, but doesn't hurt
-//? cerr << INT_MAX+1 << '\n';  // test overflow
-//? assert(false);  // test SIGABRT
-:(code)
-// based on https://spin.atomicobject.com/2013/01/13/exceptions-stack-traces-c
-void initialize_signal_handlers() {
-  struct sigaction action;
-  bzero(&action, sizeof(action));
-  action.sa_sigaction = dump_and_exit;
-  sigemptyset(&action.sa_mask);
-  sigaction(SIGABRT, &action, NULL);  // assert() failure or integer overflow on linux (with -ftrapv)
-  sigaction(SIGILL,  &action, NULL);  // integer overflow on OS X (with -ftrapv)
-}
-void dump_and_exit(int sig, siginfo_t* /*unused*/, void* /*unused*/) {
-  switch (sig) {
-    case SIGABRT:
-      #ifndef __APPLE__
-        cerr << "SIGABRT: might be an integer overflow if it wasn't an assert() failure or exception\n";
-        _Exit(1);
-      #endif
-      break;
-    case SIGILL:
-      #ifdef __APPLE__
-        cerr << "SIGILL: most likely caused by integer overflow\n";
-        _Exit(1);
-      #endif
-      break;
-    default:
-      break;
-  }
-}
-:(before "End Includes")
-#include <signal.h>
-
-//: For good measure we'll also enable SIGFPE.
-:(before "atexit(reset)")
-feenableexcept(FE_OVERFLOW | FE_UNDERFLOW);
-//? assert(sizeof(int) == 4 && sizeof(float) == 4);
-//? //                          | exp   |  mantissa
-//? int smallest_subnormal = 0b00000000000000000000000000000001;
-//? float smallest_subnormal_f = *reinterpret_cast<float*>(&smallest_subnormal);
-//? cerr << "ε: " << smallest_subnormal_f << '\n';
-//? cerr << "ε/2: " << smallest_subnormal_f/2 << " (underflow)\n";  // test SIGFPE
-:(before "End Includes")
-#include <fenv.h>
-:(code)
-#ifdef __APPLE__
-// Public domain polyfill for feenableexcept on OS X
-// http://www-personal.umich.edu/~williams/archive/computation/fe-handling-example.c
-int feenableexcept(unsigned int excepts) {
-  static fenv_t fenv;
-  unsigned int new_excepts = excepts & FE_ALL_EXCEPT;
-  unsigned int old_excepts;
-  if (fegetenv(&fenv)) return -1;
-  old_excepts = fenv.__control & FE_ALL_EXCEPT;
-  fenv.__control &= ~new_excepts;
-  fenv.__mxcsr &= ~(new_excepts << 7);
-  return fesetenv(&fenv) ? -1 : old_excepts;
-}
-#endif
-
-//: 6. Map's operator[] being non-const is fucking evil.
-:(before "Globals")  // can't generate prototypes for these
-// from http://stackoverflow.com/questions/152643/idiomatic-c-for-reading-from-a-const-map
-template<typename T> typename T::mapped_type& get(T& map, typename T::key_type const& key) {
-  typename T::iterator iter(map.find(key));
-  assert(iter != map.end());
-  return iter->second;
-}
-template<typename T> typename T::mapped_type const& get(const T& map, typename T::key_type const& key) {
-  typename T::const_iterator iter(map.find(key));
-  assert(iter != map.end());
-  return iter->second;
-}
-template<typename T> typename T::mapped_type const& put(T& map, typename T::key_type const& key, typename T::mapped_type const& value) {
-  // map[key] requires mapped_type to have a zero-arg (default) constructor
-  map.insert(std::make_pair(key, value)).first->second = value;
-  return value;
-}
-template<typename T> bool contains_key(T& map, typename T::key_type const& key) {
-  return map.find(key) != map.end();
-}
-template<typename T> typename T::mapped_type& get_or_insert(T& map, typename T::key_type const& key) {
-  return map[key];
-}
-//: The contract: any container that relies on get_or_insert should never call
-//: contains_key.
-
-//: 7. istreams are a royal pain in the arse. You have to be careful about
-//: what subclass you try to putback into. You have to watch out for the pesky
-//: failbit and badbit. Just avoid eof() and use this helper instead.
-:(code)
-bool has_data(istream& in) {
-  return in && !in.eof();
-}
-
-:(before "End Includes")
-#include <assert.h>
-
-#include <iostream>
-using std::istream;
-using std::ostream;
-using std::iostream;
-using std::cin;
-using std::cout;
-using std::cerr;
-#include <iomanip>
-
-#include <string.h>
-#include <string>
-using std::string;
-
-#include <algorithm>
-using std::min;
-using std::max;