about summary refs log tree commit diff stats
path: root/archive
diff options
context:
space:
mode:
Diffstat (limited to 'archive')
0 files changed, 0 insertions, 0 deletions
8b2a9401a ^




0c4bd65e8 ^
























cc5b8c6ad ^


43bddf62d ^
a9b62de89 ^
8b2a9401a ^

cc5b8c6ad ^
cc5b8c6ad ^
0c4bd65e8 ^
cc5b8c6ad ^
0c4bd65e8 ^
cc5b8c6ad ^
0c4bd65e8 ^
cc5b8c6ad ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^


0c4bd65e8 ^

cc5b8c6ad ^


0c4bd65e8 ^

cc5b8c6ad ^


0c4bd65e8 ^







cc5b8c6ad ^
140ebe601 ^
0c4bd65e8 ^

cc5b8c6ad ^

140ebe601 ^
0c4bd65e8 ^



cc81866da ^






cc5b8c6ad ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^

3acedd4cd ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
00e82c2fc ^
0c4bd65e8 ^

8b2a9401a ^

0c4bd65e8 ^
dd57d46f2 ^
cc5b8c6ad ^

8b2a9401a ^
0c4bd65e8 ^
dd57d46f2 ^
37741f28f ^


0c4bd65e8 ^
dd57d46f2 ^
cc5b8c6ad ^

8b2a9401a ^
0c4bd65e8 ^
8b2a9401a ^



0c4bd65e8 ^
dd57d46f2 ^
0c4bd65e8 ^

cc5b8c6ad ^
0c4bd65e8 ^
dd57d46f2 ^
cc5b8c6ad ^


0c4bd65e8 ^
dd57d46f2 ^
37741f28f ^


0c4bd65e8 ^
















cc5b8c6ad ^

37741f28f ^
0c4bd65e8 ^

cc5b8c6ad ^
37741f28f ^
0c4bd65e8 ^

c2cdc752c ^
37741f28f ^
0c4bd65e8 ^

b1a494e8b ^


0c4bd65e8 ^

b1a494e8b ^


0c4bd65e8 ^

b1a494e8b ^



0c4bd65e8 ^

b1a494e8b ^

8b2a9401a ^
140ebe601 ^
0c4bd65e8 ^


cc5b8c6ad ^
8b2a9401a ^











cc5b8c6ad ^
8b2a9401a ^

c5d8a5c1d ^
8b2a9401a ^
cc5b8c6ad ^
b2ad7b30d ^
8b2a9401a ^
140ebe601 ^
0c4bd65e8 ^

cc5b8c6ad ^



37741f28f ^
140ebe601 ^
0c4bd65e8 ^


37741f28f ^
cc5b8c6ad ^
37741f28f ^
140ebe601 ^
0c4bd65e8 ^



cc5b8c6ad ^
37741f28f ^
140ebe601 ^
0c4bd65e8 ^



cc5b8c6ad ^
37741f28f ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^

37741f28f ^




cc5b8c6ad ^
37741f28f ^
cc5b8c6ad ^

37741f28f ^
0c4bd65e8 ^
cc5b8c6ad ^






140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^


140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^


140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^

140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^


140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^

140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^

140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^

140ebe601 ^
0c4bd65e8 ^
37741f28f ^

140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
b1e0d2058 ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
37741f28f ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
b1e0d2058 ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
37741f28f ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
b1e0d2058 ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
37741f28f ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
37741f28f ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
b1e0d2058 ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
37741f28f ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
b1e0d2058 ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
b1e0d2058 ^
0c4bd65e8 ^







140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
b1e0d2058 ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
b1e0d2058 ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
b1e0d2058 ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
b1e0d2058 ^
140ebe601 ^
0c4bd65e8 ^


00e82c2fc ^

140ebe601 ^
0c4bd65e8 ^






cc5b8c6ad ^
00e82c2fc ^
140ebe601 ^
0c4bd65e8 ^
cc5b8c6ad ^
0c4bd65e8 ^




cc5b8c6ad ^
00e82c2fc ^

140ebe601 ^
0c4bd65e8 ^



37741f28f ^

8b2a9401a ^
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

 
                                  
                                         




