about summary refs log tree commit diff stats
path: root/034new.cc
diff options
context:
space:
mode:
Diffstat (limited to '034new.cc')
-rw-r--r--034new.cc686
1 files changed, 686 insertions, 0 deletions
diff --git a/034new.cc b/034new.cc
new file mode 100644
index 00000000..ec30fee1
--- /dev/null
+++ b/034new.cc
@@ -0,0 +1,686 @@
+//: Creating space for new variables at runtime.
+
+//: Mu has two primitives for managing allocations:
+//: - 'allocate' reserves a specified amount of space
+//: - 'abandon' returns allocated space to be reused by future calls to 'allocate'
+//:
+//: In practice it's useful to let programs copy addresses anywhere they want,
+//: but a prime source of (particularly security) bugs is accessing memory
+//: after it's been abandoned. To avoid this, mu programs use a safer
+//: primitive called 'new', which adds two features:
+//:
+//: - it takes a type rather than a size, to save you the trouble of
+//: calculating sizes of different variables.
+//: - it allocates an extra location where it tracks so-called 'reference
+//: counts' or refcounts: the number of address variables in your program that
+//: point to this allocation. The initial refcount of an allocation starts out
+//: at 1 (the product of the 'new' instruction). When other variables are
+//: copied from it the refcount is incremented. When a variable stops pointing
+//: at it the refcount is decremented. When the refcount goes to 0 the
+//: allocation is automatically abandoned.
+//:
+//: Mu programs guarantee you'll have no memory corruption bugs as long as you
+//: use 'new' and never use 'allocate' or 'abandon'. However, they don't help
+//: you at all to remember to abandon memory after you're done with it. To
+//: minimize memory use, be sure to reset allocated addresses to 0 when you're
+//: done with them.
+
+//: interlude {
+//: To help you distinguish addresses that point at allocations, 'new' returns
+//: type address:shared:___. Think of 'shared' as a generic container that
+//: contains one extra field: the refcount. However, lookup operations will
+//: transparently drop the 'shared' and access to the refcount. Copying
+//: between shared and non-shared addresses is forbidden.
+:(before "End Mu Types Initialization")
+type_ordinal shared = put(Type_ordinal, "shared", Next_type_ordinal++);
+get_or_insert(Type, shared).name = "shared";
+:(before "End Drop Address In lookup_memory(x)")
+if (x.type->name == "shared" && x.value != 0) {
+  trace(9999, "mem") << "skipping refcount at " << x.value << end();
+  x.set_value(x.value+1);  // skip refcount
+  drop_from_type(x, "shared");
+}
+:(before "End Drop Address In canonize_type(r)")
+if (r.type->name == "shared") {
+  drop_from_type(r, "shared");
+}
+
+:(code)
+void test_lookup_shared_address() {
+  reagent x("*x:address:shared:number");
+  x.set_value(34);  // unsafe
+  put(Memory, 34, 1000);
+  lookup_memory(x);
+  CHECK_TRACE_CONTENTS("mem: skipping refcount at 1000");
+  CHECK_EQ(x.value, 1001);
+}
+
+void test_lookup_shared_address_skip_zero() {
+  reagent x("*x:address:shared:number");
+  x.set_value(34);  // unsafe
+  put(Memory, 34, 0);
+  lookup_memory(x);
+  CHECK_TRACE_DOESNT_CONTAIN("mem: skipping refcount at 0");
+  CHECK_EQ(x.value, 0);
+}
+
+//: } end interlude
+
+:(scenarios run)
+:(scenario new)
+# call new two times with identical arguments; you should get back different results
+def main [
+  1:address:shared:number/raw <- new number:type
+  2:address:shared:number/raw <- new number:type
+  3:boolean/raw <- equal 1:address:shared:number/raw, 2:address:shared:number/raw
+]
++mem: storing 0 in location 3
+
+:(before "End Globals")
+const int Reserved_for_tests = 1000;
+int Memory_allocated_until = Reserved_for_tests;
+int Initial_memory_per_routine = 100000;
+:(before "End Setup")
+Memory_allocated_until = Reserved_for_tests;
+Initial_memory_per_routine = 100000;
+:(before "End routine Fields")
+int alloc, alloc_max;
+:(before "End routine Constructor")
