diff options
Diffstat (limited to 'subx')
-rw-r--r-- | subx/010core.cc | 14 | ||||
-rw-r--r-- | subx/011direct_addressing.cc | 99 | ||||
-rw-r--r-- | subx/012indirect_addressing.cc | 140 | ||||
-rw-r--r-- | subx/013immediate_addressing.cc | 114 | ||||
-rw-r--r-- | subx/014index_addressing.cc | 16 | ||||
-rw-r--r-- | subx/017functions.cc | 8 |
6 files changed, 203 insertions, 188 deletions
diff --git a/subx/010core.cc b/subx/010core.cc index a23418db..050ac932 100644 --- a/subx/010core.cc +++ b/subx/010core.cc @@ -224,6 +224,20 @@ int32_t imm32() { return result; } +string rname(uint8_t r) { + switch (r) { + case 0: return "EAX"; + case 1: return "ECX"; + case 2: return "EDX"; + case 3: return "EBX"; + case 4: return "ESP"; + case 5: return "EBP"; + case 6: return "ESI"; + case 7: return "EDI"; + default: raise << "invalid register " << r << '\n' << end(); return ""; + } +} + :(before "End Includes") #include <iomanip> #define HEXBYTE std::hex << std::setw(2) << std::setfill('0') diff --git a/subx/011direct_addressing.cc b/subx/011direct_addressing.cc index 00e0e877..46c24828 100644 --- a/subx/011direct_addressing.cc +++ b/subx/011direct_addressing.cc @@ -4,16 +4,17 @@ % Reg[0].i = 0x10; % Reg[3].i = 1; # op ModR/M SIB displacement immediate - 01 d8 # add EBX (reg 3) to EAX (reg 0) -+run: add reg 3 to effective address -+run: effective address is reg 0 + 01 d8 # add EBX to EAX +# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ++run: add EBX to effective address ++run: effective address is EAX +run: storing 0x00000011 :(before "End Single-Byte Opcodes") case 0x01: { // add r32 to r/m32 uint8_t modrm = next(); uint8_t arg2 = (modrm>>3)&0x7; - trace(2, "run") << "add reg " << NUM(arg2) << " to effective address" << end(); + trace(2, "run") << "add " << rname(arg2) << " to effective address" << end(); int32_t* arg1 = effective_address(modrm); BINARY_ARITHMETIC_OP(+, *arg1, Reg[arg2].i); break; @@ -31,7 +32,7 @@ int32_t* effective_address(uint8_t modrm) { switch (mod) { case 3: // mod 3 is just register direct addressing - trace(2, "run") << "effective address is reg " << NUM(rm) << end(); + trace(2, "run") << "effective address is " << rname(rm) << end(); result = &Reg[rm].i; break; // End Mod Special-cases @@ -48,16 +49,16 @@ int32_t* effective_address(uint8_t modrm) { % Reg[0].i = 10; % Reg[3].i = 1; # op ModR/M SIB displacement immediate - 29 d8 # subtract EBX (reg 3) from EAX (reg 0) -+run: subtract reg 3 from effective address -+run: effective address is reg 0 + 29 d8 # subtract EBX from EAX ++run: subtract EBX from effective address ++run: effective address is EAX +run: storing 0x00000009 :(before "End Single-Byte Opcodes") case 0x29: { // subtract r32 from r/m32 uint8_t modrm = next(); uint8_t arg2 = (modrm>>3)&0x7; - trace(2, "run") << "subtract reg " << NUM(arg2) << " from effective address" << end(); + trace(2, "run") << "subtract " << rname(arg2) << " from effective address" << end(); int32_t* arg1 = effective_address(modrm); BINARY_ARITHMETIC_OP(-, *arg1, Reg[arg2].i); break; @@ -69,16 +70,16 @@ case 0x29: { // subtract r32 from r/m32 % Reg[0].i = 0x0a0b0c0d; % Reg[3].i = 0x000000ff; # op ModR/M SIB displacement immediate - 21 d8 # and EBX (reg 3) with destination EAX (reg 0) -+run: and reg 3 with effective address -+run: effective address is reg 0 + 21 d8 # and EBX with destination EAX ++run: and EBX with effective address ++run: effective address is EAX +run: storing 0x0000000d :(before "End Single-Byte Opcodes") case 0x21: { // and r32 with r/m32 uint8_t modrm = next(); uint8_t arg2 = (modrm>>3)&0x7; - trace(2, "run") << "and reg " << NUM(arg2) << " with effective address" << end(); + trace(2, "run") << "and " << rname(arg2) << " with effective address" << end(); int32_t* arg1 = effective_address(modrm); BINARY_BITWISE_OP(&, *arg1, Reg[arg2].u); break; @@ -90,16 +91,16 @@ case 0x21: { // and r32 with r/m32 % Reg[0].i = 0x0a0b0c0d; % Reg[3].i = 0xa0b0c0d0; # op ModR/M SIB displacement immediate - 09 d8 # or EBX (reg 3) with destination EAX (reg 0) -+run: or reg 3 with effective address -+run: effective address is reg 0 + 09 d8 # or EBX with destination EAX ++run: or EBX with effective address ++run: effective address is EAX +run: storing 0xaabbccdd :(before "End Single-Byte Opcodes") case 0x09: { // or r32 with r/m32 uint8_t modrm = next(); uint8_t arg2 = (modrm>>3)&0x7; - trace(2, "run") << "or reg " << NUM(arg2) << " with effective address" << end(); + trace(2, "run") << "or " << rname(arg2) << " with effective address" << end(); int32_t* arg1 = effective_address(modrm); BINARY_BITWISE_OP(|, *arg1, Reg[arg2].u); break; @@ -111,16 +112,16 @@ case 0x09: { // or r32 with r/m32 % Reg[0].i = 0x0a0b0c0d; % Reg[3].i = 0xaabbc0d0; # op ModR/M SIB displacement immediate - 31 d8 # xor EBX (reg 3) with destination EAX (reg 0) -+run: xor reg 3 with effective address -+run: effective address is reg 