                                                   
























                                                                      


                                                                    
 
           

    
                                 
                                                                    
               
                               
                                                      
                               
                                                      
 
                                                             
                                                                        


                

                                                                       


                

                                                                       


                







                                                                 
 
                                

                                             

                            
                                 



                                                     






                                                       
 
                                               
                                                                   

                   
 
                                         
                                                       
                        
 

                                               

                                        
                                               
                                            

                      
 
                                               
                                            


                      
                                            
                              

                         
 
                                         



                                     
                                               
                                                   

                      
 
                                               
                                                   


                      
                                            
                                   


                         
















                                                    

                      
 

                                               
                     
 

                                            
                            
 

                                                 


              

                                                 


              

                                                 



                                    

                                                 

           
 
                                          


                                                                                                       
                   











                                                         
 

                   
                                  
         
                                            
                                                
 
                                         

                                               



                              
 
                                        


                                                                                        
                        
                                 
 
                                           



                                          
                           
 
                                          



                                         
                          
 
                                            
                                    

                                   




                     
                                   
              

                                    
       
       






                                             
                                               
                                                                       


                       
                                         
                             


                                    
                                            
                                     

                                                      
                                         
                               


                                     
                                            
                                       

                                              
                                         
                                

                          
                                            
                                        

                                                                       
                                         
                                  

                        
                                            
                                          
                                                                       
 
                                         
                               
                          
 
                                            
                                       
                                                                
 
                                         
                                 
                          
 
                                            
                                         
                                                             
 
                                          
                                        
                                      
 
                                             
                                                
                                  
 
                                          
                                          
                                      
 
                                             
                                                  
                                     
 
                                          
                                           
                            
 
                                             
                                                   
                                                 
 







                                                                   
                                          
                                          
                                      
 
                                             
                                                  
                                                                    
 
                                          
                                            
                                      
 
                                             
                                                    
                                                     
 
                                  


                                                                                       

                     
                                                 






                                                        
                            
 
                                      
                                                                     
    




                                                                 
                                     

 
                               



                                                         

                                           
       
#
#
#            Nim's Runtime Library
#        (c) Copyright 2010 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements complex numbers
## and basic mathematical operations on them.
##
## Complex numbers are currently generic over 64-bit or 32-bit floats.

runnableExamples:
  from std/math import almostEqual, sqrt

  func almostEqual(a, b: Complex): bool =
    almostEqual(a.re, b.re) and almostEqual(a.im, b.im)

  let
    z1 = complex(1.0, 2.0)
    z2 = complex(3.0, -4.0)

  assert almostEqual(z1 + z2, complex(4.0, -2.0))
  assert almostEqual(z1 - z2, complex(-2.0, 6.0))
  assert almostEqual(z1 * z2, complex(11.0, 2.0))
  assert almostEqual(z1 / z2, complex(-0.2, 0.4))

  assert almostEqual(abs(z1), sqrt(5.0))
  assert almostEqual(conjugate(z1), complex(1.0, -2.0))

  let (r, phi) = z1.polar
  assert almostEqual(rect(r, phi), z1)

{.push checks: off, line_dir: off, stack_trace: off, debugger: off.}
# the user does not want to trace a part of the standard library!

import math

type
  Complex*[T: SomeFloat] = object
    ## A complex number, consisting of a real and an imaginary part.
    re*, im*: T
  Complex64* = Complex[float64]
    ## Alias for a complex number using 64-bit floats.
  Complex32* = Complex[float32]
    ## Alias for a complex number using 32-bit floats.

func complex*[T: SomeFloat](re: T; im: T = 0.0): Complex[T] =
  ## Returns a `Complex[T]` with real part `re` and imaginary part `im`.
  result.re = re
  result.im = im

func complex32*(re: float32; im: float32 = 0.0): Complex32 =
  ## Returns a `Complex32` with real part `re` and imaginary part `im`.
  result.re = re
  result.im = im

func complex64*(re: float64; im: float64 = 0.0): Complex64 =
  ## Returns a `Complex64` with real part `re` and imaginary part `im`.
  result.re = re
  result.im = im

template im*(arg: typedesc[float32]): Complex32 = complex32(0, 1)
  ## Returns the imaginary unit (`complex32(0, 1)`).
template im*(arg: typedesc[float64]): Complex64 = complex64(0, 1)
  ## Returns the imaginary unit (`complex64(0, 1)`).
template im*(arg: float32): Complex32 = complex32(0, arg)
  ## Returns `arg` as an imaginary number (`complex32(0, arg)`).
template im*(arg: float64): Complex64 = complex64(0, arg)
  ## Returns `arg` as an imaginary number (`complex64(0, arg)`).

