about summary refs log tree commit diff stats
path: root/127next-word.subx
Commit message (Expand)AuthorAgeFilesLines
* 7329 - snapshot: advent day 4 part 2Kartik Agaram2020-12-041-1/+63
* 6783Kartik Agaram2020-09-161-0/+49
* 6781 - new app: RPN (postfix) calculatorKartik Agaram2020-09-151-4/+3
* 6612 - reorganize layersKartik Agaram2020-07-051-0/+252
57'>57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
## Mu's instructions and their table-driven translation

See http://akkartik.name/akkartik-convivial-20200607.pdf for the complete
story. In brief: Mu is a statement-oriented language. Blocks consist of flat
lists of instructions. Instructions can have inputs after the operation, and
outputs to the left of a '<-'. Inputs and outputs must be variables. They can't
include nested expressions. Variables can be literals ('n'), or live in a
register ('var/reg') or in memory ('var') at some 'stack-offset' from the 'ebp'
register. Outputs must be registers. To modify a variable in memory, pass it in
by reference as an input. (Inputs are more precisely called 'inouts'.)
Conversely, registers that are just read from must not be passed as outputs.

The following chart shows all the instruction forms supported by Mu, along with
the SubX instruction they're translated to.

## Integer instructions

These instructions use the general-purpose registers.

var/eax <- increment              => "40/increment-eax"
var/ecx <- increment              => "41/increment-ecx"
var/edx <- increment              => "42/increment-edx"
var/ebx <- increment              => "43/increment-ebx"
var/esi <- increment              => "46/increment-esi"
var/edi <- increment              => "47/increment-edi"
increment var                     => "ff 0/subop/increment *(ebp+" var.stack-offset ")"
increment *var/reg                => "ff 0/subop/increment *" reg

var/eax <- decrement              => "48/decrement-eax"
var/ecx <- decrement              => "49/decrement-ecx"
var/edx <- decrement              => "4a/decrement-edx"
var/ebx <- decrement              => "4b/decrement-ebx"
var/esi <- decrement              => "4e/decrement-esi"
var/edi <- decrement              => "4f/decrement-edi"
decrement var                     => "ff 1/subop/decrement *(ebp+" var.stack-offset ")"
decrement *var/reg                => "ff 1/subop/decrement *" reg

var/reg <- add var2/reg2          => "01/add-to %" reg " " reg2 "/r32"
var/reg <- add var2               => "03/add *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- add *var2/reg2         => "03/add *" reg2 " " reg "/r32"
add-to var1, var2/reg             => "01/add-to *(ebp+" var1.stack-offset ") " reg "/r32"
add-to *var1/reg1, var2/reg2      => "01/add-to *" reg1 " " reg2 "/r32"
var/eax <- add n                  => "05/add-to-eax " n "/imm32"
var/reg <- add n                  => "81 0/subop/add %" reg " " n "/imm32"
add-to var, n                     => "81 0/subop/add *(ebp+" var.stack-offset ") " n "/imm32"
add-to *var/reg, n                => "81 0/subop/add *" reg " " n "/imm32"

var/reg <- subtract var2/reg2     => "29/subtract-from %" reg " " reg2 "/r32"
var/reg <- subtract var2          => "2b/subtract *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- subtract *var2/reg2    => "2b/subtract *" reg2 " " reg1 "/r32"
subtract-from var1, var2/reg2     => "29/subtract-from *(ebp+" var1.stack-offset ") " reg2 "/r32"
subtract-from *var1/reg1, var2/reg2 => "29/subtract-from *" reg1 " " reg2 "/r32"
var/eax <- subtract n             => "2d/subtract-from-eax " n "/imm32"
var/reg <- subtract n             => "81 5/subop/subtract %" reg " " n "/imm32"
subtract-from var, n              => "81 5/subop/subtract *(ebp+" var.stack-offset ") " n "/imm32"
subtract-from *var/reg, n         => "81 5/subop/subtract *" reg " " n "/imm32"

