| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I'm still seeing all sorts of failures in turning on layer 11 of edit/,
so I'm backing away and nailing down every culprit I run into. First up:
stop accidentally inserting empty objects into maps during lookups.
Commands run:
$ sed -i 's/\(Recipe_ordinal\|Recipe\|Type_ordinal\|Type\|Memory\)\[\([^]]*\)\] = \(.*\);/put(\1, \2, \3);/' 0[1-9]*
$ vi 075scenario_console.cc # manually fix up Memory[Memory[CONSOLE]]
$ sed -i 's/\(Memory\)\[\([^]]*\)\]/get_or_insert(\1, \2)/' 0[1-9]*
$ sed -i 's/\(Recipe_ordinal\|Type_ordinal\)\[\([^]]*\)\]/get(\1, \2)/' 0[1-9]*
$ sed -i 's/\(Recipe\|Type\)\[\([^]]*\)\]/get(\1, \2)/' 0[1-9]*
Now mu dies pretty quickly because of all the places I try to lookup a
missing value.
|
|
|
|
|
| |
Deduce operation id from name during transform rather than load, so that
earlier transforms have a chance to modify the name.
|
|
|
|
|
|
|
|
|
|
| |
Once a student has gotten used to recipes and ingredients using the
staged 'next-ingredient' approach there's no reason to avoid
conventional function headers. As an added bonus we can now:
a) check that all 'reply' instructions in a recipe are consistent
b) deduce what to reply without needing to say so everytime
c) start thinking about type parameters for recipes (generic functions!)
|
|
|
|
|
|
|
|
|
|
| |
Still very incomplete:
a) we perform the check at runtime
b) tests for edit and sandbox apps no longer work; we can't fix them
until we get type parameters in both containers and recipes (because
list and list operations need to become generic).
|
| |
|
|
|
|
|
|
|
| |
At the lowest level I'm reluctantly starting to see the need for errors
that stop the program in its tracks. Only way to avoid memory corruption
and security issues. But beyond that core I still want to be as lenient
as possible at higher levels of abstraction.
|
| |
|
|
|
|
|
|
|
|
| |
Always show recipe name where error occurred. But don't show internal
'interactive' name for sandboxes, that's just confusing.
What started out as warnings are now ossifying into errors that halt all
execution. Is this how things went with C and Unix as well?
|
|
|
|
|
|
|
|
|
|
|
| |
Turns out the default format for printing floating point numbers is
neither 'scientific' nor 'fixed' even though those are the only two
options offered. Reading the C++ standard I found out that the default
(modulo locale changes) is basically the same as the printf "%g" format.
And "%g" is basically the shorter of:
a) %f with trailing zeros trimmed
b) %e
So we'll just do %f and trim trailing zeros.
|
|
|
|
| |
First step to reducing typing burden. Next step: inferring types.
|
| |
|
|
|
|
|
|
|
|
|
| |
More verbose, but it saves trouble when debugging; there's never
something you thought should be traced but just never came out the other
end.
Also got rid of fatal errors entirely. Everything's a warning now, and
code after a warning isn't guaranteed to run.
|
|
|
|
|
|
|
|
|
|
| |
We will need many other forms of isolation for these. For starters we're
going to have to replace most asserts with warnings that can be traced
so that the environment doesn't crash because of illegal code typed into
it.
New test is still failing. Just getting it to fail right was hard
enough.
|
|
|
|
|
|
|
| |
It comes up pretty early in the codebase, but hopefully won't come up
in the mu level until we get to higher-order recipes. Potentially
intimidating name, but such prime real estate with no confusing
overloadings in other projects!
|
|
|
|
|
| |
Requires better support for special variable names in scenarios like
'screen' and 'console'.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Our new heuristic is: all string literals are the same. If they contain
newline before non-whitespace, we scan for comments assuming there might
be code inside:
foofoofoo [
... # ']' inside comment ignored
]
If they contain non-whitespace first, then we ignore comments assuming
it's just a regular string:
foofoofoo [abc#def] # valid string literal
The big hole in this approach:
foofoofoo [ # what about comments here containing ']'?
