diff options
Diffstat (limited to 'linux/bootstrap/013direct_addressing.cc')
-rw-r--r-- | linux/bootstrap/013direct_addressing.cc | 1280 |
1 files changed, 1280 insertions, 0 deletions
diff --git a/linux/bootstrap/013direct_addressing.cc b/linux/bootstrap/013direct_addressing.cc new file mode 100644 index 00000000..cbdc25a8 --- /dev/null +++ b/linux/bootstrap/013direct_addressing.cc @@ -0,0 +1,1280 @@ +//: operating directly on a register + +:(before "End Initialize Op Names") +put_new(Name, "01", "add r32 to rm32 (add)"); + +:(code) +void test_add_r32_to_r32() { + Reg[EAX].i = 0x10; + Reg[EBX].i = 1; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 01 d8 \n" // add EBX to EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: add EBX to r/m32\n" + "run: r/m32 is EAX\n" + "run: storing 0x00000011\n" + ); +} + +:(before "End Single-Byte Opcodes") +case 0x01: { // add r32 to r/m32 + uint8_t modrm = next(); + uint8_t arg2 = (modrm>>3)&0x7; + trace(Callstack_depth+1, "run") << "add " << rname(arg2) << " to r/m32" << end(); + int32_t* signed_arg1 = effective_address(modrm); + int32_t signed_result = *signed_arg1 + Reg[arg2].i; + SF = (signed_result < 0); + ZF = (signed_result == 0); + int64_t signed_full_result = static_cast<int64_t>(*signed_arg1) + Reg[arg2].i; + OF = (signed_result != signed_full_result); + // set CF + uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1); + uint32_t unsigned_result = unsigned_arg1 + Reg[arg2].u; + uint64_t unsigned_full_result = static_cast<uint64_t>(unsigned_arg1) + Reg[arg2].u; + CF = (unsigned_result != unsigned_full_result); + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); + *signed_arg1 = signed_result; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); + break; +} + +:(code) +void test_add_r32_to_r32_signed_overflow() { + Reg[EAX].i = INT32_MAX; + Reg[EBX].i = 1; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 01 d8 \n" // add EBX to EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: add EBX to r/m32\n" + "run: r/m32 is EAX\n" + "run: SF=1; ZF=0; CF=0; OF=1\n" + "run: storing 0x80000000\n" + ); +} + +void test_add_r32_to_r32_unsigned_overflow() { + Reg[EAX].u = UINT32_MAX; + Reg[EBX].u = 1; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 01 d8 \n" // add EBX to EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: add EBX to r/m32\n" + "run: r/m32 is EAX\n" + "run: SF=0; ZF=1; CF=1; OF=0\n" + "run: storing 0x00000000\n" + ); +} + +void test_add_r32_to_r32_unsigned_and_signed_overflow() { + Reg[EAX].i = Reg[EBX].i = INT32_MIN; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 01 d8 \n" // add EBX to EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: add EBX to r/m32\n" + "run: r/m32 is EAX\n" + "run: SF=0; ZF=1; CF=1; OF=1\n" + "run: storing 0x00000000\n" + ); +} + +:(code) +// Implement tables 2-2 and 2-3 in the Intel manual, Volume 2. +// We return a pointer so that instructions can write to multiple bytes in +// 'Mem' at once. +// beware: will eventually have side-effects +int32_t* effective_address(uint8_t modrm) { + const uint8_t mod = (modrm>>6); + // ignore middle 3 'reg opcode' bits + const uint8_t rm = modrm & 0x7; + if (mod == 3) { + // mod 3 is just register direct addressing + trace(Callstack_depth+1, "run") << "r/m32 is " << rname(rm) << end(); + return &Reg[rm].i; + } + uint32_t addr = effective_address_number(modrm); + trace(Callstack_depth+1, "run") << "effective address contains 0x" << HEXWORD << read_mem_i32(addr) << end(); + return mem_addr_i32(addr); +} + +// beware: will eventually have side-effects +uint32_t effective_address_number(uint8_t modrm) { + const uint8_t mod = (modrm>>6); + // ignore middle 3 'reg opcode' bits + const uint8_t rm = modrm & 0x7; + uint32_t addr = 0; + switch (mod) { + case 3: + // mod 3 is just register direct addressing + raise << "unexpected direct addressing mode\n" << end(); + return 0; + // End Mod Special-cases(addr) + default: + cerr << "unrecognized mod bits: " << NUM(mod) << '\n'; + exit(1); + } + //: other mods are indirect, and they'll set addr appropriately + // Found effective_address(addr) + return addr; +} + +string rname(uint8_t r) { + switch (r) { + case 0: return "EAX"; + case 1: return "ECX"; + case 2: return "EDX"; + case 3: return "EBX"; + case 4: return "ESP"; + case 