var/reg <- and var2/reg2          => "21/and-with %" reg " " reg2 "/r32"
var/reg <- and var2               => "23/and *(ebp+" var2.stack-offset " " reg "/r32"
var/reg <- and *var2/reg2         => "23/and *" reg2 " " reg "/r32"
and-with var1, var2/reg           => "21/and-with *(ebp+" var1.stack-offset ") " reg "/r32"
and-with *var1/reg1, var2/reg2    => "21/and-with *" reg1 " " reg2 "/r32"
var/eax <- and n                  => "25/and-with-eax " n "/imm32"
var/reg <- and n                  => "81 4/subop/and %" reg " " n "/imm32"
and-with var, n                   => "81 4/subop/and *(ebp+" var.stack-offset ") " n "/imm32"
and-with *var/reg, n              => "81 4/subop/and *" reg " " n "/imm32"

var/reg <- or var2/reg2           => "09/or-with %" reg " " reg2 "/r32"
var/reg <- or var2                => "0b/or *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- or *var2/reg2          => "0b/or *" reg2 " " reg "/r32"
or-with var1, var2/reg2           => "09/or-with *(ebp+" var1.stack-offset " " reg2 "/r32"
or-with *var1/reg1, var2/reg2     => "09/or-with *" reg1 " " reg2 "/r32"
var/eax <- or n                   => "0d/or-with-eax " n "/imm32"
var/reg <- or n                   => "81 1/subop/or %" reg " " n "/imm32"
or-with var, n                    => "81 1/subop/or *(ebp+" var.stack-offset ") " n "/imm32"
or-with *var/reg, n               => "81 1/subop/or *" reg " " n "/imm32"

var/reg <- not                    => "f7 2/subop/not %" reg
not var                           => "f7 2/subop/not *(ebp+" var.stack-offset ")"
not *var/reg                      => "f7 2/subop/not *" reg

var/reg <- xor var2/reg2          => "31/xor-with %" reg " " reg2 "/r32"
var/reg <- xor var2               => "33/xor *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- xor *var2/reg2         => "33/xor *" reg2 " " reg "/r32"
xor-with var1, var2/reg           => "31/xor-with *(ebp+" var1.stack-offset ") " reg "/r32"
xor-with *var1/reg1, var2/reg2    => "31/xor-with *" reg1 " " reg2 "/r32"
var/eax <- xor n                  => "35/xor-with-eax " n "/imm32"
var/reg <- xor n                  => "81 6/subop/xor %" reg " " n "/imm32"
xor-with var, n                   => "81 6/subop/xor *(ebp+" var.stack-offset ") " n "/imm32"
xor-with *var/reg, n              => "81 6/subop/xor *" reg " " n "/imm32"

var/reg <- negate                 => "f7 3/subop/negate %" reg
negate var                        => "f7 3/subop/negate *(ebp+" var.stack-offset ")"
negate *var/reg                   => "f7 3/subop/negate *" reg

var/reg <- shift-left n           => "c1/shift 4/subop/left %" reg " " n "/imm32"
var/reg <- shift-right n          => "c1/shift 5/subop/right %" reg " " n "/imm32"
var/reg <- shift-right-signed n   => "c1/shift 7/subop/right-signed %" reg " " n "/imm32"
shift-left var, n                 => "c1/shift 4/subop/left *(ebp+" var.stack-offset ") " n "/imm32"
shift-left *var/reg, n            => "c1/shift 4/subop/left *" reg " " n "/imm32"
shift-right var, n                => "c1/shift 5/subop/right *(ebp+" var.stack-offset ") " n "/imm32"
shift-right *var/reg, n           => "c1/shift 5/subop/right *" reg " " n "/imm32"
shift-right-signed var, n         => "c1/shift 7/subop/right-signed *(ebp+" var.stack-offset ") " n "/imm32"
shift-right-signed *var/reg, n    => "c1/shift 7/subop/right-signed *" reg " " n "/imm32"

