| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I've been saying for a while[1][2][3] that adding extra abstractions makes
things harder for newcomers, and adding new notations doubly so. And then
I notice this DSL in my own backyard. Makes me feel like a hypocrite.
[1] https://news.ycombinator.com/item?id=13565743#13570092
[2] https://lobste.rs/s/to8wpr/configuration_files_are_canary_warning
[3] https://lobste.rs/s/mdmcdi/little_languages_by_jon_bentley_1986#c_3miuf2
The implementation of the DSL was also highly hacky:
a) It was happening in the tangle/ tool, but was utterly unrelated to tangling
layers.
b) There were several persnickety constraints on the different kinds of
lines and the specific order they were expected in. I kept finding bugs
where the translator would silently do the wrong thing. Or the error messages
sucked, and readers may be stuck looking at the generated code to figure
out what happened. Fixing error messages would require a lot more code,
which is one of my arguments against DSLs in the first place: they may
be easy to implement, but they're hard to design to go with the grain of
the underlying platform. They require lots of iteration. Is that effort
worth prioritizing in this project?
On the other hand, the DSL did make at least some readers' life easier,
the ones who weren't immediately put off by having to learn a strange syntax.
There were fewer quotes to parse, fewer backslash escapes.
Anyway, since there are also people who dislike having to put up with strange
syntaxes, we'll call that consideration a wash and tear this DSL out.
---
This commit was sheer drudgery. Hopefully it won't need to be redone with
a new DSL because I grow sick of backslashes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I've extracted it into a separate binary, independent of my Mu prototype.
I also cleaned up my tracing layer to be a little nicer. Major improvements:
- Realized that incremental tracing really ought to be the default.
And to minimize printing traces to screen.
- Finally figured out how to combine layers and call stack frames in a
single dimension of depth. The answer: optimize for the experience of
`browse_trace`. Instructions occupy a range of depths based on their call
stack frame, and minor details of an instruction lie one level deeper
in each case.
Other than that, I spent some time adjusting levels everywhere to make
`browse_trace` useful.
|
| |
|
|
|
|
| |
This has taken me almost 6 weeks :(
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I've been working on this slowly over several weeks, but it's too hard
to support 0 as the null value for addresses. I constantly have to add
exceptions for scalar value corresponding to an address type (now
occupying 2 locations). The final straw is the test for 'reload':
x:num <- reload text
'reload' returns an address. But there's no way to know that for
arbitrary instructions.
New plan: let's put this off for a bit and first create support for
literals. Then use 'null' instead of '0' for addresses everywhere. Then
it'll be easy to just change what 'null' means.
|
|
|
|
|
| |
We have some ugly duplication in computing size_of on containers between
layers 30/33 and 55.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Generalize commit 4089 to arbitrary closures, and not just the current
'space' or call frame. Now we should be treating spaces just like any
other data structure, and reclaiming all addresses inside them when we
need to.
The cost: all spaces must now specify what recipe generated them (so
they know how to interpret the array of locations) using the /names
property.
We can probably make this ergonomic with a little 'type inference'. But
at least things are safe now.
|
| |
|
|
|
|
| |
Thanks Ella Couch for reporting this issue.
|
|
|
|
|
| |
Use the real original instruction in error messages.
Thanks Ella Couch.
|
|
|
|
|
| |
Playing 5 why's with the previous commit, a better error message if we
somehow skip translating an offset in 'get'.
|
|
|
|
|
|
| |
Bugfix: reinstate a check for missing types in 'get' instructions.
Thanks Caleb Couch for running into this.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was a large commit, and most of it is a follow-up to commit 3309,
undoing what is probably the final ill-considered optimization I added
to s-expressions in Mu: I was always representing (a b c) as (a b . c),
etc. That is now gone.
Why did I need to take it out? The key problem was the error silently
ignored in layer 30. That was causing size_of("(type)") to silently
return garbage rather than loudly complain (assuming 'type' was a simple
type).
But to take it out I had to modify types_strictly_match (layer 21) to
actually strictly match and not just do a prefix match.
In the process of removing the prefix match, I had to make extracting
recipe types from recipe headers more robust. So far it only matched the
first element of each ingredient's type; these matched:
(recipe address:number -> address:number)
(recipe address -> address)
I didn't notice because the dotted notation optimization was actually
representing this as:
(recipe address:number -> address number)
---
One final little thing in this commit: I added an alias for 'assert'
called 'assert_for_now', to indicate that I'm not sure something's
really an invariant, that it might be triggered by (invalid) user
programs, and so require more thought on error handling down the road.