5: return "EBP"; + case 6: return "ESI"; + case 7: return "EDI"; + default: raise << "invalid register " << r << '\n' << end(); return ""; + } +} + +//:: subtract + +:(before "End Initialize Op Names") +put_new(Name, "29", "subtract r32 from rm32 (sub)"); + +:(code) +void test_subtract_r32_from_r32() { + Reg[EAX].i = 10; + Reg[EBX].i = 1; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 29 d8 \n" // subtract EBX from EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: subtract EBX from r/m32\n" + "run: r/m32 is EAX\n" + "run: storing 0x00000009\n" + ); +} + +:(before "End Single-Byte Opcodes") +case 0x29: { // subtract r32 from r/m32 + const uint8_t modrm = next(); + const uint8_t arg2 = (modrm>>3)&0x7; + trace(Callstack_depth+1, "run") << "subtract " << rname(arg2) << " from r/m32" << end(); + int32_t* signed_arg1 = effective_address(modrm); + int32_t signed_result = *signed_arg1 - Reg[arg2].i; + SF = (signed_result < 0); + ZF = (signed_result == 0); + int64_t signed_full_result = static_cast<int64_t>(*signed_arg1) - Reg[arg2].i; + OF = (signed_result != signed_full_result); + // set CF + uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1); + uint32_t unsigned_result = unsigned_arg1 - Reg[arg2].u; + uint64_t unsigned_full_result = static_cast<uint64_t>(unsigned_arg1) - Reg[arg2].u; + CF = (unsigned_result != unsigned_full_result); + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); + *signed_arg1 = signed_result; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); + break; +} + +:(code) +void test_subtract_r32_from_r32_signed_overflow() { + Reg[EAX].i = INT32_MIN; + Reg[EBX].i = INT32_MAX; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 29 d8 \n" // subtract EBX from EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: subtract EBX from r/m32\n" + "run: r/m32 is EAX\n" + "run: SF=0; ZF=0; CF=0; OF=1\n" + "run: storing 0x00000001\n" + ); +} + +void test_subtract_r32_from_r32_unsigned_overflow() { + Reg[EAX].i = 0; + Reg[EBX].i = 1; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 29 d8 \n" // subtract EBX from EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: subtract EBX from r/m32\n" + "run: r/m32 is EAX\n" + "run: SF=1; ZF=0; CF=1; OF=0\n" + "run: storing 0xffffffff\n" + ); +} + +void test_subtract_r32_from_r32_signed_and_unsigned_overflow() { + Reg[EAX].i = 0; + Reg[EBX].i = INT32_MIN; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 29 d8 \n" // subtract EBX from EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: subtract EBX from r/m32\n" + "run: r/m32 is EAX\n" + "run: SF=1; ZF=0; CF=1; OF=1\n" + "run: storing 0x80000000\n" + ); +} + +//:: multiply + +:(before "End Initialize Op Names") +put_new(Name, "f7", "negate/multiply/divide rm32 (with EAX and EDX if necessary) depending on subop (neg/mul/idiv)"); + +:(code) +void test_multiply_EAX_by_r32() { + Reg[EAX].i = 4; + Reg[ECX].i = 3; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " f7 e1 \n" // multiply EAX by ECX + // ModR/M in binary: 11 (direct mode) 100 (subop mul) 001 (src ECX) + ); + CHECK_TRACE_CONTENTS( + "run: operate on r/m32\n" + "run: r/m32 is ECX\n" + "run: subop: multiply EAX by r/m32\n" + "run: storing 0x0000000c\n" + ); +} + +:(before "End Single-Byte Opcodes") +case 0xf7: { + const uint8_t modrm = next(); + trace(Callstack_depth+1, "run") << "operate on r/m32" << end(); + int32_t* arg1 = effective_address(modrm); + const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits + switch (subop) { + case 4: { // mul unsigned EAX by r/m32 + trace(Callstack_depth+1, "run") << "subop: multiply EAX by r/m32" << end(); + const uint64_t result = static_cast<uint64_t>(Reg[EAX].u) * static_cast<uint32_t>(*arg1); + Reg[EAX].u = result & 0xffffffff; + Reg[EDX].u = result >> 32; + OF = (Reg[EDX].u != 0); + CF = OF; + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].u << end(); + break; + } + // End Op f7 Subops + default: + cerr << "unrecognized subop for opcode f7: " << NUM(subop) << '\n'; + exit(1); + } + break; +} + +//: + +:(before "End Initialize Op Names") +put_new(Name_0f, "af", "multiply rm32 into r32 (imul)"); + +:(code) +void test_multiply_r32_into_r32() { + Reg[EAX].i = 4; + Reg[EBX].i = 2; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 0f af d8 \n" // subtract EBX into EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: multiply EBX by r/m32\n" + "run: r/m32 is EAX\n" + "run: storing 0x00000008\n" + ); +} + +:(before "End Two-Byte Opcodes Starting With 0f") +case 0xaf: { // multiply r32 by r/m32 + const uint8_t modrm = next(); + const uint8_t arg1 = (modrm>>3)&0x7; + trace(Callstack_depth+1, "run") << "multiply " << rname(arg1) << " by r/m32" << end(); + const int32_t* arg2 = effective_address(modrm); + int32_t result = Reg[arg1].i * (*arg2); + int64_t full_result = static_cast<int64_t>(Reg[arg1].i) * (*arg2); + OF = (result != full_result); + CF = OF; + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); + Reg[arg1].i = result; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end(); + break; +} + +//:: negate + +:(code) +void test_negate_r32() { + Reg[EBX].i = 1; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " f7 db \n" // negate EBX + // ModR/M in binary: 11 (direct mode) 011 (subop negate) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: operate on r/m32\n" + "run: r/m32 is EBX\n" + "run: subop: negate\n" + "run: storing 0xffffffff\n" + ); +} + +:(before "End Op f7 Subops") +case 3: { // negate r/m32 + trace(Callstack_depth+1, "run") << "subop: negate" << end(); + // one case that can overflow + if (static_cast<uint32_t>(*arg1) == 0x80000000) { + trace(Callstack_depth+1, "run") << "overflow" << end(); + SF = true; + ZF = false; + OF = true; + break; + } + int32_t result = -(*arg1); + SF = (result >> 31); + ZF = (result == 0); + OF = false; + CF = (*arg1 != 0); + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); + *arg1 = result; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); + break; +} + +:(code) +// negate can overflow in exactly one situation +void test_negate_can_overflow() { + Reg[EBX].i = INT32_MIN; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " f7 db \n" // negate EBX + // ModR/M in binary: 11 (direct mode) 011 (subop negate) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: operate on r/m32\n" + "run: r/m32 is EBX\n" + "run: subop: negate\n" + "run: overflow\n" + ); +} + +//:: divide with remainder + +void test_divide_EAX_by_rm32() { + Reg[EAX].u = 7; + Reg[EDX].u = 0; + Reg[ECX].i = 3; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " f7 f9 \n" // multiply EAX by ECX + // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) + ); + CHECK_TRACE_CONTENTS( + "run: operate on r/m32\n" + "run: r/m32 is ECX\n" + "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" + "run: quotient: 0x00000002\n" + "run: remainder: 0x00000001\n" + ); +} + +:(before "End Op f7 Subops") +case 7: { // divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX + trace(Callstack_depth+1, "run") << "subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX" << end(); + int64_t dividend = static_cast<int64_t>((static_cast<uint64_t>(Reg[EDX].u) << 32) | Reg[EAX].u); + int32_t divisor = *arg1; + assert(divisor != 0); + Reg[EAX].i = dividend/divisor; // quotient + Reg[EDX].i = dividend%divisor; // remainder + // flag state undefined + trace(Callstack_depth+1, "run") << "quotient: 0x" << HEXWORD << Reg[EAX].i << end(); + trace(Callstack_depth+1, "run") << "remainder: 0x" << HEXWORD << Reg[EDX].i << end(); + break; +} + +:(code) +void test_divide_EAX_by_negative_rm32() { + Reg[EAX].u = 7; + Reg[EDX].u = 0; + Reg[ECX].i = -3; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " f7 f9 \n" // multiply EAX by ECX + // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) + ); + CHECK_TRACE_CONTENTS( + "run: operate on r/m32\n" + "run: r/m32 is ECX\n" + "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" + "run: quotient: 0xfffffffe\n" // -2 + "run: remainder: 0x00000001\n" + ); +} + +void test_divide_negative_EAX_by_rm32() { + Reg[EAX].i = -7; + Reg[EDX].i = -1; // sign extend + Reg[ECX].i = 3; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " f7 f9 \n" // multiply EAX by ECX + // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) + ); + CHECK_TRACE_CONTENTS( + "run: operate on r/m32\n" + "run: r/m32 is ECX\n" + "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" + "run: quotient: 0xfffffffe\n" // -2 + "run: remainder: 0xffffffff\n" // -1, same sign as divident (EDX:EAX) + ); +} + +void test_divide_negative_EDX_EAX_by_rm32() { + Reg[EAX].i = 