0 + 31 d8 # xor EBX with destination EAX ++run: xor EBX with effective address ++run: effective address is EAX +run: storing 0xa0b0ccdd :(before "End Single-Byte Opcodes") case 0x31: { // xor r32 with r/m32 uint8_t modrm = next(); uint8_t arg2 = (modrm>>3)&0x7; - trace(2, "run") << "xor reg " << NUM(arg2) << " with effective address" << end(); + trace(2, "run") << "xor " << rname(arg2) << " with effective address" << end(); int32_t* arg1 = effective_address(modrm); BINARY_BITWISE_OP(^, *arg1, Reg[arg2].u); break; @@ -131,9 +132,9 @@ case 0x31: { // xor r32 with r/m32 :(scenario not_r32) % Reg[3].i = 0x0f0f00ff; # op ModR/M SIB displacement immediate - f7 c3 # not EBX (reg 3) + f7 c3 # not EBX +run: 'not' of effective address -+run: effective address is reg 3 ++run: effective address is EBX +run: storing 0xf0f0ff00 :(before "End Single-Byte Opcodes") @@ -155,16 +156,16 @@ case 0xf7: { // xor r32 with r/m32 % Reg[0].i = 0x0a0b0c0d; % Reg[3].i = 0x0a0b0c07; # op ModRM SIB displacement immediate - 39 d8 # compare EBX (reg 3) with EAX (reg 0) -+run: compare reg 3 with effective address -+run: effective address is reg 0 + 39 d8 # compare EBX with EAX ++run: compare EBX with effective address ++run: effective address is EAX +run: SF=0; ZF=0; OF=0 :(before "End Single-Byte Opcodes") case 0x39: { // set SF if r/m32 < r32 uint8_t modrm = next(); uint8_t reg2 = (modrm>>3)&0x7; - trace(2, "run") << "compare reg " << NUM(reg2) << " with effective address" << end(); + trace(2, "run") << "compare " << rname(reg2) << " with effective address" << end(); int32_t* arg1 = effective_address(modrm); int32_t arg2 = Reg[reg2].i; int32_t tmp1 = *arg1 - arg2; @@ -180,18 +181,18 @@ case 0x39: { // set SF if r/m32 < r32 % Reg[0].i = 0x0a0b0c07; % Reg[3].i = 0x0a0b0c0d; # op ModRM SIB displacement immediate - 39 d8 # compare EBX (reg 3) with EAX (reg 0) -+run: compare reg 3 with effective address -+run: effective address is reg 0 + 39 d8 # compare EBX with EAX ++run: compare EBX with effective address ++run: effective address is EAX +run: SF=1; ZF=0; OF=0 :(scenario compare_r32_with_r32_equal) % Reg[0].i = 0x0a0b0c0d; % Reg[3].i = 0x0a0b0c0d; # op ModRM SIB displacement immediate - 39 d8 # compare EBX (reg 3) with EAX (reg 0) -+run: compare reg 3 with effective address -+run: effective address is reg 0 + 39 d8 # compare EBX with EAX ++run: compare EBX with effective address ++run: effective address is EAX +run: SF=0; ZF=1; OF=0 //:: copy (mov) @@ -199,16 +200,16 @@ case 0x39: { // set SF if r/m32 < r32 :(scenario copy_r32_to_r32) % Reg[3].i = 0xaf; # op ModRM SIB displacement immediate - 89 d8 # copy EBX (reg 3) to EAX (reg 0) -+run: copy reg 3 to effective address -+run: effective address is reg 0 + 89 d8 # copy EBX to EAX ++run: copy EBX to effective address ++run: effective address is EAX +run: storing 0x000000af :(before "End Single-Byte Opcodes") case 0x89: { // copy r32 to r/m32 uint8_t modrm = next(); uint8_t reg2 = (modrm>>3)&0x7; - trace(2, "run") << "copy reg " << NUM(reg2) << " to effective address" << end(); + trace(2, "run") << "copy " << rname(reg2) << " to effective address" << end(); int32_t* arg1 = effective_address(modrm); *arg1 = Reg[reg2].i; trace(2, "run") << "storing 0x" << HEXWORD << *arg1 << end(); @@ -221,23 +222,23 @@ case 0x89: { // copy r32 to r/m32 % Reg[3].i = 0xaf; % Reg[0].i = 0x2e; # op ModRM SIB displacement immediate - 87 d8 # exchange EBX (reg 3) with EAX (reg 0) -+run: exchange reg 3 with effective address -+run: effective address is reg 0 + 87 d8 # exchange EBX with EAX ++run: exchange EBX with effective address ++run: effective address is EAX +run: storing 0x000000af in effective address -+run: storing 0x0000002e in reg 3 ++run: storing 0x0000002e in EBX :(before "End Single-Byte Opcodes") case 0x87: { // exchange r32 with r/m32 uint8_t modrm = next(); uint8_t reg2 = (modrm>>3)&0x7; - trace(2, "run") << "exchange reg " << NUM(reg2) << " with effective address" << end(); + trace(2, "run") << "exchange " << rname(reg2) << " with effective address" << end(); int32_t* arg1 = effective_address(modrm); int32_t tmp = *arg1; *arg1 = Reg[reg2].i; Reg[reg2].i = tmp; trace(2, "run") << "storing 0x" << HEXWORD << *arg1 << " in effective address" << end(); - trace(2, "run") << "storing 0x" << HEXWORD << Reg[reg2].i << " in reg " << NUM(reg2) << end(); + trace(2, "run") << "storing 0x" << HEXWORD << Reg[reg2].i << " in " << rname(reg2) << end(); break; } @@ -247,8 +248,8 @@ case 0x87: { // exchange r32 with r/m32 % Reg[ESP].u = 0x64; % Reg[EBX].i = 0x0000000a; # op ModRM SIB displacement immediate - 53 # push EBX (reg 3) to stack -+run: push reg 3 + 53 # push EBX to stack ++run: push EBX +run: decrementing ESP to 0x00000060 +run: pushing value 0x0000000a @@ -262,7 +263,7 @@ case 0x55: case 0x56: case 0x57: { // push r32 to stack uint8_t reg = op & 0x7; - trace(2, "run") << "push reg " << NUM(reg) << end(); + trace(2, "run") << "push " << rname(reg) << end(); push(Reg[reg].u); break; } @@ -280,8 +281,8 @@ void push(uint32_t val) { % Reg[ESP].u = 0x60; % SET_WORD_IN_MEM(0x60, 0x0000000a); # op ModRM SIB displacement immediate - 5b # pop stack to EBX (reg 3) -+run: pop into reg 3 + 5b # pop stack to EBX ++run: pop into EBX +run: popping value 0x0000000a +run: incrementing ESP to 0x00000064 @@ -295,7 +296,7 @@ case 0x5d: case 0x5e: case 0x5f: { // pop stack into r32 uint8_t reg = op & 0x7; - trace(2, "run") << "pop into reg " << NUM(reg) << end(); + trace(2, "run") << "pop into " << rname(reg) << end(); Reg[reg].u = pop(); break; } diff --git a/subx/012indirect_addressing.cc b/subx/012indirect_addressing.cc index 0acd7a1e..f41bdfef 100644 --- a/subx/012indirect_addressing.cc +++ b/subx/012indirect_addressing.cc @@ -5,9 +5,9 @@ % Reg[0].i = 0x60; % SET_WORD_IN_MEM(0x60, 1); # op ModR/M SIB displacement immediate - 01 18 # add EBX (reg 3) to *EAX (reg 0) -+run: add reg 3 to effective address -+run: effective address is mem at address 0x60 (reg 0) + 01 18 # add EBX to *EAX ++run: add EBX to effective address ++run: effective address is mem at address 0x60 (EAX) +run: storing 0x00000011 :(before "End Mod Special-cases") @@ -15,7 +15,7 @@ case 0: // mod 0 is usually indirect addressing switch (rm) { default: - trace(2, "run") << "effective address is mem at address 0x" << std::hex << Reg[rm].u << " (reg " << NUM(rm) << ")" << end(); + trace(2, "run") << "effective address is mem at address 0x" << std::hex << Reg[rm].u << " (" << rname(rm) << ")" << end(); assert(Reg[rm].u + sizeof(int32_t) <= Mem.size()); result = reinterpret_cast<int32_t*>(&Mem.at(Reg[rm].u)); // rely on the host itself being in little-endian order break; @@ -30,16 +30,16 @@ case 0: % Reg[3].i = 0x10; % SET_WORD_IN_MEM(0x60, 1); # op ModR/M SIB displacement immediate - 03 18 # add *EAX (reg 0) to EBX (reg 3) -+run: add effective address to reg 3 -+run: effective address is mem at address 0x60 (reg 0) + 03 18 # add *EAX to EBX ++run: add effective address to EBX ++run: effective address is mem at address 0x60 (EAX) +run: storing 0x00000011 :(before "End Single-Byte Opcodes") case 0x03: { // add r/m32 to r32 uint8_t modrm = next(); uint8_t arg1 = (modrm>>3)&0x7; - trace(2, "run") << "add effective address to reg " << NUM(arg1) << end(); + trace(2, "run") << "add effective address to " << rname(arg1) << end(); const int32_t* arg2 = effective_address(modrm); BINARY_ARITHMETIC_OP(+, Reg[arg1].i, *arg2); break; @@ -52,9 +52,9 @@ case 0x03: { // add r/m32 to r32 % SET_WORD_IN_MEM(0x60, 10); % Reg[3].i = 1; # op ModRM SIB displacement immediate - 29 18 # subtract EBX (reg 3) from *EAX (reg 0) -+run: subtract reg 3 from effective address -+run: effective address is mem at address 0x60 (reg 0) + 29 18 # subtract EBX from *EAX ++run: subtract EBX from effective address ++run: effective address is mem at address 0x60 (EAX) +run: storing 0x00000009 //: @@ -64,16 +64,16 @@ case 0x03: { // add r/m32 to r32 % SET_WORD_IN_MEM(0x60, 1); % Reg[3].i = 10; # op ModRM SIB displacement immediate - 2b 18 # subtract *EAX (reg 0) from EBX (reg 3) -+run: subtract effective address from reg 3 -+run: effective address is mem at address 0x60 (reg 0) + 2b 18 # subtract *EAX from EBX ++run: subtract effective address from EBX ++run: effective address is mem at address 0x60 (EAX) +run: storing 0x00000009 :(before "End Single-Byte Opcodes") case 0x2b: { // subtract r/m32 from r32 uint8_t modrm = next(); uint8_t arg1 = (modrm>>3)&0x7; - trace(2, "run") << "subtract effective address from reg " << NUM(arg1) << end(); + trace(2, "run") << "subtract effective address from " << rname(arg1) << end(); const int32_t* arg2 = effective_address(modrm); BINARY_ARITHMETIC_OP(-, Reg[arg1].i, *arg2); break; @@ -86,9 +86,9 @@ case 0x2b: { // subtract r/m32 from r32 % SET_WORD_IN_MEM(0x60, 0x0a0b0c0d); % Reg[3].i = 0xff; # op ModRM SIB displacement immediate - 21 18 # and EBX (reg 3) with *EAX (reg 0) -+run: and reg 3 with effective address -+run: effective address is mem at address 0x60 (reg 0) + 21 18 # and EBX with *EAX ++run: and EBX with effective address ++run: effective address is mem at address 0x60 (EAX) +run: storing 0x0000000d //: @@ -98,16 +98,16 @@ case 0x2b: { // subtract r/m32 from r32 % SET_WORD_IN_MEM(0x60, 0x000000ff); % Reg[3].i = 0x0a0b0c0d; # op ModRM SIB displacement immediate - 23 18 # and *EAX (reg 0) with EBX (reg 3) -+run: and effective address with reg 3 -+run: effective address is mem at address 0x60 (reg 0) + 23 18 # and *EAX with EBX ++run: and effective address with EBX ++run: effective address is mem at address 0x60 (EAX) +run: storing 0x0000000d :(before "End Single-Byte Opcodes") case 0x23: { // and r/m32 with r32 uint8_t modrm = next(); uint8_t arg1 = (modrm>>3)&0x7; - trace(2, "run") << "and effective address with reg " << NUM(arg1) << end(); + trace(2, "run") << "and