var/eax <- copy n                 => "b8/copy-to-eax " n "/imm32"
var/ecx <- copy n                 => "b9/copy-to-ecx " n "/imm32"
var/edx <- copy n                 => "ba/copy-to-edx " n "/imm32"
var/ebx <- copy n                 => "bb/copy-to-ebx " n "/imm32"
var/esi <- copy n                 => "be/copy-to-esi " n "/imm32"
var/edi <- copy n                 => "bf/copy-to-edi " n "/imm32"
var/reg <- copy var2/reg2         => "89/<- %" reg " " reg2 "/r32"
copy-to var1, var2/reg            => "89/<- *(ebp+" var1.stack-offset ") " reg "/r32"
copy-to *var1/reg1, var2/reg2     => "89/<- *" reg1 " " reg2 "/r32"
var/reg <- copy var2              => "8b/-> *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- copy *var2/reg2        => "8b/-> *" reg2 " " reg "/r32"
var/reg <- copy n                 => "c7 0/subop/copy %" reg " " n "/imm32"
copy-to var, n                    => "c7 0/subop/copy *(ebp+" var.stack-offset ") " n "/imm32"
copy-to *var/reg, n               => "c7 0/subop/copy *" reg " " n "/imm32"

var/reg <- copy-byte var2/reg2    => "8a/byte-> %" reg2 " " reg "/r32"
                                     "81 4/subop/and %" reg " 0xff/imm32"
var/reg <- copy-byte *var2/reg2   => "8a/byte-> *" reg2 " " reg "/r32"
                                     "81 4/subop/and %" reg " 0xff/imm32"
copy-byte-to *var1/reg1, var2/reg2  => "88/byte<- *" reg1 " " reg2 "/r32"

compare var1, var2/reg2           => "39/compare *(ebp+" var1.stack-offset ") " reg2 "/r32"
compare *var1/reg1, var2/reg2     => "39/compare *" reg1 " " reg2 "/r32"
compare var1/reg1, var2           => "3b/compare<- *(ebp+" var2.stack-offset ") " reg1 "/r32"
compare var/reg, *var2/reg2       => "3b/compare<- *" reg " " n "/imm32"
compare var/eax, n                => "3d/compare-eax-with " n "/imm32"
compare var/reg, n                => "81 7/subop/compare %" reg " " n "/imm32"
compare var, n                    => "81 7/subop/compare *(ebp+" var.stack-offset ") " n "/imm32"
compare *var/reg, n               => "81 7/subop/compare *" reg " " n "/imm32"

var/reg <- multiply var2          => "0f af/multiply *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- multiply var2/reg2     => "0f af/multiply %" reg2 " " reg "/r32"
var/reg <- multiply *var2/reg2    => "0f af/multiply *" reg2 " " reg "/r32"

## Floating-point operations

These instructions operate on either floating-point registers (xreg) or
general-purpose registers (reg) in indirect mode.

var/xreg <- add var2/xreg2        => "f3 0f 58/add %" xreg2 " " xreg1 "/x32"
var/xreg <- add var2              => "f3 0f 58/add *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- add *var2/reg2        => "f3 0f 58/add *" reg2 " " xreg "/x32"

var/xreg <- subtract var2/xreg2   => "f3 0f 5c/subtract %" xreg2 " " xreg1 "/x32"
var/xreg <- subtract var2         => "f3 0f 5c/subtract *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- subtract *var2/reg2   => "f3 0f 5c/subtract *" reg2 " " xreg "/x32"

var/xreg <- multiply var2/xreg2   => "f3 0f 59/multiply %" xreg2 " " xreg1 "/x32"
var/xreg <- multiply var2         => "f3 0f 59/multiply *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- multiply *var2/reg2   => "f3 0f 59/multiply *" reg2 " " xreg "/x32"

var/xreg <- divide var2/xreg2     => "f3 0f 5e/divide %" xreg2 " " xreg1 "/x32"
var/xreg <- divide var2           => "f3 0f 5e/divide *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- divide *var2/reg2     => "f3 0f 5e/divide *" reg2 " " xreg "/x32"