... # abc
]
Currently this reads as a 'code comment' and terminates before the
newline or '?' and will probably trigger errors down the line.
Temporary workaround: don't start code strings with a comment on the
same line as the '['. Eventually we'll tighten up the logic.
We're still not using the new heuristic in scenarios, but that's up
next.
|
| |
|
|
|
|
| |
In the process we now support unicode in all mu strings!
|
|
|
|
| |
Aaalmost there..
|
|
|
|
| |
Fix messages on failed screen tests.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Required fixing two levels of bugs:
a) The hack in tangle to drop initial comments a '%' directive..
b) ..was masking a bug where run_mu_scenario wasn't robust to initial
comments.
Mildly concerned that neither of the sub-issues have their own tests,
but I'm just removing hacks, and writing tests for that throwaway
function like run_mu_scenario seems pointless. Instead I've solved the
problem by disallowing comments before '%' directives.
I've also taken this opportunity to at least try to document the
'scenarios' and '%' directives at the first layer where they appear.
|
|
|
|
|
| |
Unclear if filtering by color is the best interface.
Adding the color attribute into the screen contents seems ugly.
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
| |
After like 40 seconds (because of the 120-column screen), but whatever.
The final bug was that clear-screen wasn't actually working right for
fake screens.
(The trace is too large for github, so I'm going to leave it out for
now.)
|
| |
|
|
|
|
| |
Drop the #$%# 'encapsulated' stack ADT.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I added one test to check that divide can return a float, then hacked at
the rippling failures across the entire entire codebase until all tests
pass. Now I need to look at the changes I made and see if there's a
system to them, identify other places that I missed, and figure out the
best way to cover all cases. I also need to show real rather than
encoded values in the traces, but I can't use value() inside reagent
methods because of the name clash with the member variable. So let's
take a snapshot before we attempt any refactoring. This was non-trivial
to get right.
Even if I convince myself that I've gotten it right, I might back this
all out if I can't easily *persuade others* that I've gotten it right.
|
| |
|
|
|
|
|
|
|
|
|
| |
Useful check:
$ grep "[^ '\"]\[[^\"]" *.cc \
|perl -pwe 's/\Wargv\[|\WTests\[|\Wframe\[|\WMemory\[|\WName\[|\WSurrounding_space\[|\WRecipe\[|\WType\[|\WRecipe_number\[|\WType_number\[|\WBefore_fragments\[|\WAfter_fragments\[//g' \
|perl -pwe 's/\Wargv\[|\WTests\[|\Wframe\[|\WMemory\[|\WName\[|\WSurrounding_space\[|\WRecipe\[|\WType\[|\WRecipe_number\[|\WType_number\[|\WBefore_fragments\[|\WAfter_fragments\[//g' \
|grep '[^ ]\['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
All primitives now always write to all their products. If a product is
not used that's fine, but if an instruction seems to expect too many
products mu will complain.
In the process, many primitives can operate on more than two ingredients
where it seems intuitive. You can add or divide more than two numbers
together, copy or negate multiple corresponding locations, etc.
There's one remaining bit of ugliness. Some instructions like
get/get-address, index/index-address, wait-for-location, these can
unnecessarily load values from memory when they don't need to.
Useful vim commands:
%s/ingredients\[\([^\]]*\)\]/ingredients.at(\1)/gc
%s/products\[\([^\]]*\)\]/products.at(\1)/gc
.,$s/\[\(.\)]/.at(\1)/gc
|
|
|
|
|
|
|
|
|
| |
Just to put all our new test primitives through their paces, and iron
out any kinks.
Just the one chessboard scenario is taking 1.5-2.5x all the tests we've
written so far. But we're starting from a faster baseline, that was the
point of the C++ port. I also have -O3 optimizations in my back-pocket.
|
|
I've tried to update the Readme, but there are at least a couple of issues.
|