But this may well be an ill-posed distinction. It may be overwhelmingly
uneconomic to continually distinguish between model invariants and error
states for input. I'm starting to grow sympathetic to Google Analytics's
recent approach of just banning assertions altogether. We'll see..
|
|
|
|
|
|
|
|
| |
Follow-up to commit 3321: move get_base_type() more thoroughly to layer
55. The notion of a base_type doesn't really make sense before we
introduce type ingredients and shape-shifting containers, and it
simplifies early layers a *lot* even including the cost of that *ugly*
preamble in layer 55 to retrofit all the places.
|
|
|
|
|
| |
Standardize on calling literate waypoints "Special-cases" rather than
"Cases". Invariably there's a default path already present.
|
| |
|
|
|
|
| |
More helpful messages when people forget 'load-ingredients'.
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
Drop a few debug prints. Hopefully now we need never duplicate trace
statements and can instead just dump them to screen.
I'll soon need the ability to selectively dump traces for a specific
label.
|
| |
|
| |
|
| |
|
|
|
|
|
| |
One more place we were missing expanding type abbreviations: inside
container definitions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rip out everything to fix one failing unit test (commit 3290; type
abbreviations).
This commit does several things at once that I couldn't come up with a
clean way to unpack:
A. It moves to a new representation for type trees without changing
the actual definition of the `type_tree` struct.
B. It adds unit tests for our type metadata precomputation, so that
errors there show up early and in a simpler setting rather than dying
when we try to load Mu code.
C. It fixes a bug, guarding against infinite loops when precomputing
metadata for recursive shape-shifting containers. To do this it uses a
dumb way of comparing type_trees, comparing their string
representations instead. That is likely incredibly inefficient.
Perhaps due to C, this commit has made Mu incredibly slow. Running all
tests for the core and the edit/ app now takes 6.5 minutes rather than
3.5 minutes.
== more notes and details
I've been struggling for the past week now to back out of a bad design
decision, a premature optimization from the early days: storing atoms
directly in the 'value' slot of a cons cell rather than creating a
special 'atom' cons cell and storing it on the 'left' slot. In other
words, if a cons cell looks like this:
o
/ | \
left val right
..then the type_tree (a b c) used to look like this (before this
commit):
o
| \
a o
| \
b o
| \
c null
..rather than like this 'classic' approach to s-expressions which never
mixes val and right (which is what we now have):
o
/ \
o o
| / \
a o o
| / \
b o null
|
c
The old approach made several operations more complicated, most recently
the act of replacing a (possibly atom/leaf) sub-tree with another. That
was the final straw that got me to realize the contortions I was going
through to save a few type_tree nodes (cons cells).
Switching to the new approach was hard partly because I've been using
the old approach for so long and type_tree manipulations had pervaded
everything. Another issue I ran into was the realization that my layers
were not cleanly separated. Key parts of early layers (precomputing type
metadata) existed purely for far later ones (shape-shifting types).
Layers I got repeatedly stuck at:
1. the transform for precomputing type sizes (layer 30)
2. type-checks on merge instructions (layer 31)
3. the transform for precomputing address offsets in types (layer 36)
4. replace operations in supporting shape-shifting recipes (layer 55)
After much thrashing I finally noticed that it wasn't the entirety of
these layers that was giving me trouble, but just the type metadata
precomputation, which had bugs that weren't manifesting until 30 layers
later. Or, worse, when loading .mu files before any tests had had a
chance to run. A common failure mode was running into types at run time
that I hadn't precomputed metadata for at transform time.
Digging into these bugs got me to realize that what I had before wasn't
really very good, but a half-assed heuristic approach that did a whole
lot of extra work precomputing metadata for utterly meaningless types
like `((address number) 3)` which just happened to be part of a larger
type like `(array (address number) 3)`.
So, I redid it all. I switched the representation of types (because the
old representation made unit tests difficult to retrofit) and added unit
tests to the metadata precomputation. I also made layer 30 only do the
minimal metadata precomputation it needs for the concepts introduced
until then. In the process, I also made the precomputation more correct
than before, and added hooks in the right place so that I could augment
the logic when I introduced shape-shifting containers.
== lessons learned
There's several levels of hygiene when it comes to layers:
1. Every layer introduces precisely what it needs and in the simplest
way possible. If I was building an app until just that layer, nothing
would seem over-engineered.
2. Some layers are fore-shadowing features in future layers. Sometimes
this is ok. For example, layer 10 foreshadows containers and arrays and
so on without actually supporting them. That is a net win because it
lets me lay out the core of Mu's data structures out in one place. But
if the fore-shadowing gets too complex things get nasty. Not least
because it can be hard to write unit tests for features before you
provide the plumbing to visualize and manipulate them.
3. A layer is introducing features that are tested only in later layers.
4. A layer is introducing features with tests that are invalidated in
later layers. (This I knew from early on to be an obviously horrendous
idea.)
Summary: avoid Level 2 (foreshadowing layers) as much as possible.
Tolerate it indefinitely for small things where the code stays simple
over time, but become strict again when things start to get more
complex.