+alloc = Memory_allocated_until;
+Memory_allocated_until += Initial_memory_per_routine;
+alloc_max = Memory_allocated_until;
+trace(9999, "new") << "routine allocated memory from " << alloc << " to " << alloc_max << end();
+
+//:: 'new' takes a weird 'type' as its first ingredient; don't error on it
+:(before "End Mu Types Initialization")
+put(Type_ordinal, "type", 0);
+
+//:: typecheck 'new' instructions
+:(before "End Primitive Recipe Declarations")
+NEW,
+:(before "End Primitive Recipe Numbers")
+put(Recipe_ordinal, "new", NEW);
+:(before "End Primitive Recipe Checks")
+case NEW: {
+  const recipe& caller = get(Recipe, r);
+  if (inst.ingredients.empty() || SIZE(inst.ingredients) > 2) {
+    raise << maybe(caller.name) << "'new' requires one or two ingredients, but got " << to_original_string(inst) << '\n' << end();
+    break;
+  }
+  // End NEW Check Special-cases
+  reagent type = inst.ingredients.at(0);
+  if (!is_mu_type_literal(type)) {
+    raise << maybe(caller.name) << "first ingredient of 'new' should be a type, but got " << type.original_string << '\n' << end();
+    break;
+  }
+  if (inst.products.empty()) {
+    raise << maybe(caller.name) << "result of 'new' should never be ignored\n" << end();
+    break;
+  }
+  if (!product_of_new_is_valid(inst)) {
+    raise << maybe(caller.name) << "product of 'new' has incorrect type: " << to_original_string(inst) << '\n' << end();
+    break;
+  }
+  break;
+}
+:(code)
+bool product_of_new_is_valid(const instruction& inst) {
+  reagent product = inst.products.at(0);
+  canonize_type(product);
+  if (!product.type || product.type->value != get(Type_ordinal, "address")) return false;
+  drop_from_type(product, "address");
+  if (!product.type || product.type->value != get(Type_ordinal, "shared")) return false;
+  drop_from_type(product, "shared");
+  if (SIZE(inst.ingredients) > 1) {
+    // array allocation
+    if (!product.type || product.type->value != get(Type_ordinal, "array")) return false;
+    drop_from_type(product, "array");
+  }
+  reagent expected_product("x:"+inst.ingredients.at(0).name);
+  // End Post-processing(expected_product) When Checking 'new'
+  return types_strictly_match(product, expected_product);
+}
+
+//:: translate 'new' to 'allocate' instructions that take a size instead of a type
+:(after "Transform.push_back(check_instruction)")  // check_instruction will guard against direct 'allocate' instructions below
+Transform.push_back(transform_new_to_allocate);  // idempotent
+
+:(code)
+void transform_new_to_allocate(const recipe_ordinal r) {
+  trace(9991, "transform") << "--- convert 'new' to 'allocate' for recipe " << get(Recipe, r).name << end();
+  for (int i = 0; i < SIZE(get(Recipe, r).steps); ++i) {
+    instruction& inst = get(Recipe, r).steps.at(i);
+    // Convert 'new' To 'allocate'
+    if (inst.name == "new") {
+      inst.operation = ALLOCATE;
+      string_tree* type_name = new string_tree(inst.ingredients.at(0).name);
+      // End Post-processing(type_name) When Converting 'new'
+      type_tree* type = new_type_tree(type_name);
+      inst.ingredients.at(0).set_value(size_of(type));
+      trace(9992, "new") << "size of " << to_string(type_name) << " is " << inst.ingredients.at(0).value << end();
+      delete type;
+      delete type_name;
+    }
+  }
+}
+
+//:: implement 'allocate' based on size
+
+:(before "End Primitive Recipe Declarations")
+ALLOCATE,
+:(before "End Primitive Recipe Numbers")
+put(Recipe_ordinal, "allocate", ALLOCATE);
+:(before "End Primitive Recipe Implementations")
+case ALLOCATE: {
+  // compute the space we need
+  int size = ingredients.at(0).at(0);
+  if (SIZE(ingredients) > 1) {
+    // array
+    trace(9999, "mem") << "array size is " << ingredients.at(1).at(0) << end();
+    size = /*space for length*/1 + size*ingredients.at(1).at(0);
+  }
+  // include space for refcount
+  size++;
+  trace(9999, "mem") << "allocating size " << size << end();
+//?   Total_alloc += size;