effective address with " << rname(arg1) << end(); const int32_t* arg2 = effective_address(modrm); BINARY_BITWISE_OP(&, Reg[arg1].u, *arg2); break; @@ -120,9 +120,9 @@ case 0x23: { // and r/m32 with r32 % SET_WORD_IN_MEM(0x60, 0x0a0b0c0d); % Reg[3].i = 0xa0b0c0d0; # op ModRM SIB displacement immediate - 09 18 # or EBX (reg 3) with *EAX (reg 0) -+run: or reg 3 with effective address -+run: effective address is mem at address 0x60 (reg 0) + 09 18 # or EBX with *EAX ++run: or EBX with effective address ++run: effective address is mem at address 0x60 (EAX) +run: storing 0xaabbccdd //: @@ -132,16 +132,16 @@ case 0x23: { // and r/m32 with r32 % SET_WORD_IN_MEM(0x60, 0x0a0b0c0d); % Reg[3].i = 0xa0b0c0d0; # op ModRM SIB displacement immediate - 0b 18 # or *EAX (reg 0) with EBX (reg 3) -+run: or effective address with reg 3 -+run: effective address is mem at address 0x60 (reg 0) + 0b 18 # or *EAX with EBX ++run: or effective address with EBX ++run: effective address is mem at address 0x60 (EAX) +run: storing 0xaabbccdd :(before "End Single-Byte Opcodes") case 0x0b: { // or r/m32 with r32 uint8_t modrm = next(); uint8_t arg1 = (modrm>>3)&0x7; - trace(2, "run") << "or effective address with reg " << NUM(arg1) << end(); + trace(2, "run") << "or effective address with " << rname(arg1) << end(); const int32_t* arg2 = effective_address(modrm); BINARY_BITWISE_OP(|, Reg[arg1].u, *arg2); break; @@ -154,9 +154,9 @@ case 0x0b: { // or r/m32 with r32 % SET_WORD_IN_MEM(0x60, 0xaabb0c0d); % Reg[3].i = 0xa0b0c0d0; # op ModRM SIB displacement immediate - 31 18 # xor EBX (reg 3) with *EAX (reg 0) -+run: xor reg 3 with effective address -+run: effective address is mem at address 0x60 (reg 0) + 31 18 # xor EBX with *EAX ++run: xor EBX with effective address ++run: effective address is mem at address 0x60 (EAX) +run: storing 0x0a0bccdd //: @@ -166,16 +166,16 @@ case 0x0b: { // or r/m32 with r32 % SET_WORD_IN_MEM(0x60, 0x0a0b0c0d); % Reg[3].i = 0xa0b0c0d0; # op ModRM SIB displacement immediate - 33 18 # xor *EAX (reg 0) with EBX (reg 3) -+run: xor effective address with reg 3 -+run: effective address is mem at address 0x60 (reg 0) + 33 18 # xor *EAX with EBX ++run: xor effective address with EBX ++run: effective address is mem at address 0x60 (EAX) +run: storing 0xaabbccdd :(before "End Single-Byte Opcodes") case 0x33: { // xor r/m32 with r32 uint8_t modrm = next(); uint8_t arg1 = (modrm>>3)&0x7; - trace(2, "run") << "xor effective address with reg " << NUM(arg1) << end(); + trace(2, "run") << "xor effective address with " << rname(arg1) << end(); const int32_t* arg2 = effective_address(modrm); BINARY_BITWISE_OP(|, Reg[arg1].u, *arg2); break; @@ -188,9 +188,9 @@ case 0x33: { // xor r/m32 with r32 # word at 0x60 is 0x0f0f00ff % SET_WORD_IN_MEM(0x60, 0x0f0f00ff); # op ModRM SIB displacement immediate - f7 03 # negate *EBX (reg 3) + f7 03 # negate *EBX +run: 'not' of effective address -+run: effective address is mem at address 0x60 (reg 3) ++run: effective address is mem at address 0x60 (EBX) +run: storing 0xf0f0ff00 //:: compare (cmp) @@ -200,9 +200,9 @@ case 0x33: { // xor r/m32 with r32 % SET_WORD_IN_MEM(0x60, 0x0a0b0c0d); % Reg[3].i = 0x0a0b0c07; # op ModRM SIB displacement immediate - 39 18 # compare EBX (reg 3) with *EAX (reg 0) -+run: compare reg 3 with effective address -+run: effective address is mem at address 0x60 (reg 0) + 39 18 # compare EBX with *EAX ++run: compare EBX with effective address ++run: effective address is mem at address 0x60 (EAX) +run: SF=0; ZF=0; OF=0 :(scenario compare_mem_at_r32_with_r32_lesser) @@ -210,9 +210,9 @@ case 0x33: { // xor r/m32 with r32 % SET_WORD_IN_MEM(0x60, 0x0a0b0c07); % Reg[3].i = 0x0a0b0c0d; # op ModRM SIB displacement immediate - 39 18 # compare EBX (reg 3) with *EAX (reg 0) -+run: compare reg 3 with effective address -+run: effective address is mem at address 0x60 (reg 0) + 39 18 # compare EBX with *EAX ++run: compare EBX with effective address ++run: effective address is mem at address 0x60 (EAX) +run: SF=1; ZF=0; OF=0 :(scenario compare_mem_at_r32_with_r32_equal) @@ -220,9 +220,9 @@ case 0x33: { // xor r/m32 with r32 % SET_WORD_IN_MEM(0x60, 0x0a0b0c0d); % Reg[3].i = 0x0a0b0c0d; # op ModRM SIB displacement immediate - 39 18 # compare EBX (reg 3) with *EAX (reg 0) -+run: compare reg 3 with effective address -+run: effective address is mem at address 0x60 (reg 0) + 39 18 # compare EBX with *EAX ++run: compare EBX with effective address ++run: effective address is mem at address 0x60 (EAX) +run: SF=0; ZF=1; OF=0 //: @@ -232,16 +232,16 @@ case 0x33: { // xor r/m32 with r32 % SET_WORD_IN_MEM(0x60, 0x0a0b0c07); % Reg[3].i = 0x0a0b0c0d; # op ModRM SIB displacement immediate - 3b 18 # compare *EAX (reg 0) with EBX (reg 3) -+run: compare effective address with reg 3 -+run: effective address is mem at address 0x60 (reg 0) + 3b 18 # compare *EAX with EBX ++run: compare effective address