Level 3 is mostly a net lose, but sometimes it can be expedient (a real
case of the usually grossly over-applied term "technical debt"), and
it's better than the conventional baseline of no layers and no
scenarios. Just clean it up as soon as possible.
Definitely avoid layer 4 at any time.
== minor lessons
Avoid unit tests for trivial things, write scenarios in context as much as
possible. But within those margins unit tests are fine. Just introduce them
before any scenarios (commit 3297).
Reorganizing layers can be easy. Just merge layers for starters! Punt on
resplitting them in some new way until you've gotten them to work. This is the
wisdom of Refactoring: small steps.
What made it hard was not wanting to merge *everything* between layer 30
and 55. The eventual insight was realizing I just need to move those two
full-strength transforms and nothing else.
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
Always show instruction before any transforms in error messages.
This is likely going to make some errors unclear because they *need* to
show the original instruction. But if we don't have tests for those
situations did they ever really work?
|
| |
|
|
|
|
| |
Clean up 3020.
|
|
|
|
|
|
|
|
| |
Extremely ugly change.
Also ended up fixing some places where I was mixing up sources and
sinks. But I'm not going to bother updating edit/ and sandbox/ apps.
Just too many scenarios to clean up.
|
|
|
|
|
|
|
|
|
|
| |
Standardize quotes around reagents in error messages.
I'm still sure there's issues. For example, the messages when
type-checking 'copy'. I'm not putting quotes around them because in
layer 60 I end up creating dilated reagents, and then it's a bit much to
have quotes and (two kinds of) brackets. But I'm sure I'm doing that
somewhere..
|
|
|
|
|
| |
Update refcounts of address elements when copying containers.
Still lots to do; see todo list at end of 036refcount.cc.
|
|
|
|
|
|
|
| |
This commit covers instructions 'put', 'put-index' and 'maybe-convert'.
Next up are the harder ones: 'copy' and 'merge'. In these cases there's
a non-scalar being copied, and we need to figure out which locations
within it need to update their refcount.
|
|
|
|
|
|
|
| |
It's a bit of a trade-off because we need to store copies of
container metadata in each reagent (to support shape-shifting
containers), and metadata is not lightweight and will get heavier. But
it'll become more unambiguously useful when we switch to a compiler.
|
|
|
|
|
|
|
| |
Now that we no longer have non-shared addresses, we can just always
track refcounts for all addresses.
Phew!
|
| |
|
|
|
|
|
|
| |
This reinfoces that it's only really intended to be used by
'wait-for-location'. To reinforce that we also move it to the same layer
as 'wait-for-location'.
|
|
|
|
|
|
|
|
|
|
|
| |
I'd started using size_of() in transforms at some point, but not gotten
around to actually updating it to support arrays before run-time. Wish
there was a way I could statically enforce that something is only called
at transform time vs runtime.
Thanks Ella and Caleb Couch for finding this issue. Static arrays are
likely still half-baked, but should get a thorough working-over in
coming weeks.
|
|
|
|
| |
Issue 1 in 2829 is now fixed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1. It turns out we couldn't overload 'get' and 'get-address' until now,
because transform_names looks for those names, and the
resolve_ambiguous_calls transform happens before transform_names. Why
does resolve_ambiguous_calls happen before transform_names? Because if
my students made mistakes in the ingredients to an instruction they got
overzealous errors from resolve_ambiguous_calls. Now this impacts 'put'
as well, which is already overloaded for tables. Not sure what to do
about this; I'm going to go back to the overzealous errors, and just
teach students to visually scan past them for now.
2. I need addresses in a third place besides storing to containers and
arrays, and managing the heap -- to synchronize routines.
wait-for-location requires an address. Not sure what to do about this..
|
|
|
|
|
| |
Now to extend 'stash' for arrays, just extend array-to-text-line instead
and perform the lookup inside it.
|
|
|
|
|
| |
Show more thorough information about instructions in the trace, but keep
the original form in error messages.
|
|
|
|
|
|
|
|
| |
As outlined at the end of 2797. This worked out surprisingly well. Now
the snapshotting code touches fewer layers, and it's much better
behaved, with less need for special-case logic, particularly inside
run_interactive(). 30% slower, but should hopefully not cause any more
bugs.
|
|
|
|
| |
This should eradicate the issue of 2771.
|
|
|
|
|
|
|
|
|
|
|
|
| |
I'm dropping all mention of 'recipe' terminology from the Readme. That
way I hope to avoid further bike-shedding discussions while I very
slowly decide on the right terminology with my students.
I could be smarter in my error messages and use 'recipe' when code uses
it and 'function' otherwise. But what about other words like ingredient?
It would all add complexity that I'm not yet sure is worthwhile. But I
do want separate experiences for veteran programmers reading about Mu on
github and for people learning programming using Mu.
|
|
|
|
|
| |
I'm going to stop wasting precious first-line characters on 'bugfix:'.
It's going to be all bugfixes for a while I think.
|