+//?   Num_alloc++;
+  // compute the region of memory to return
+  // really crappy at the moment
+  ensure_space(size);
+  const int result = Current_routine->alloc;
+  trace(9999, "mem") << "new alloc: " << result << end();
+  // save result
+  products.resize(1);
+  products.at(0).push_back(result);
+  // initialize allocated space
+  for (int address = result; address < result+size; ++address)
+    put(Memory, address, 0);
+  // initialize array length
+  if (SIZE(current_instruction().ingredients) > 1) {
+    trace(9999, "mem") << "storing " << ingredients.at(1).at(0) << " in location " << result+/*skip refcount*/1 << end();
+    put(Memory, result+/*skip refcount*/1, ingredients.at(1).at(0));
+  }
+  // bump
+  Current_routine->alloc += size;
+  // no support for reclaiming memory
+  assert(Current_routine->alloc <= Current_routine->alloc_max);
+  break;
+}
+
+//:: ensure we never call 'allocate' directly; its types are not checked
+:(before "End Primitive Recipe Checks")
+case ALLOCATE: {
+  raise << "never call 'allocate' directly'; always use 'new'\n" << end();
+  break;
+}
+
+//:: ensure we never call 'new' without translating it (unless we add special-cases later)
+:(before "End Primitive Recipe Implementations")
+case NEW: {
+  raise << "no implementation for 'new'; why wasn't it translated to 'allocate'? Please save a copy of your program and send it to Kartik.\n" << end();
+  break;
+}
+
+//? :(before "End Globals")
+//? int Total_alloc = 0;
+//? int Num_alloc = 0;
+//? int Total_free = 0;
+//? int Num_free = 0;
+//? :(before "End Setup")
+//? Total_alloc = Num_alloc = Total_free = Num_free = 0;
+//? :(before "End Teardown")
+//? cerr << Total_alloc << "/" << Num_alloc
+//?      << " vs " << Total_free << "/" << Num_free << '\n';
+//? cerr << SIZE(Memory) << '\n';
+
+:(code)
+void ensure_space(int size) {
+  if (size > Initial_memory_per_routine) {
+    tb_shutdown();
+    cerr << "can't allocate " << size << " locations, that's too much compared to " << Initial_memory_per_routine << ".\n";
+    exit(0);
+  }
+  if (Current_routine->alloc + size > Current_routine->alloc_max) {
+    // waste the remaining space and create a new chunk
+    Current_routine->alloc = Memory_allocated_until;
+    Memory_allocated_until += Initial_memory_per_routine;
+    Current_routine->alloc_max = Memory_allocated_until;
+    trace(9999, "new") << "routine allocated memory from " << Current_routine->alloc << " to " << Current_routine->alloc_max << end();
+  }
+}
+
+:(scenario new_initializes)
+% Memory_allocated_until = 10;
+% put(Memory, Memory_allocated_until, 1);
+def main [
+  1:address:shared:number <- new number:type
+  2:number <- copy *1:address:shared:number
+]
++mem: storing 0 in location 2
+
+:(scenario new_error)
+% Hide_errors = true;
+def main [
+  1:address:number/raw <- new number:type
+]
++error: main: product of 'new' has incorrect type: 1:address:number/raw <- new number:type
+
+:(scenario new_array)
+def main [
+  1:address:shared:array:number/raw <- new number:type, 5
+  2:address:shared:number/raw <- new number:type
+  3:number/raw <- subtract 2:address:shared:number/raw, 1:address:shared:array:number/raw
+]
++run: {1: ("address" "shared" "array" "number"), "raw": ()} <- new {number: "type"}, {5: "literal"}
++mem: array size is 5
+# don't forget the extra location for array size, and the second extra location for the refcount
++mem: storing 7 in location 3
+
+:(scenario new_empty_array)
+def main [
+  1:address:shared:array:number/raw <- new number:type, 0
+  2:address:shared:number/raw <- new number:type
+  3:number/raw <- subtract 2:address:shared:number/raw, 1:address:shared:array:number/raw
+]
++run: {1: ("address" "shared" "array" "number"), "raw": ()} <- new {number: "type"}, {0: "literal"}
++mem: array size is 0
+# one location for array size, and one for the refcount
++mem: storing 2 in location 3
+
+//: If a routine runs out of its initial allocation, it should allocate more.