with EBX ++run: effective address is mem at address 0x60 (EAX) +run: SF=0; ZF=0; OF=0 :(before "End Single-Byte Opcodes") case 0x3b: { // set SF if r32 < r/m32 uint8_t modrm = next(); uint8_t reg1 = (modrm>>3)&0x7; - trace(2, "run") << "compare effective address with reg " << NUM(reg1) << end(); + trace(2, "run") << "compare effective address with " << rname(reg1) << end(); int32_t arg1 = Reg[reg1].i; int32_t* arg2 = effective_address(modrm); int32_t tmp1 = arg1 - *arg2; @@ -258,9 +258,9 @@ case 0x3b: { // set SF if r32 < r/m32 % SET_WORD_IN_MEM(0x60, 0x0a0b0c0d); % Reg[3].i = 0x0a0b0c07; # op ModRM SIB displacement immediate - 3b 18 # compare *EAX (reg 0) with EBX (reg 3) -+run: compare effective address with reg 3 -+run: effective address is mem at address 0x60 (reg 0) + 3b 18 # compare *EAX with EBX ++run: compare effective address with EBX ++run: effective address is mem at address 0x60 (EAX) +run: SF=1; ZF=0; OF=0 :(scenario compare_r32_with_mem_at_r32_equal) @@ -268,9 +268,9 @@ case 0x3b: { // set SF if r32 < r/m32 % SET_WORD_IN_MEM(0x60, 0x0a0b0c0d); % Reg[3].i = 0x0a0b0c0d; # op ModRM SIB displacement immediate - 3b 18 # compare *EAX (reg 0) with EBX (reg 3) -+run: compare effective address with reg 3 -+run: effective address is mem at address 0x60 (reg 0) + 3b 18 # compare *EAX with EBX ++run: compare effective address with EBX ++run: effective address is mem at address 0x60 (EAX) +run: SF=0; ZF=1; OF=0 //:: copy (mov) @@ -279,9 +279,9 @@ case 0x3b: { // set SF if r32 < r/m32 % Reg[3].i = 0xaf; % Reg[0].i = 0x60; # op ModRM SIB displacement immediate - 89 18 # copy EBX (reg 3) to *EAX (reg 0) -+run: copy reg 3 to effective address -+run: effective address is mem at address 0x60 (reg 0) + 89 18 # copy EBX to *EAX ++run: copy EBX to effective address ++run: effective address is mem at address 0x60 (EAX) +run: storing 0x000000af //: @@ -290,16 +290,16 @@ case 0x3b: { // set SF if r32 < r/m32 % Reg[0].i = 0x60; % SET_WORD_IN_MEM(0x60, 0x000000af); # op ModRM SIB displacement immediate - 8b 18 # copy *EAX (reg 0) to EBX (reg 3) -+run: copy effective address to reg 3 -+run: effective address is mem at address 0x60 (reg 0) + 8b 18 # copy *EAX to EBX ++run: copy effective address to EBX ++run: effective address is mem at address 0x60 (EAX) +run: storing 0x000000af :(before "End Single-Byte Opcodes") case 0x8b: { // copy r32 to r/m32 uint8_t modrm = next(); uint8_t reg1 = (modrm>>3)&0x7; - trace(2, "run") << "copy effective address to reg " << NUM(reg1) << end(); + trace(2, "run") << "copy effective address to " << rname(reg1) << end(); int32_t* arg2 = effective_address(modrm); Reg[reg1].i = *arg2; trace(2, "run") << "storing 0x" << HEXWORD << *arg2 << end(); @@ -312,12 +312,12 @@ case 0x8b: { // copy r32 to r/m32 % Reg[0].i = 0x60; % SET_WORD_IN_MEM(0x60, 8); # op ModRM SIB displacement immediate - ff 20 # jump to *EAX (reg 0) + ff 20 # jump to *EAX 05 00 00 00 01 05 00 00 00 02 +run: inst: 0x00000001 +run: jump to effective address -+run: effective address is mem at address 0x60 (reg 0) ++run: effective address is mem at address 0x60 (EAX) +run: jumping to 0x00000008 +run: inst: 0x00000008 -run: inst: 0x00000003 @@ -346,9 +346,9 @@ case 0xff: { % SET_WORD_IN_MEM(0x60, 0x000000af); % Reg[ESP].u = 0x14; # op ModRM SIB displacement immediate - ff 30 # push *EAX (reg 0) to stack + ff 30 # push *EAX to stack +run: push effective address -+run: effective address is mem at address 0x60 (reg 0) ++run: effective address is mem at address 0x60 (EAX) +run: decrementing ESP to 0x00000010 +run: pushing value 0x000000af @@ -367,9 +367,9 @@ case 6: { // push r/m32 to stack % Reg[ESP].u = 0x10; % SET_WORD_IN_MEM(0x10, 0x00000030); # op ModRM SIB displacement immediate - 8f 00 # pop stack into *EAX (reg 0) + 8f 00 # pop stack into *EAX +run: pop into effective address -+run: effective address is mem at address 0x60 (reg 0) ++run: effective address is mem at address 0x60 (EAX) +run: popping value 0x00000030 +run: incrementing ESP to 0x00000014 diff --git a/subx/013immediate_addressing.cc b/subx/013immediate_addressing.cc index 4773e75f..3021617f 100644 --- a/subx/013immediate_addressing.cc +++ b/subx/013immediate_addressing.cc @@ -3,9 +3,9 @@ :(scenario add_imm32_to_r32) % Reg[3].i = 1; # op ModRM SIB displacement immediate - 81 c3 0a 0b 0c 0d # add 0x0d0c0b0a to EBX (reg 3) + 81 c3 0a 0b 0c 0d # add 0x0d0c0b0a to EBX +run: combine imm32 0x0d0c0b0a with effective address -+run: effective address is reg 3 ++run: effective address is EBX +run: subop add +run: storing 0x0d0c0b0b @@ -35,9 +35,9 @@ case 0x81: { // combine imm32 with r/m32 % Reg[3].i = 0x60; % SET_WORD_IN_MEM(0x60, 1); # op ModR/M SIB displacement immediate - 81 03 0a 0b 0c 0d # add 0x0d0c0b0a to *EBX (reg 3) + 81 03 0a 0b 0c 0d # add 0x0d0c0b0a to *EBX +run: combine imm32 0x0d0c0b0a with effective address -+run: effective address is mem at address 0x60 (reg 3) ++run: effective address is mem at address 0x60 (EBX) +run: subop add +run: storing 0x0d0c0b0b @@ -46,14 +46,14 @@ case 0x81: { // combine imm32 with r/m32 :(scenario subtract_imm32_from_eax) % Reg[EAX].i = 0x0d0c0baa; # op ModR/M SIB displacement immediate - 2d 0a 0b 0c 0d # subtract 0x0d0c0b0a from EAX (reg 0) -+run: subtract imm32 0x0d0c0b0a from reg EAX + 2d 0a 0b 0c 0d # subtract 0x0d0c0b0a from EAX ++run: subtract imm32 0x0d0c0b0a from EAX +run: storing 0x000000a0 :(before "End Single-Byte Opcodes") case 0x2d: { // subtract imm32 from EAX int32_t arg2 = imm32(); - trace(2, "run") << "subtract imm32 0x" << HEXWORD << arg2 << " from reg EAX" << end(); + trace(2, "run") << "subtract imm32 0x" << HEXWORD << arg2 << " from EAX" << end(); BINARY_ARITHMETIC_OP(-, Reg[EAX].i, arg2); break; } @@ -64,9 +64,9 @@ case 0x2d: { // subtract imm32 from EAX % Reg[3].i = 0x60; % SET_WORD_IN_MEM(0x60, 10); # op ModRM SIB displacement immediate - 81 2b 01 00 00 00 # subtract 1 from *EBX (reg 3) + 81 2b 01 00 00 00 # subtract 1 from *EBX +run: combine imm32 0x00000001 with effective address -+run: effective address is mem at address 0x60 (reg 3) ++run: effective address is mem at address 0x60 (EBX) +run: subop subtract +run: storing 0x00000009 @@ -75,9 +75,9 @@ case 0x2d: { // subtract imm32 from EAX :(scenario subtract_imm32_from_r32) % Reg[3].i = 10; # op ModRM SIB displacement immediate - 81 eb 01 00 00 00 # subtract 1 from EBX (reg 3) + 81 eb 01 00 00 00 # subtract 1 from EBX +run: combine imm32 0x00000001 with effective address -+run: effective address is reg 3 ++run: effective address is EBX +run: subop subtract +run: storing 0x00000009 @@ -93,14 +93,14 @@ case 5: { :(scenario and_imm32_with_eax) % Reg[EAX].i = 0xff; # op ModR/M SIB displacement immediate - 25 0a 0b 0c 0d # and 0x0d0c0b0a with EAX (reg 0) -+run: and imm32 0x0d0c0b0a with reg EAX + 25 0a 0b 0c 0d # and 0x0d0c0b0a with EAX ++run: and imm32 0x0d0c0b0a with EAX +run: storing 0x0000000a :(before "End Single-Byte Opcodes") case 0x25: { // and imm32 with EAX int32_t arg2 = imm32(); - trace(2, "run") << "and imm32 0x" << HEXWORD << arg2 << " with reg EAX" << end(); + trace(2, "run") << "and imm32 0x" << HEXWORD << arg2 << " with EAX" << end(); BINARY_BITWISE_OP(&, Reg[EAX].i, arg2); break; } @@ -111,9 +111,9 @@ case 0x25: { // and imm32 with EAX % Reg[3].i = 0x60; % SET_WORD_IN_MEM(0x60, 0x000000ff); # op ModRM SIB displacement immediate - 81 23 0a 0b 0c 0d # and 0x0d0c0b0a with *EBX (reg 3) + 81 23 0a 0b 0c 0d # and 0x0d0c0b0a with *EBX +run: combine imm32 0x0d0c0b0a with effective address -+run: effective address is mem at address 0x60 (reg 3) ++run: effective address is mem at address 0x60 (EBX) +run: subop and +run: storing 0x0000000a @@ -122,9 +122,9 @@ case 0x25: { // and imm32 with EAX :(scenario and_imm32_with_r32) % Reg[3].i = 0xff; # op ModRM SIB displacement immediate - 81 e3 0a 0b 0c 0d # and 0x0d0c0b0a with EBX (reg 3) + 81 e3 0a 0b 0c 0d # and 0x0d0c0b0a with EBX +run: combine imm32 0x0d0c0b0a with effective address -+run: effective address is reg 3 ++run: effective address is EBX +run: subop and +run: storing 0x0000000a @@ -140,14 +140,14 @@ case 4: { :(scenario or_imm32_with_eax) % Reg[EAX].i = 0xd0c0b0a0; # op ModR/M SIB displacement immediate - 0d 0a 0b 0c 0d # or 0x0d0c0b0a with EAX (reg 0) -+run: or imm32 0x0d0c0b0a with reg EAX + 0d 0a 0b 0c 0d # or 0x0d0c0b0a with EAX ++run: or imm32 0x0d0c0b0a with EAX +run: storing 0xddccbbaa :(before "End Single-Byte Opcodes") case 0x0d: { // or imm32 with EAX int32_t arg2 = imm32(); - trace(2, "run") << "or imm32 0x" << HEXWORD << arg2 << " with reg EAX" << end(); + trace(2, "run") << "or imm32 0x" << HEXWORD << arg2 << " with EAX" << end(); BINARY_BITWISE_OP(|, Reg[EAX].i, arg2); break; } @@ -158,9 +158,9 @@ case 0x0d: { // or imm32 with EAX % Reg[3].i = 0x60; % SET_WORD_IN_MEM(0x60, 0xd0c0b0a0); # op ModRM SIB displacement immediate - 81 0b 0a 0b 0c 0d # or 0x0d0c0b0a with *EBX (reg 3) + 81 0b 0a 0b 0c 0d # or 0x0d0c0b0a with *EBX +run: combine imm32 0x0d0c0b0a with effective address -+run: effective address is mem at address 0x60 (reg 3) ++run: effective address is mem at address 0x60 (EBX) +run: subop or +run: storing 0xddccbbaa @@ -174,9 +174,9 @@ case 1: { :(scenario or_imm32_with_r32) % Reg[3].i = 0xd0c0b0a0; # op ModRM SIB displacement immediate - 81 cb 0a 0b 0c 0d # or 0x0d0c0b0a with EBX (reg 3) + 81 cb 0a 0b 0c 0d # or 0x0d0c0b0a with EBX +run: combine imm32 0x0d0c0b0a with effective address -+run: effective address is reg 3 ++run: effective address is EBX +run: subop or +run: storing 0xddccbbaa @@ -185,14 +185,14 @@ case 1: { :(scenario xor_imm32_with_eax) % Reg[EAX].i = 0xddccb0a0; # op ModR/M SIB displacement immediate - 35 0a 0b 0c 0d # xor 0x0d0c0b0a with EAX (reg 0) -+run: xor imm32 0x0d0c0b0a with reg EAX + 35 0a 0b 0c 0d # xor 0x0d0c0b0a with EAX ++run: xor imm32 