0; // lower 32 bits are clear + Reg[EDX].i = -7; + Reg[ECX].i = 0x40000000; // 2^30 (largest positive power of 2) + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " f7 f9 \n" // multiply EAX by ECX + // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) + ); + CHECK_TRACE_CONTENTS( + "run: operate on r/m32\n" + "run: r/m32 is ECX\n" + "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" + "run: quotient: 0xffffffe4\n" // (-7 << 32) / (1 << 30) = -7 << 2 = -28 + "run: remainder: 0x00000000\n" + ); +} + +//:: shift left + +:(before "End Initialize Op Names") +put_new(Name, "d3", "shift rm32 by CL bits depending on subop (sal/sar/shl/shr)"); + +:(code) +void test_shift_left_r32_with_cl() { + Reg[EBX].i = 13; + Reg[ECX].i = 1; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " d3 e3 \n" // shift EBX left by CL bits + // ModR/M in binary: 11 (direct mode) 100 (subop shift left) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: operate on r/m32\n" + "run: r/m32 is EBX\n" + "run: subop: shift left by CL bits\n" + "run: storing 0x0000001a\n" + ); +} + +:(before "End Single-Byte Opcodes") +case 0xd3: { + const uint8_t modrm = next(); + trace(Callstack_depth+1, "run") << "operate on r/m32" << end(); + int32_t* arg1 = effective_address(modrm); + const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits + switch (subop) { + case 4: { // shift left r/m32 by CL + trace(Callstack_depth+1, "run") << "subop: shift left by CL bits" << end(); + uint8_t count = Reg[ECX].u & 0x1f; + // OF is only defined if count is 1 + if (count == 1) { + bool msb = (*arg1 & 0x80000000) >> 1; + bool pnsb = (*arg1 & 0x40000000); + OF = (msb != pnsb); + } + int32_t result = (*arg1 << count); + ZF = (result == 0); + SF = (result < 0); + CF = (*arg1 << (count-1)) & 0x80000000; + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); + *arg1 = result; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); + break; + } + // End Op d3 Subops + default: + cerr << "unrecognized subop for opcode d3: " << NUM(subop) << '\n'; + exit(1); + } + break; +} + +//:: shift right arithmetic + +:(code) +void test_shift_right_arithmetic_r32_with_cl() { + Reg[EBX].i = 26; + Reg[ECX].i = 1; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " d3 fb \n" // shift EBX right by CL bits, while preserving sign + // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: operate on r/m32\n" + "run: r/m32 is EBX\n" + "run: subop: shift right by CL bits, while preserving sign\n" + "run: storing 0x0000000d\n" + ); +} + +:(before "End Op d3 Subops") +case 7: { // shift right r/m32 by CL, preserving sign + trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while preserving sign" << end(); + uint8_t count = Reg[ECX].u & 0x1f; + *arg1 = (*arg1 >> count); + ZF = (*arg1 == 0); + SF = (*arg1 < 0); + // OF is only defined if count is 1 + if (count == 1) OF = false; + // CF undefined + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); + break; +} + +:(code) +void test_shift_right_arithmetic_odd_r32_with_cl() { + Reg[EBX].i = 27; + Reg[ECX].i = 1; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " d3 fb \n" // shift EBX right by CL bits, while preserving sign + // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: operate on r/m32\n" + "run: r/m32 is EBX\n" + "run: subop: shift right by CL bits, while preserving sign\n" + // result: 13 + "run: storing 0x0000000d\n" + ); +} + +void test_shift_right_arithmetic_negative_r32_with_cl() { + Reg[EBX].i = 0xfffffffd; // -3 + Reg[ECX].i = 1; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " d3 fb \n" // shift EBX right by CL bits, while preserving sign + // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: operate on r/m32\n" + "run: r/m32 is EBX\n" + "run: subop: shift right by CL bits, while preserving sign\n" + // result: -2 + "run: storing 0xfffffffe\n" + ); +} + +//:: shift right logical + +:(code) +void test_shift_right_logical_r32_with_cl() { + Reg[EBX].i = 26; + Reg[ECX].i = 1; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " d3 eb \n" // shift EBX right by CL bits, while padding zeroes + // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: operate on r/m32\n" + "run: r/m32 is EBX\n" + "run: subop: shift right by CL bits, while padding zeroes\n" + // result: 13 + "run: storing 