+:(scenario new_overflow)
+% Initial_memory_per_routine = 3;  // barely enough room for point allocation below
+def main [
+  1:address:shared:number/raw <- new number:type
+  2:address:shared:point/raw <- new point:type  # not enough room in initial page
+]
++new: routine allocated memory from 1000 to 1003
++new: routine allocated memory from 1003 to 1006
+
+//:: A way to return memory, and to reuse reclaimed memory.
+//: todo: custodians, etc. Following malloc/free is a temporary hack.
+
+:(scenario new_reclaim)
+def main [
+  1:address:shared:number <- new number:type
+  2:address:shared:number <- copy 1:address:shared:number  # because 1 will get reset during abandon below
+  abandon 1:address:shared:number  # unsafe
+  3:address:shared:number <- new number:type  # must be same size as abandoned memory to reuse
+  4:boolean <- equal 2:address:shared:number, 3:address:shared:number
+]
+# both allocations should have returned the same address
++mem: storing 1 in location 4
+
+:(before "End routine Fields")
+map<int, int> free_list;
+
+:(before "End Primitive Recipe Declarations")
+ABANDON,
+:(before "End Primitive Recipe Numbers")
+put(Recipe_ordinal, "abandon", ABANDON);
+:(before "End Primitive Recipe Checks")
+case ABANDON: {
+  if (SIZE(inst.ingredients) != 1) {
+    raise << maybe(get(Recipe, r).name) << "'abandon' requires one ingredient, but got '" << to_original_string(inst) << "'\n" << end();
+    break;
+  }
+  reagent types = inst.ingredients.at(0);
+  canonize_type(types);
+  if (!types.type || types.type->value != get(Type_ordinal, "address") || types.type->right->value != get(Type_ordinal, "shared")) {
+    raise << maybe(get(Recipe, r).name) << "first ingredient of 'abandon' should be an address:shared:___, but got " << inst.ingredients.at(0).original_string << '\n' << end();
+    break;
+  }
+  break;
+}
+:(before "End Primitive Recipe Implementations")
+case ABANDON: {
+  int address = ingredients.at(0).at(0);
+  trace(9999, "abandon") << "address to abandon is " << address << end();
+  reagent types = current_instruction().ingredients.at(0);
+  trace(9999, "abandon") << "value of ingredient is " << types.value << end();
+  canonize(types);
+  // lookup_memory without drop_one_lookup {
+  trace(9999, "abandon") << "value of ingredient after canonization is " << types.value << end();
+  int address_location = types.value;
+  types.set_value(get_or_insert(Memory, types.value)+/*skip refcount*/1);
+  drop_from_type(types, "address");
+  drop_from_type(types, "shared");
+  // }
+  abandon(address, size_of(types)+/*refcount*/1);
+  // clear the address
+  trace(9999, "mem") << "resetting location " << address_location << end();
+  put(Memory, address_location, 0);
+  break;
+}
+
+:(code)
+void abandon(int address, int size) {
+  trace(9999, "abandon") << "saving in free-list of size " << size << end();
+//?   Total_free += size;
+//?   Num_free++;
+//?   cerr << "abandon: " << size << '\n';
+  // clear memory
+  for (int curr = address; curr < address+size; ++curr)
+    put(Memory, curr, 0);
+  // append existing free list to address
+  put(Memory, address, get_or_insert(Current_routine->free_list, size));
+  put(Current_routine->free_list, size, address);
+}
+
+:(before "ensure_space(size)" following "case ALLOCATE")
+if (get_or_insert(Current_routine->free_list, size)) {
+  trace(9999, "abandon") << "picking up space from free-list of size " << size << end();
+  int result = get_or_insert(Current_routine->free_list, size);
+  trace(9999, "mem") << "new alloc from free list: " << result << end();
+  put(Current_routine->free_list, size, get_or_insert(Memory, result));
+  for (int curr = result+1; curr < result+size; ++curr) {