0x0d0c0b0a with EAX +run: storing 0xd0c0bbaa :(before "End Single-Byte Opcodes") case 0x35: { // xor imm32 with EAX int32_t arg2 = imm32(); - trace(2, "run") << "xor imm32 0x" << HEXWORD << arg2 << " with reg EAX" << end(); + trace(2, "run") << "xor imm32 0x" << HEXWORD << arg2 << " with EAX" << end(); BINARY_BITWISE_OP(^, Reg[EAX].i, arg2); break; } @@ -203,9 +203,9 @@ case 0x35: { // xor imm32 with EAX % Reg[3].i = 0x60; % SET_WORD_IN_MEM(0x60, 0xd0c0b0a0); # op ModRM SIB displacement immediate - 81 33 0a 0b 0c 0d # xor 0x0d0c0b0a with *EBX (reg 3) + 81 33 0a 0b 0c 0d # xor 0x0d0c0b0a with *EBX +run: combine imm32 0x0d0c0b0a with effective address -+run: effective address is mem at address 0x60 (reg 3) ++run: effective address is mem at address 0x60 (EBX) +run: subop xor +run: storing 0xddccbbaa @@ -219,9 +219,9 @@ case 6: { :(scenario xor_imm32_with_r32) % Reg[3].i = 0xd0c0b0a0; # op ModRM SIB displacement immediate - 81 f3 0a 0b 0c 0d # xor 0x0d0c0b0a with EBX (reg 3) + 81 f3 0a 0b 0c 0d # xor 0x0d0c0b0a with EBX +run: combine imm32 0x0d0c0b0a with effective address -+run: effective address is reg 3 ++run: effective address is EBX +run: subop xor +run: storing 0xddccbbaa @@ -230,15 +230,15 @@ case 6: { :(scenario compare_imm32_with_eax_greater) % Reg[0].i = 0x0d0c0b0a; # op ModRM SIB displacement immediate - 3d 07 0b 0c 0d # compare 0x0d0c0b07 with EAX (reg 0) -+run: compare reg EAX and imm32 0x0d0c0b07 + 3d 07 0b 0c 0d # compare 0x0d0c0b07 with EAX ++run: compare EAX and imm32 0x0d0c0b07 +run: SF=0; ZF=0; OF=0 :(before "End Single-Byte Opcodes") case 0x3d: { // subtract imm32 from EAX int32_t arg1 = Reg[EAX].i; int32_t arg2 = imm32(); - trace(2, "run") << "compare reg EAX and imm32 0x" << HEXWORD << arg2 << end(); + trace(2, "run") << "compare EAX and imm32 0x" << HEXWORD << arg2 << end(); int32_t tmp1 = arg1 - arg2; SF = (tmp1 < 0); ZF = (tmp1 == 0); @@ -251,15 +251,15 @@ case 0x3d: { // subtract imm32 from EAX :(scenario compare_imm32_with_eax_lesser) % Reg[0].i = 0x0d0c0b07; # op ModRM SIB displacement immediate - 3d 0a 0b 0c 0d # compare 0x0d0c0b0a with EAX (reg 0) -+run: compare reg EAX and imm32 0x0d0c0b0a + 3d 0a 0b 0c 0d # compare 0x0d0c0b0a with EAX ++run: compare EAX and imm32 0x0d0c0b0a +run: SF=1; ZF=0; OF=0 :(scenario compare_imm32_with_eax_equal) % Reg[0].i = 0x0d0c0b0a; # op ModRM SIB displacement immediate - 3d 0a 0b 0c 0d # compare 0x0d0c0b0a with EAX (reg 0) -+run: compare reg EAX and imm32 0x0d0c0b0a + 3d 0a 0b 0c 0d # compare 0x0d0c0b0a with EAX ++run: compare EAX and imm32 0x0d0c0b0a +run: SF=0; ZF=1; OF=0 //: @@ -267,9 +267,9 @@ case 0x3d: { // subtract imm32 from EAX :(scenario compare_imm32_with_r32_greater) % Reg[3].i = 0x0d0c0b0a; # op ModRM SIB displacement immediate - 81 fb 07 0b 0c 0d # compare 0x0d0c0b07 with EBX (reg 3) + 81 fb 07 0b 0c 0d # compare 0x0d0c0b07 with EBX +run: combine imm32 0x0d0c0b07 with effective address -+run: effective address is reg 3 ++run: effective address is EBX +run: SF=0; ZF=0; OF=0 :(before "End Op 81 Subops") @@ -287,35 +287,35 @@ case 7: { :(scenario compare_imm32_with_r32_lesser) % Reg[3].i = 0x0d0c0b07; # op ModRM SIB displacement immediate - 81 fb 0a 0b 0c 0d # compare 0x0d0c0b0a with EBX (reg 3) + 81 fb 0a 0b 0c 0d # compare 0x0d0c0b0a with EBX +run: combine imm32 0x0d0c0b0a with effective address -+run: effective address is reg 3 ++run: effective address is EBX +run: SF=1; ZF=0; OF=0 :(scenario compare_imm32_with_r32_equal) % Reg[3].i = 0x0d0c0b0a; # op ModRM SIB displacement immediate - 81 fb 0a 0b 0c 0d # compare 0x0d0c0b0a with EBX (reg 3) + 81 fb 0a 0b 0c 0d # compare 0x0d0c0b0a with EBX +run: combine imm32 0x0d0c0b0a with effective address -+run: effective address is reg 3 ++run: effective address is EBX +run: SF=0; ZF=1; OF=0 :(scenario compare_imm32_with_mem_at_r32_greater) % Reg[3].i = 0x60; % SET_WORD_IN_MEM(0x60, 0x0d0c0b0a); # op ModRM SIB displacement immediate - 81 3b 07 0b 0c 0d # compare 0x0d0c0b07 with *EBX (reg 3) + 81 3b 07 0b 0c 0d # compare 0x0d0c0b07 with *EBX +run: combine imm32 0x0d0c0b07 with effective address -+run: effective address is mem at address 0x60 (reg 3) ++run: effective address is mem at address 0x60 (EBX) +run: SF=0; ZF=0; OF=0 :(scenario compare_imm32_with_mem_at_r32_lesser) % Reg[3].i = 0x60; % SET_WORD_IN_MEM(0x60, 0x0d0c0b07); # op ModRM SIB displacement immediate - 81 3b 0a 0b 0c 0d # compare 0x0d0c0b0a with *EBX (reg 3) + 81 3b 0a 0b 0c 0d # compare 0x0d0c0b0a with *EBX +run: combine imm32 0x0d0c0b0a with effective address -+run: effective address is mem at address 0x60 (reg 3) ++run: effective address is mem at address 0x60 (EBX) +run: SF=1; ZF=0; OF=0 :(scenario compare_imm32_with_mem_at_r32_equal) @@ -323,17 +323,17 @@ case 7: { % Reg[3].i = 0x60; % SET_WORD_IN_MEM(0x60, 0x0d0c0b0a); # op ModRM SIB displacement immediate - 81 3b 0a 0b 0c 0d # compare 0x0d0c0b0a with *EBX (reg 3) + 81 3b 0a 