0x0000000d\n" + ); +} + +:(before "End Op d3 Subops") +case 5: { // shift right r/m32 by CL, padding zeroes + trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while padding zeroes" << end(); + uint8_t count = Reg[ECX].u & 0x1f; + // OF is only defined if count is 1 + if (count == 1) { + bool msb = (*arg1 & 0x80000000) >> 1; + bool pnsb = (*arg1 & 0x40000000); + OF = (msb != pnsb); + } + uint32_t* uarg1 = reinterpret_cast<uint32_t*>(arg1); + *uarg1 = (*uarg1 >> count); + ZF = (*uarg1 == 0); + // result is always positive by definition + SF = false; + // CF undefined + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); + break; +} + +:(code) +void test_shift_right_logical_odd_r32_with_cl() { + Reg[EBX].i = 27; + Reg[ECX].i = 1; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " d3 eb \n" // shift EBX right by CL bits, while padding zeroes + // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: operate on r/m32\n" + "run: r/m32 is EBX\n" + "run: subop: shift right by CL bits, while padding zeroes\n" + // result: 13 + "run: storing 0x0000000d\n" + ); +} + +void test_shift_right_logical_negative_r32_with_cl() { + Reg[EBX].i = 0xfffffffd; + Reg[ECX].i = 1; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " d3 eb \n" // shift EBX right by CL bits, while padding zeroes + // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: operate on r/m32\n" + "run: r/m32 is EBX\n" + "run: subop: shift right by CL bits, while padding zeroes\n" + "run: storing 0x7ffffffe\n" + ); +} + +//:: and + +:(before "End Initialize Op Names") +put_new(Name, "21", "rm32 = bitwise AND of r32 with rm32 (and)"); + +:(code) +void test_and_r32_with_r32() { + Reg[EAX].i = 0x0a0b0c0d; + Reg[EBX].i = 0x000000ff; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 21 d8 \n" // and EBX with destination EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: and EBX with r/m32\n" + "run: r/m32 is EAX\n" + "run: storing 0x0000000d\n" + ); +} + +:(before "End Single-Byte Opcodes") +case 0x21: { // and r32 with r/m32 + const uint8_t modrm = next(); + const uint8_t arg2 = (modrm>>3)&0x7; + trace(Callstack_depth+1, "run") << "and " << rname(arg2) << " with r/m32" << end(); + // bitwise ops technically operate on unsigned numbers, but it makes no + // difference + int32_t* signed_arg1 = effective_address(modrm); + *signed_arg1 &= Reg[arg2].i; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); + SF = (*signed_arg1 >> 31); + ZF = (*signed_arg1 == 0); + CF = false; + OF = false; + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); + break; +} + +//:: or + +:(before "End Initialize Op Names") +put_new(Name, "09", "rm32 = bitwise OR of r32 with rm32 (or)"); + +:(code) +void test_or_r32_with_r32() { + Reg[EAX].i = 0x0a0b0c0d; + Reg[EBX].i = 0xa0b0c0d0; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 09 d8 \n" // or EBX with destination EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: or EBX with r/m32\n" + "run: r/m32 is EAX\n" + "run: storing 0xaabbccdd\n" + ); +} + +:(before "End Single-Byte Opcodes") +case 0x09: { // or r32 with r/m32 + const uint8_t modrm = next(); + const uint8_t arg2 = (modrm>>3)&0x7; + trace(Callstack_depth+1, "run") << "or " << rname(arg2) << " with r/m32" << end(); + // bitwise ops technically operate on unsigned numbers, but it makes no + // difference + int32_t* signed_arg1 = effective_address(modrm); + *signed_arg1 |= Reg[arg2].i; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); + SF = (*signed_arg1 >> 31); + ZF = (*signed_arg1 == 0); + CF = false; + OF = false; + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); + break; +} + +//:: xor + +:(before "End Initialize Op Names") +put_new(Name, "31", "rm32 = bitwise XOR of r32 with rm32 (xor)"); + +:(code) +void test_xor_r32_with_r32() { + Reg[EAX].i = 0x0a0b0c0d; + Reg[EBX].i = 0xaabbc0d0; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 31 d8 \n" // xor EBX with destination EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: xor EBX with r/m32\n" + "run: r/m32 is EAX\n" + "run: storing 0xa0b0ccdd\n" + ); +} + +:(before "End Single-Byte Opcodes") +case 0x31: { // xor r32 with r/m32 + const uint8_t modrm = next(); + const uint8_t arg2 = (modrm>>3)&0x7; + trace(Callstack_depth+1, "run") << "xor " << rname(arg2) << " with r/m32" << end(); + // bitwise