func abs*[T](z: Complex[T]): T =
  ## Returns the absolute value of `z`,
  ## that is the distance from (0, 0) to `z`.
  result = hypot(z.re, z.im)

func abs2*[T](z: Complex[T]): T =
  ## Returns the squared absolute value of `z`,
  ## that is the squared distance from (0, 0) to `z`.
  ## This is more efficient than `abs(z) ^ 2`.
  result = z.re * z.re + z.im * z.im
  
func sgn*[T](z: Complex[T]): Complex[T] =
  ## Returns the phase of `z` as a unit complex number,
  ## or 0 if `z` is 0.
  let a = abs(z)
  if a != 0:
    result = z / a

func conjugate*[T](z: Complex[T]): Complex[T] =
  ## Returns the complex conjugate of `z` (`complex(z.re, -z.im)`).
  result.re = z.re
  result.im = -z.im

func inv*[T](z: Complex[T]): Complex[T] =
  ## Returns the multiplicative inverse of `z` (`1/z`).
  conjugate(z) / abs2(z)

func `==`*[T](x, y: Complex[T]): bool =
  ## Compares two complex numbers for equality.
  result = x.re == y.re and x.im == y.im

func `+`*[T](x: T; y: Complex[T]): Complex[T] =
  ## Adds a real number to a complex number.
  result.re = x + y.re
  result.im = y.im

func `+`*[T](x: Complex[T]; y: T): Complex[T] =
  ## Adds a complex number to a real number.
  result.re = x.re + y
  result.im = x.im

func `+`*[T](x, y: Complex[T]): Complex[T] =
  ## Adds two complex numbers.
  result.re = x.re + y.re
  result.im = x.im + y.im

func `-`*[T](z: Complex[T]): Complex[T] =
  ## Unary minus for complex numbers.
  result.re = -z.re
  result.im = -z.im

func `-`*[T](x: T; y: Complex[T]): Complex[T] =
  ## Subtracts a complex number from a real number.
  result.re = x - y.re
  result.im = -y.im

func `-`*[T](x: Complex[T]; y: T): Complex[T] =
  ## Subtracts a real number from a complex number.
  result.re = x.re - y
  result.im = x.im

func `-`*[T](x, y: Complex[T]): Complex[T] =
  ## Subtracts two complex numbers.
  result.re = x.re - y.re
  result.im = x.im - y.im

func `*`*[T](x: T; y: Complex[T]): Complex[T] =
  ## Multiplies a real number with a complex number.
  result.re = x * y.re
  result.im = x * y.im

func `*`*[T](x: Complex[T]; y: T): Complex[T] =
  ## Multiplies a complex number with a real number.
  result.re = x.re * y
  result.im = x.im * y

func `*`*[T](x, y: Complex[T]): Complex[T] =
  ## Multiplies two complex numbers.
  result.re = x.re * y.re - x.im * y.im
  result.im = x.im * y.re + x.re * y.im

func `/`*[T](x: Complex[T]; y: T): Complex[T] =
  ## Divides a complex number by a real number.
  result.re = x.re / y
  result.im = x.im / y

func `/`*[T](x: T; y: Complex[T]): Complex[T] =
  ## Divides a real number by a complex number.
  result = x * inv(y)

func `/`*[T](x, y: Complex[T]): Complex[T] =
  ## Divides two complex numbers.
  x * conjugate(y) / abs2(y)

func `+=`*[T](x: var Complex[T]; y: Complex[T]) =
  ## Adds `y` to `x`.
  x.re += y.re
  x.im += y.im