+    if (get_or_insert(Memory, curr) != 0) {
+      raise << maybe(current_recipe_name()) << "memory in free list was not zeroed out: " << curr << '/' << result << "; somebody wrote to us after free!!!\n" << end();
+      break;  // always fatal
+    }
+  }
+  if (SIZE(current_instruction().ingredients) > 1)
+    put(Memory, result+/*skip refcount*/1, ingredients.at(1).at(0));
+  else
+    put(Memory, result, 0);
+  products.resize(1);
+  products.at(0).push_back(result);
+  break;
+}
+
+:(scenario new_differing_size_no_reclaim)
+def main [
+  1:address:shared:number <- new number:type
+  2:address:shared:number <- copy 1:address:shared:number
+  abandon 1:address:shared:number
+  3:address:shared:array:number <- new number:type, 2  # different size
+  4:boolean <- equal 2:address:shared:number, 3:address:shared:array:number
+]
+# no reuse
++mem: storing 0 in location 4
+
+:(scenario new_reclaim_array)
+def main [
+  1:address:shared:array:number <- new number:type, 2
+  2:address:shared:array:number <- copy 1:address:shared:array:number
+  abandon 1:address:shared:array:number  # unsafe
+  3:address:shared:array:number <- new number:type, 2
+  4:boolean <- equal 2:address:shared:array:number, 3:address:shared:array:number
+]
+# reuse
++mem: storing 1 in location 4
+
+:(scenario reset_on_abandon)
+def main [
+  1:address:shared:number <- new number:type
+  abandon 1:address:shared:number
+]
+# reuse
++run: abandon {1: ("address" "shared" "number")}
++mem: resetting location 1
+
+//:: Manage refcounts when copying addresses.
+
+:(scenario refcounts)
+def main [
+  1:address:shared:number <- copy 1000/unsafe
+  2:address:shared:number <- copy 1:address:shared:number
+  1:address:shared:number <- copy 0
+  2:address:shared:number <- copy 0
+]
++run: {1: ("address" "shared" "number")} <- copy {1000: "literal", "unsafe": ()}
++mem: incrementing refcount of 1000: 0 -> 1
++run: {2: ("address" "shared" "number")} <- copy {1: ("address" "shared" "number")}
++mem: incrementing refcount of 1000: 1 -> 2
++run: {1: ("address" "shared" "number")} <- copy {0: "literal"}
++mem: decrementing refcount of 1000: 2 -> 1
++run: {2: ("address" "shared" "number")} <- copy {0: "literal"}
++mem: decrementing refcount of 1000: 1 -> 0
+# the /unsafe corrupts memory but fortunately we won't be running any more 'new' in this scenario
++mem: automatically abandoning 1000
+
+:(before "End write_memory(reagent x) Special-cases")
+if (x.type->value == get(Type_ordinal, "address")
+    && x.type->right
+    && x.type->right->value == get(Type_ordinal, "shared")) {
+  // compute old address of x, as well as new address we want to write in
+  int old_address = get_or_insert(Memory, x.value);
+  assert(scalar(data));
+  int new_address = data.at(0);
+  // decrement refcount of old address
+  if (old_address) {
+    int old_refcount = get_or_insert(Memory, old_address);
+    trace(9999, "mem") << "decrementing refcount of " << old_address << ": " << old_refcount << " -> " << (old_refcount-1) << end();
+    put(Memory, old_address, old_refcount-1);
+  }
+  // perform the write
+  trace(9999, "mem") << "storing " << no_scientific(data.at(0)) << " in location " << x.value << end();
+  put(Memory, x.value, new_address);
+  // increment refcount of new address
+  if (new_address) {
+    int new_refcount = get_or_insert(Memory, new_address);
+    assert(new_refcount >= 0);  // == 0 only when new_address == old_address
+    trace(9999, "mem") << "incrementing refcount of " << new_address << ": " << new_refcount << " -> " << (new_refcount+1) << end();
+    put(Memory, new_address, new_refcount+1);
+  }
+  // abandon old address if necessary