ops technically operate on unsigned numbers, but it makes no + // difference + int32_t* signed_arg1 = effective_address(modrm); + *signed_arg1 ^= Reg[arg2].i; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); + SF = (*signed_arg1 >> 31); + ZF = (*signed_arg1 == 0); + CF = false; + OF = false; + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); + break; +} + +//:: not + +:(code) +void test_not_r32() { + Reg[EBX].i = 0x0f0f00ff; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " f7 d3 \n" // not EBX + // ModR/M in binary: 11 (direct mode) 010 (subop not) 011 (dest EBX) + ); + CHECK_TRACE_CONTENTS( + "run: operate on r/m32\n" + "run: r/m32 is EBX\n" + "run: subop: not\n" + "run: storing 0xf0f0ff00\n" + ); +} + +:(before "End Op f7 Subops") +case 2: { // not r/m32 + trace(Callstack_depth+1, "run") << "subop: not" << end(); + *arg1 = ~(*arg1); + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); + // no flags affected + break; +} + +//:: compare (cmp) + +:(before "End Initialize Op Names") +put_new(Name, "39", "compare: set SF if rm32 < r32 (cmp)"); + +:(code) +void test_compare_r32_with_r32_greater() { + Reg[EAX].i = 0x0a0b0c0d; + Reg[EBX].i = 0x0a0b0c07; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 39 d8 \n" // compare EAX with EBX + // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) + ); + CHECK_TRACE_CONTENTS( + "run: compare r/m32 with EBX\n" + "run: r/m32 is EAX\n" + "run: SF=0; ZF=0; CF=0; OF=0\n" + ); +} + +:(before "End Single-Byte Opcodes") +case 0x39: { // set SF if r/m32 < r32 + const uint8_t modrm = next(); + const uint8_t reg2 = (modrm>>3)&0x7; + trace(Callstack_depth+1, "run") << "compare r/m32 with " << rname(reg2) << end(); + const int32_t* signed_arg1 = effective_address(modrm); + const int32_t signed_difference = *signed_arg1 - Reg[reg2].i; + SF = (signed_difference < 0); + ZF = (signed_difference == 0); + const int64_t signed_full_difference = static_cast<int64_t>(*signed_arg1) - Reg[reg2].i; + OF = (signed_difference != signed_full_difference); + // set CF + const uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1); + const uint32_t unsigned_difference = unsigned_arg1 - Reg[reg2].u; + const uint64_t unsigned_full_difference = static_cast<uint64_t>(unsigned_arg1) - Reg[reg2].u; + CF = (unsigned_difference != unsigned_full_difference); + trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); + break; +} + +:(code) +void test_compare_r32_with_r32_lesser_unsigned_and_signed() { + Reg[EAX].i = 0x0a0b0c07; + Reg[EBX].i = 0x0a0b0c0d; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 39 d8 \n" // compare EAX with EBX + // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) + ); + CHECK_TRACE_CONTENTS( + "run: compare r/m32 with EBX\n" + "run: r/m32 is EAX\n" + "run: SF=1; ZF=0; CF=1; OF=0\n" + ); +} + +void test_compare_r32_with_r32_lesser_unsigned_and_signed_due_to_overflow() { + Reg[EAX].i = INT32_MAX; + Reg[EBX].i = INT32_MIN; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 39 d8 \n" // compare EAX with EBX + // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) + ); + CHECK_TRACE_CONTENTS( + "run: compare r/m32 with EBX\n" + "run: r/m32 is EAX\n" + "run: SF=1; ZF=0; CF=1; OF=1\n" + ); +} + +void test_compare_r32_with_r32_lesser_signed() { + Reg[EAX].i = -1; + Reg[EBX].i = 1; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 39 d8 \n" // compare EAX with EBX + // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) + ); + CHECK_TRACE_CONTENTS( + "run: compare r/m32 with EBX\n" + "run: r/m32 is EAX\n" + "run: SF=1; ZF=0; CF=0; OF=0\n" + ); +} + +void test_compare_r32_with_r32_lesser_unsigned() { + Reg[EAX].i = 1; + Reg[EBX].i = -1; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 39 d8 \n" // compare EAX with EBX + // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) + ); + CHECK_TRACE_CONTENTS( + "run: compare r/m32 with EBX\n" + "run: r/m32 is EAX\n" + "run: SF=0; ZF=0; CF=1; OF=0\n" + ); +} + +void test_compare_r32_with_r32_equal() { + Reg[EAX].i = 0x0a0b0c0d; + Reg[EBX].i = 0x0a0b0c0d; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 39 d8 \n" // compare EAX and EBX + // ModR/M in binary: 11 (direct mode) 011 (rhs EBX) 000 (lhs EAX) + ); + CHECK_TRACE_CONTENTS( + "run: compare r/m32 with EBX\n" + "run: r/m32 is EAX\n" + "run: SF=0; ZF=1; CF=0; OF=0\n" + ); +} + +//:: copy (mov) + +:(before "End Initialize Op Names") +put_new(Name, "89", "copy r32 to rm32 (mov)"); + +:(code) +void test_copy_r32_to_r32() { + Reg[EBX].i = 0xaf; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 89 d8 \n" // copy EBX to EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: copy EBX to r/m32\n" + "run: r/m32 is EAX\n" + "run: storing 0x000000af\n" + ); +} + +:(before "End Single-Byte Opcodes") +case 0x89: { // copy r32 to r/m32 + const uint8_t modrm = next(); + const uint8_t rsrc = (modrm>>3)&0x7; + trace(Callstack_depth+1, "run") << "copy " << rname(rsrc) << " to r/m32" << end(); + int32_t* dest = effective_address(modrm); + *dest = Reg[rsrc].i; // Write multiple elements of vector<uint8_t> at once. Assumes sizeof(int) == 4 on the host as well. + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *dest << end(); + break; +} + +//:: xchg + +:(before "End Initialize Op Names") +put_new(Name, "87", "swap the contents of r32 and rm32 (xchg)"); + +:(code) +void test_xchg_r32_with_r32() { + Reg[EBX].i = 0xaf; + Reg[EAX].i = 0x2e; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 87 d8 \n" // exchange EBX with EAX + // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) + ); + CHECK_TRACE_CONTENTS( + "run: exchange EBX with r/m32\n" + "run: r/m32 is EAX\n" + "run: storing 0x000000af in r/m32\n" + "run: storing 0x0000002e in EBX\n" + ); +} + +:(before "End Single-Byte Opcodes") +case 0x87: { // exchange r32 with r/m32 + const uint8_t modrm = next(); + const uint8_t reg2 = (modrm>>3)&0x7; + trace(Callstack_depth+1, "run") << "exchange " << rname(reg2) << " with r/m32" << end(); + int32_t* arg1 = effective_address(modrm); + const int32_t tmp = *arg1; + *arg1 = Reg[reg2].i; + Reg[reg2].i = tmp; + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << " in r/m32" << end(); + trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[reg2].i << " in " << rname(reg2) << end(); + break; +} + +//:: increment + +:(before "End Initialize Op Names") +put_new(Name, "40", "increment EAX (inc)"); +put_new(Name, "41", "increment ECX (inc)"); +put_new(Name, "42", "increment EDX (inc)"); +put_new(Name, "43", "increment EBX (inc)"); +put_new(Name, "44", "increment ESP (inc)"); +put_new(Name, "45", "increment EBP (inc)"); +put_new(Name, "46", "increment ESI (inc)"); +put_new(Name, "47", "increment EDI (inc)"); + +:(code) +void test_increment_r32() { + Reg[ECX].u = 0x1f; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 41 \n" // increment ECX + ); + CHECK_TRACE_CONTENTS( + "run: increment ECX\n" + "run: storing value 0x00000020\n" + ); +} + +:(before "End Single-Byte Opcodes") +case 0x40: +case 0x41: +case 0x42: +case 0x43: +case 0x44: +case 0x45: +case 0x46: +case 0x47: { // increment r32 + const uint8_t reg = op & 0x7; + trace(Callstack_depth+1, "run") << "increment " << rname(reg) << end(); + ++Reg[reg].u; + trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end(); + break; +} + +:(before "End Initialize Op Names") +put_new(Name, "ff", "increment/decrement/jump/push/call rm32 based on subop (inc/dec/jmp/push/call)"); + +:(code) +void test_increment_rm32() { + Reg[EAX].u = 0x20; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " ff c0 \n" // increment EAX + // ModR/M in binary: 11 (direct mode) 000 (subop inc) 000 (EAX) + ); + CHECK_TRACE_CONTENTS( + "run: increment r/m32\n" + "run: r/m32 is EAX\n" + "run: storing value 0x00000021\n" + ); +} + +:(before "End Single-Byte Opcodes") +case 0xff: { + const uint8_t modrm = next(); + const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits + switch (subop) { + case 0: { // increment r/m32 + trace(Callstack_depth+1, "run") << "increment r/m32" << end(); + int32_t* arg = effective_address(modrm); + ++*arg; + trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << *arg << end(); + break; + } + default: + cerr << "unrecognized subop for ff: " << HEXBYTE << NUM(subop) << '\n'; + exit(1); + // End Op ff Subops + } + break; +} + +//:: decrement + +:(before "End Initialize Op Names") +put_new(Name, "48", "decrement EAX (dec)"); +put_new(Name, "49", "decrement ECX (dec)"); +put_new(Name, "4a", "decrement EDX (dec)"); +put_new(Name, "4b", "decrement EBX (dec)"); +put_new(Name, "4c", "decrement ESP (dec)"); +put_new(Name, "4d", "decrement