0b 0c 0d # compare 0x0d0c0b0a with *EBX +run: combine imm32 0x0d0c0b0a with effective address -+run: effective address is mem at address 0x60 (reg 3) ++run: effective address is mem at address 0x60 (EBX) +run: SF=0; ZF=1; OF=0 //:: copy (mov) :(scenario copy_imm32_to_r32) # op ModRM SIB displacement immediate - bb 0a 0b 0c 0d # copy 0x0d0c0b0a to EBX (reg 3) -+run: copy imm32 0x0d0c0b0a to reg 3 + bb 0a 0b 0c 0d # copy 0x0d0c0b0a to EBX ++run: copy imm32 0x0d0c0b0a to EBX :(before "End Single-Byte Opcodes") case 0xb8: @@ -346,7 +346,7 @@ case 0xbe: case 0xbf: { // copy imm32 to r32 uint8_t reg1 = op & 0x7; int32_t arg2 = imm32(); - trace(2, "run") << "copy imm32 0x" << HEXWORD << arg2 << " to reg " << NUM(reg1) << end(); + trace(2, "run") << "copy imm32 0x" << HEXWORD << arg2 << " to " << rname(reg1) << end(); Reg[reg1].i = arg2; break; } @@ -356,9 +356,9 @@ case 0xbf: { // copy imm32 to r32 :(scenario copy_imm32_to_mem_at_r32) % Reg[3].i = 0x60; # op ModRM SIB displacement immediate - c7 03 0a 0b 0c 0d # copy 0x0d0c0b0a to *EBX (reg 3) + c7 03 0a 0b 0c 0d # copy 0x0d0c0b0a to *EBX +run: copy imm32 0x0d0c0b0a to effective address -+run: effective address is mem at address 0x60 (reg 3) ++run: effective address is mem at address 0x60 (EBX) :(before "End Single-Byte Opcodes") case 0xc7: { // copy imm32 to r32 @@ -375,7 +375,7 @@ case 0xc7: { // copy imm32 to r32 :(scenario push_imm32) % Reg[ESP].u = 0x14; # op ModRM SIB displacement immediate - 68 af 00 00 00 # push *EAX (reg 0) to stack + 68 af 00 00 00 # push *EAX to stack +run: push imm32 0x000000af +run: ESP is now 0x00000010 +run: contents at ESP: 0x000000af diff --git a/subx/014index_addressing.cc b/subx/014index_addressing.cc index 1615e652..e489dba1 100644 --- a/subx/014index_addressing.cc +++ b/subx/014index_addressing.cc @@ -5,11 +5,11 @@ % Reg[0].i = 0x60; % SET_WORD_IN_MEM(0x60, 1); # op ModR/M SIB displacement immediate - 01 1c 20 # add EBX (reg 3) to *EAX (reg 0) + 01 1c 20 # add EBX to *EAX # SIB in binary: 00 (scale 1) 100 (no index) 000 (base EAX) # See Table 2-3 of the Intel programming manual. -+run: add reg 3 to effective address -+run: effective address is mem at address 0x60 (reg 0) ++run: add EBX to effective address ++run: effective address is mem at address 0x60 (EAX) +run: storing 0x00000011 :(before "End Mod 0 Special-cases") @@ -20,13 +20,13 @@ case 4: uint8_t index = (sib>>3)&0x7; if (index == ESP) { // ignore index and scale - trace(2, "run") << "effective address is mem at address 0x" << std::hex << Reg[base].u << " (reg " << NUM(base) << ")" << end(); + trace(2, "run") << "effective address is mem at address 0x" << std::hex << Reg[base].u << " (" << rname(base) << ")" << end(); result = reinterpret_cast<int32_t*>(&Mem.at(Reg[base].u)); } else { uint8_t scale = (1 << (sib>>6)); uint32_t addr = Reg[base].u + Reg[index].u*scale; - trace(2, "run") << "effective address is mem at address 0x" << std::hex << addr << " (reg " << NUM(base) << " + reg " << NUM(index) << " * " << NUM(scale) << ")" << end(); + trace(2, "run") << "effective address is mem at address 0x" << std::hex << addr << " (" << rname(base) << " + " << rname(index) << "*" << NUM(scale) << ")" << end(); result = reinterpret_cast<int32_t*>(&Mem.at(addr)); } break; @@ -37,9 +37,9 @@ case 4: % Reg[1].i = 0x2; // dest index % SET_WORD_IN_MEM(0x60, 1); # op ModR/M SIB displacement immediate - 01 1c 08 # add EBX (reg 3) to *(EAX+ECX) + 01 1c 08 # add EBX to *(EAX+ECX) # SIB in binary: 00 (scale 1) 001 (index ECX) 000 (base EAX) # See Table 2-3 of the Intel programming manual. -+run: add reg 3 to effective address -+run: effective address is mem at address 0x60 (reg 0 + reg 1 * 1) ++run: add EBX to effective address ++run: effective address is mem at address 0x60 (EAX + ECX*1) +run: storing 0x00000011 diff --git a/subx/017functions.cc b/subx/017functions.cc index 7837f080..774bbf42 100644 --- a/subx/017functions.cc +++ b/subx/017functions.cc @@ -26,10 +26,10 @@ case 0xe8: { // call imm32 relative to next EIP % Reg[ESP].u = 0x64; % Reg[EBX].u = 0x000000a0; # op ModRM SIB displacement immediate - ff d3 # call function offset at EBX (reg 3) + ff d3 # call function offset at EBX # next EIP is 3 +run: call to effective address -+run: effective address is reg 3 ++run: effective address is EBX +run: decrementing ESP to 0x00000060 +run: pushing value 0x00000003 +run: jumping to 0x000000a3 @@ -49,10 +49,10 @@ case 2: { // call function pointer at r/m32 % Reg[EBX].u = 0x10; % SET_WORD_IN_MEM(0x10, 0x000000a0); # op ModRM SIB displacement immediate - ff 13 # call function offset at *EBX (reg 3) + ff 13 # call function offset at *EBX # next EIP is 3 +run: call to effective address -+run: effective address is mem at address 0x10 (reg 3) ++run: effective address is mem at address 0x10 (EBX) +run: decrementing ESP to 0x00000060 +run: pushing value 0x00000003 +run: jumping to 0x000000a3 |