+  // do this after all refcount updates are done just in case old and new are identical
+  assert(old_address >= 0);
+  if (old_address == 0) return;
+  assert(get_or_insert(Memory, old_address) >= 0);
+  if (get_or_insert(Memory, old_address) > 0) return;
+  // lookup_memory without drop_one_lookup {
+  trace(9999, "mem") << "automatically abandoning " << old_address << end();
+  trace(9999, "mem") << "computing size to abandon at " << x.value << end();
+  x.set_value(old_address+/*skip refcount*/1);
+  drop_from_type(x, "address");
+  drop_from_type(x, "shared");
+  // }
+  abandon(old_address, size_of(x)+/*refcount*/1);
+  return;
+}
+
+:(scenario refcounts_2)
+def main [
+  1:address:shared:number <- new number:type
+  # over-writing one allocation with another
+  1:address:shared:number <- new number:type
+  1:address:shared:number <- copy 0
+]
++run: {1: ("address" "shared" "number")} <- new {number: "type"}
++mem: incrementing refcount of 1000: 0 -> 1
++run: {1: ("address" "shared" "number")} <- new {number: "type"}
++mem: automatically abandoning 1000
+
+:(scenario refcounts_3)
+def main [
+  1:address:shared:number <- new number:type
+  # passing in addresses to recipes increments refcount
+  foo 1:address:shared:number
+  1:address:shared:number <- copy 0
+]
+def foo [
+  2:address:shared:number <- next-ingredient
+  # return does NOT yet decrement refcount; memory must be explicitly managed
+  2:address:shared:number <- copy 0
+]
++run: {1: ("address" "shared" "number")} <- new {number: "type"}
++mem: incrementing refcount of 1000: 0 -> 1
++run: {2: ("address" "shared" "number")} <- next-ingredient
++mem: incrementing refcount of 1000: 1 -> 2
++run: {2: ("address" "shared" "number")} <- copy {0: "literal"}
++mem: decrementing refcount of 1000: 2 -> 1
++run: {1: ("address" "shared" "number")} <- copy {0: "literal"}
++mem: decrementing refcount of 1000: 1 -> 0
++mem: automatically abandoning 1000
+
+:(scenario refcounts_4)
+def main [
+  1:address:shared:number <- new number:type
+  # idempotent copies leave refcount unchanged
+  1:address:shared:number <- copy 1:address:shared:number
+]
++run: {1: ("address" "shared" "number")} <- new {number: "type"}
++mem: incrementing refcount of 1000: 0 -> 1
++run: {1: ("address" "shared" "number")} <- copy {1: ("address" "shared" "number")}
++mem: decrementing refcount of 1000: 1 -> 0
++mem: incrementing refcount of 1000: 0 -> 1
+
+:(scenario refcounts_5)
+def main [
+  1:address:shared:number <- new number:type
+  # passing in addresses to recipes increments refcount
+  foo 1:address:shared:number
+  # return does NOT yet decrement refcount; memory must be explicitly managed
+  1:address:shared:number <- new number:type
+]
+def foo [
+  2:address:shared:number <- next-ingredient
+]
++run: {1: ("address" "shared" "number")} <- new {number: "type"}
++mem: incrementing refcount of 1000: 0 -> 1
++run: {2: ("address" "shared" "number")} <- next-ingredient
++mem: incrementing refcount of 1000: 1 -> 2
++run: {1: ("address" "shared" "number")} <- new {number: "type"}
++mem: decrementing refcount of 1000: 2 -> 1
+
+:(scenario refcounts_array)
+def main [
+  1:number <- copy 30
+  # allocate an array
+  10:address:shared:array:number <- new number:type, 20
+  11:number <- copy 10:address:shared:array:number
+  # allocate another array in its place, implicitly freeing the previous allocation
+  10:address:shared:array:number <- new number:type, 25
+]
++run: {10: ("address" "shared" "array" "number")} <- new {number: "type"}, {20: "literal"}
+# abandoned array is of old size (20, not 25)
++abandon: saving in free-list of size 22
+
+//:: Extend 'new' to handle a unicode string literal argument.