EBP (dec)"); +put_new(Name, "4e", "decrement ESI (dec)"); +put_new(Name, "4f", "decrement EDI (dec)"); + +:(code) +void test_decrement_r32() { + Reg[ECX].u = 0x1f; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 49 \n" // decrement ECX + ); + CHECK_TRACE_CONTENTS( + "run: decrement ECX\n" + "run: storing value 0x0000001e\n" + ); +} + +:(before "End Single-Byte Opcodes") +case 0x48: +case 0x49: +case 0x4a: +case 0x4b: +case 0x4c: +case 0x4d: +case 0x4e: +case 0x4f: { // decrement r32 + const uint8_t reg = op & 0x7; + trace(Callstack_depth+1, "run") << "decrement " << rname(reg) << end(); + --Reg[reg].u; + trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end(); + break; +} + +:(code) +void test_decrement_rm32() { + Reg[EAX].u = 0x20; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " ff c8 \n" // decrement EAX + // ModR/M in binary: 11 (direct mode) 001 (subop inc) 000 (EAX) + ); + CHECK_TRACE_CONTENTS( + "run: decrement r/m32\n" + "run: r/m32 is EAX\n" + "run: storing value 0x0000001f\n" + ); +} + +:(before "End Op ff Subops") +case 1: { // decrement r/m32 + trace(Callstack_depth+1, "run") << "decrement r/m32" << end(); + int32_t* arg = effective_address(modrm); + --*arg; + trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << *arg << end(); + break; +} + +//:: push + +:(before "End Initialize Op Names") +put_new(Name, "50", "push EAX to stack (push)"); +put_new(Name, "51", "push ECX to stack (push)"); +put_new(Name, "52", "push EDX to stack (push)"); +put_new(Name, "53", "push EBX to stack (push)"); +put_new(Name, "54", "push ESP to stack (push)"); +put_new(Name, "55", "push EBP to stack (push)"); +put_new(Name, "56", "push ESI to stack (push)"); +put_new(Name, "57", "push EDI to stack (push)"); + +:(code) +void test_push_r32() { + Mem.push_back(vma(0xbd000000)); // manually allocate memory + Reg[ESP].u = 0xbd000008; + Reg[EBX].i = 0x0000000a; + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 53 \n" // push EBX to stack + ); + CHECK_TRACE_CONTENTS( + "run: push EBX\n" + "run: decrementing ESP to 0xbd000004\n" + "run: pushing value 0x0000000a\n" + ); +} + +:(before "End Single-Byte Opcodes") +case 0x50: +case 0x51: +case 0x52: +case 0x53: +case 0x54: +case 0x55: +case 0x56: +case 0x57: { // push r32 to stack + uint8_t reg = op & 0x7; + trace(Callstack_depth+1, "run") << "push " << rname(reg) << end(); +//? cerr << "push: " << NUM(reg) << ": " << Reg[reg].u << " => " << Reg[ESP].u << '\n'; + push(Reg[reg].u); + break; +} + +//:: pop + +:(before "End Initialize Op Names") +put_new(Name, "58", "pop top of stack to EAX (pop)"); +put_new(Name, "59", "pop top of stack to ECX (pop)"); +put_new(Name, "5a", "pop top of stack to EDX (pop)"); +put_new(Name, "5b", "pop top of stack to EBX (pop)"); +put_new(Name, "5c", "pop top of stack to ESP (pop)"); +put_new(Name, "5d", "pop top of stack to EBP (pop)"); +put_new(Name, "5e", "pop top of stack to ESI (pop)"); +put_new(Name, "5f", "pop top of stack to EDI (pop)"); + +:(code) +void test_pop_r32() { + Mem.push_back(vma(0xbd000000)); // manually allocate memory + Reg[ESP].u = 0xbd000008; + write_mem_i32(0xbd000008, 0x0000000a); // ..before this write + run( + "== code 0x1\n" // code segment + // op ModR/M SIB displacement immediate + " 5b \n" // pop stack to EBX + "== data 0x2000\n" // data segment + "0a 00 00 00\n" // 0xa + ); + CHECK_TRACE_CONTENTS( + "run: pop into EBX\n" + "run: popping value 0x0000000a\n" + "run: incrementing ESP to 0xbd00000c\n" + ); +} + +:(before "End Single-Byte Opcodes") +case 0x58: +case 0x59: +case 0x5a: +case 0x5b: +case 0x5c: +case 0x5d: +case 0x5e: +case 0x5f: { // pop stack into r32 + const uint8_t reg = op & 0x7; + trace(Callstack_depth+1, "run") << "pop into " << rname(reg) << end(); +//? cerr << "pop from " << Reg[ESP].u << '\n'; + Reg[reg].u = pop(); +//? cerr << "=> " << NUM(reg) << ": " << Reg[reg].u << '\n'; + break; +} +:(code) +uint32_t pop() { + const uint32_t result = read_mem_u32(Reg[ESP].u); + trace(Callstack_depth+1, "run") << "popping value 0x" << HEXWORD << result << end(); + Reg[ESP].u += 4; + trace(Callstack_depth+1, "run") << "incrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end(); + assert(Reg[ESP].u < AFTER_STACK); + return result; +} + +:(before "End Includes") +#include <climits> |