func `-=`*[T](x: var Complex[T]; y: Complex[T]) =
  ## Subtracts `y` from `x`.
  x.re -= y.re
  x.im -= y.im

func `*=`*[T](x: var Complex[T]; y: Complex[T]) =
  ## Multiplies `x` by `y`.
  let im = x.im * y.re + x.re * y.im
  x.re = x.re * y.re - x.im * y.im
  x.im = im

func `/=`*[T](x: var Complex[T]; y: Complex[T]) =
  ## Divides `x` by `y` in place.
  x = x / y


func sqrt*[T](z: Complex[T]): Complex[T] =
  ## Computes the
  ## ([principal](https://en.wikipedia.org/wiki/Square_root#Principal_square_root_of_a_complex_number))
  ## square root of a complex number `z`.
  var x, y, w, r: T

  if z.re == 0.0 and z.im == 0.0:
    result = z
  else:
    x = abs(z.re)
    y = abs(z.im)
    if x >= y:
      r = y / x
      w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r)))
    else:
      r = x / y
      w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r)))

    if z.re >= 0.0:
      result.re = w
      result.im = z.im / (w * 2.0)
    else:
      result.im = if z.im >= 0.0: w else: -w
      result.re = z.im / (result.im + result.im)

func exp*[T](z: Complex[T]): Complex[T] =
  ## Computes the exponential function (`e^z`).
  let
    rho = exp(z.re)
    theta = z.im
  result.re = rho * cos(theta)
  result.im = rho * sin(theta)

func ln*[T](z: Complex[T]): Complex[T] =
  ## Returns the
  ## ([principal value](https://en.wikipedia.org/wiki/Complex_logarithm#Principal_value)
  ## of the) natural logarithm of `z`.
  result.re = ln(abs(z))
  result.im = arctan2(z.im, z.re)

func log10*[T](z: Complex[T]): Complex[T] =
  ## Returns the logarithm base 10 of `z`.
  ##
  ## **See also:**
  ## * `ln func<#ln,Complex[T]>`_
  result = ln(z) / ln(10.0)

func log2*[T](z: Complex[T]): Complex[T] =
  ## Returns the logarithm base 2 of `z`.
  ##
  ## **See also:**
  ## * `ln func<#ln,Complex[T]>`_
  result = ln(z) / ln(2.0)

func pow*[T](x, y: Complex[T]): Complex[T] =
  ## `x` raised to the power of `y`.
  if x.re == 0.0 and x.im == 0.0:
    if y.re == 0.0 and y.im == 0.0:
      result.re = 1.0
      result.im = 0.0
    else:
      result.re = 0.0
      result.im = 0.0
  elif y.re == 1.0 and y.im == 0.0:
    result = x
  elif y.re == -1.0 and y.im == 0.0:
    result = T(1.0) / x
  else:
    let
      rho = abs(x)
      theta = arctan2(x.im, x.re)
      s = pow(rho, y.re) * exp(-y.im * theta)
      r = y.re * theta + y.im * ln(rho)
    result.re = s * cos(r)
    result.im = s * sin(r)

func pow*[T](x: Complex[T]; y: T): Complex[T] =
  ## The complex number `x` raised to the power of the real number `y`.
  pow(x, complex[T](y))


func sin*[T](z: Complex[T]): Complex[T] =
  ## Returns the sine of `z`.
  result.re = sin(z.re) * cosh(z.im)
  result.im = cos(z.re) * sinh(z.im)

func arcsin*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse sine of `z`.
  result = -im(T) * ln(im(T) * z + sqrt(T(1.0) - z*z))

func cos*[T](z: Complex[T]): Complex[T] =
  ## Returns the cosine of `z`.
  result.re = cos(z.re) * cosh(z.im)
  result.im = -sin(z.re) * sinh(z.im)

func arccos*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse cosine of `z`.
  result = -im(T) * ln(z + sqrt(z*z - T(1.0)))

func tan*[T](z: Complex[T]): Complex[T] =
  ## Returns the tangent of `z`.
  result = sin(z) / cos(z)

func arctan*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse tangent of `z`.
  result = T(0.5)*im(T) * (ln(T(1.0) - im(T)*z) - ln(T(1.0) + im(T)*z))