+
+:(scenario new_string)
+def main [
+  1:address:shared:array:character <- new [abc def]
+  2:character <- index *1:address:shared:array:character, 5
+]
+# number code for 'e'
++mem: storing 101 in location 2
+
+:(scenario new_string_handles_unicode)
+def main [
+  1:address:shared:array:character <- new [a«c]
+  2:number <- length *1:address:shared:array:character
+  3:character <- index *1:address:shared:array:character, 1
+]
++mem: storing 3 in location 2
+# unicode for '«'
++mem: storing 171 in location 3
+
+:(before "End NEW Check Special-cases")
+if (is_literal_string(inst.ingredients.at(0))) break;
+:(before "Convert 'new' To 'allocate'")
+if (inst.name == "new" && is_literal_string(inst.ingredients.at(0))) continue;
+:(after "case NEW" following "Primitive Recipe Implementations")
+  if (is_literal_string(current_instruction().ingredients.at(0))) {
+    products.resize(1);
+    products.at(0).push_back(new_mu_string(current_instruction().ingredients.at(0).name));
+    trace(9999, "mem") << "new string alloc: " << products.at(0).at(0) << end();
+    break;
+  }
+
+:(code)
+int new_mu_string(const string& contents) {
+  // allocate an array just large enough for it
+  int string_length = unicode_length(contents);
+//?   Total_alloc += string_length+1;
+//?   Num_alloc++;
+  ensure_space(string_length+1);  // don't forget the extra location for array size
+  // initialize string
+  int result = Current_routine->alloc;
+  // initialize refcount
+  put(Memory, Current_routine->alloc++, 0);
+  // store length
+  put(Memory, Current_routine->alloc++, string_length);
+  int curr = 0;
+  const char* raw_contents = contents.c_str();
+  for (int i = 0; i < string_length; ++i) {
+    uint32_t curr_character;
+    assert(curr < SIZE(contents));
+    tb_utf8_char_to_unicode(&curr_character, &raw_contents[curr]);
+    put(Memory, Current_routine->alloc, curr_character);
+    curr += tb_utf8_char_length(raw_contents[curr]);
+    ++Current_routine->alloc;
+  }
+  // mu strings are not null-terminated in memory
+  return result;
+}
+
+//: stash recognizes strings
+
+:(scenario stash_string)
+def main [
+  1:address:shared:array:character <- new [abc]
+  stash [foo:], 1:address:shared:array:character
+]
++app: foo: abc
+
+:(before "End print Special-cases(reagent r, data)")
+if (is_mu_string(r)) {
+  assert(scalar(data));
+  return read_mu_string(data.at(0))+' ';
+}
+
+:(scenario unicode_string)
+def main [
+  1:address:shared:array:character <- new [♠]
+  stash [foo:], 1:address:shared:array:character
+]
++app: foo: ♠
+
+:(scenario stash_space_after_string)
+def main [
+  1:address:shared:array:character <- new [abc]
+  stash 1:address:shared:array:character, [foo]
+]
++app: abc foo
+
+//: Allocate more to routine when initializing a literal string
+:(scenario new_string_overflow)
+% Initial_memory_per_routine = 2;
+def main [
+  1:address:shared:number/raw <- new number:type
+  2:address:shared:array:character/raw <- new [a]  # not enough room in initial page, if you take the array size into account
+]
++new: routine allocated memory from 1000 to 1002
++new: routine allocated memory from 1002 to 1004
+
+//: helpers
+:(code)
+int unicode_length(const string& s) {
+  const char* in = s.c_str();
+  int result = 0;
+  int curr = 0;
+  while (curr < SIZE(s)) {  // carefully bounds-check on the string
+    // before accessing its raw pointer
+    ++result;
+    curr += tb_utf8_char_length(in[curr]);
+  }
+  return result;
+}
+
+string read_mu_string(int address) {
+  if (address == 0) return "";
+  address++;  // skip refcount
+  int size = get_or_insert(Memory, address);
+  if (size == 0) return "";
+  ostringstream tmp;
+  for (int curr = address+1; curr <= address+size; ++curr) {
+    tmp << to_unicode(static_cast<uint32_t>(get_or_insert(Memory, curr)));
+  }
+  return tmp.str();
+}
+
+bool is_mu_type_literal(reagent r) {
+  return is_literal(r) && r.type && r.type->name == "type";
+}