func cot*[T](z: Complex[T]): Complex[T] =
  ## Returns the cotangent of `z`.
  result = cos(z)/sin(z)

func arccot*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse cotangent of `z`.
  result = T(0.5)*im(T) * (ln(T(1.0) - im(T)/z) - ln(T(1.0) + im(T)/z))

func sec*[T](z: Complex[T]): Complex[T] =
  ## Returns the secant of `z`.
  result = T(1.0) / cos(z)

func arcsec*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse secant of `z`.
  result = -im(T) * ln(im(T) * sqrt(1.0 - 1.0/(z*z)) + T(1.0)/z)

func csc*[T](z: Complex[T]): Complex[T] =
  ## Returns the cosecant of `z`.
  result = T(1.0) / sin(z)

func arccsc*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse cosecant of `z`.
  result = -im(T) * ln(sqrt(T(1.0) - T(1.0)/(z*z)) + im(T)/z)

func sinh*[T](z: Complex[T]): Complex[T] =
  ## Returns the hyperbolic sine of `z`.
  result = T(0.5) * (exp(z) - exp(-z))

func arcsinh*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse hyperbolic sine of `z`.
  result = ln(z + sqrt(z*z + 1.0))

func cosh*[T](z: Complex[T]): Complex[T] =
  ## Returns the hyperbolic cosine of `z`.
  result = T(0.5) * (exp(z) + exp(-z))

func arccosh*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse hyperbolic cosine of `z`.
  result = ln(z + sqrt(z*z - T(1.0)))

func tanh*[T](z: Complex[T]): Complex[T] =
  ## Returns the hyperbolic tangent of `z`.
  result = sinh(z) / cosh(z)

func arctanh*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse hyperbolic tangent of `z`.
  result = T(0.5) * (ln((T(1.0)+z) / (T(1.0)-z)))

func coth*[T](z: Complex[T]): Complex[T] =
  ## Returns the hyperbolic cotangent of `z`.
  result = cosh(z) / sinh(z)

func arccoth*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse hyperbolic cotangent of `z`.
  result = T(0.5) * (ln(T(1.0) + T(1.0)/z) - ln(T(1.0) - T(1.0)/z))

func sech*[T](z: Complex[T]): Complex[T] =
  ## Returns the hyperbolic secant of `z`.
  result = T(2.0) / (exp(z) + exp(-z))

func arcsech*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse hyperbolic secant of `z`.
  result = ln(1.0/z + sqrt(T(1.0)/z+T(1.0)) * sqrt(T(1.0)/z-T(1.0)))

func csch*[T](z: Complex[T]): Complex[T] =
  ## Returns the hyperbolic cosecant of `z`.
  result = T(2.0) / (exp(z) - exp(-z))

func arccsch*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse hyperbolic cosecant of `z`.
  result = ln(T(1.0)/z + sqrt(T(1.0)/(z*z) + T(1.0)))

func phase*[T](z: Complex[T]): T =
  ## Returns the phase (or argument) of `z`, that is the angle in polar representation.
  ##
  ## | `result = arctan2(z.im, z.re)`
  arctan2(z.im, z.re)

func polar*[T](z: Complex[T]): tuple[r, phi: T] =
  ## Returns `z` in polar coordinates.
  ##
  ## | `result.r = abs(z)`
  ## | `result.phi = phase(z)`
  ##
  ## **See also:**
  ## * `rect func<#rect,T,T>`_ for the inverse operation
  (r: abs(z), phi: phase(z))

func rect*[T](r, phi: T): Complex[T] =
  ## Returns the complex number with polar coordinates `r` and `phi`.
  ##
  ## | `result.re = r * cos(phi)`
  ## | `result.im = r * sin(phi)`
  ##
  ## **See also:**
  ## * `polar func<#polar,Complex[T]>`_ for the inverse operation
  complex(r * cos(phi), r * sin(phi))


func `$`*(z: Complex): string =
  ## Returns `z`'s string representation as `"(re, im)"`.
  runnableExamples:
    doAssert $complex(1.0, 2.0) == "(1.0, 2.0)"

  result = "(" & $z.re & ", " & $z.im & ")"

{.pop.}