There are also some exclusively floating-point instructions:

var/xreg <- reciprocal var2/xreg2 => "f3 0f 53/reciprocal %" xreg2 " " xreg1 "/x32"
var/xreg <- reciprocal var2       => "f3 0f 53/reciprocal *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- reciprocal *var2/reg2 => "f3 0f 53/reciprocal *" reg2 " " xreg "/x32"

var/xreg <- square-root var2/xreg2 => "f3 0f 51/square-root %" xreg2 " " xreg1 "/x32"
var/xreg <- square-root var2       => "f3 0f 51/square-root *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- square-root *var2/reg2 => "f3 0f 51/square-root *" reg2 " " xreg "/x32"

var/xreg <- inverse-square-root var2/xreg2 => "f3 0f 52/inverse-square-root %" xreg2 " " xreg1 "/x32"
var/xreg <- inverse-square-root var2       => "f3 0f 52/inverse-square-root *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- inverse-square-root *var2/reg2 => "f3 0f 52/inverse-square-root *" reg2 " " xreg "/x32"

var/xreg <- min var2/xreg2        => "f3 0f 5d/min %" xreg2 " " xreg1 "/x32"
var/xreg <- min var2              => "f3 0f 5d/min *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- min *var2/reg2        => "f3 0f 5d/min *" reg2 " " xreg "/x32"

var/xreg <- max var2/xreg2        => "f3 0f 5f/max %" xreg2 " " xreg1 "/x32"
var/xreg <- max var2              => "f3 0f 5f/max *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- max *var2/reg2        => "f3 0f 5f/max *" reg2 " " xreg "/x32"

Remember, when these instructions use indirect mode, they still use an integer
register. Floating-point registers can't hold addresses.

Most instructions operate exclusively on integer or floating-point operands.
The only exceptions are the instructions for converting between integers and
floating-point numbers.

var/xreg <- convert var2/reg2     => "f3 0f 2a/convert-to-float %" reg2 " " xreg "/x32"
var/xreg <- convert var2          => "f3 0f 2a/convert-to-float *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- convert *var2/reg2    => "f3 0f 2a/convert-to-float *" reg2 " " xreg "/x32"

Converting floats to ints performs rounding by default. (We don't mess with the
MXCSR control register.)

var/reg <- convert var2/xreg2     => "f3 0f 2d/convert-to-int %" xreg2 " " reg "/r32"
var/reg <- convert var2           => "f3 0f 2d/convert-to-int *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- convert *var2/reg2     => "f3 0f 2d/convert-to-int *" reg2 " " reg "/r32"

There's a separate instruction for truncating the fractional part.

var/reg <- truncate var2/xreg2     => "f3 0f 2c/truncate-to-int %" xreg2 " " reg "/r32"
var/reg <- truncate var2           => "f3 0f 2c/truncate-to-int *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- truncate *var2/reg2     => "f3 0f 2c/truncate-to-int *" reg2 " " reg "/r32"

There are no instructions accepting floating-point literals. To obtain integer
literals in floating-point registers, copy them to general-purpose registers
and then convert them to floating-point.

One pattern you may have noticed above is that the floating-point instructions
above always write to registers. The only exceptions are `copy` instructions,
which can write to memory locations.

var/xreg <- copy var2/xreg2       => "f3 0f 11/<- %" xreg " " xreg2 "/x32"
copy-to var1, var2/xreg           => "f3 0f 11/<- *(ebp+" var1.stack-offset ") " xreg "/x32"
var/xreg <- copy var2             => "f3 0f 10/-> *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- copy *var2/reg2       => "f3 0f 10/-> *" reg2 " " xreg "/x32"

Comparisons must always start with a register:

compare var1/xreg1, var2/xreg2    => "0f 2f/compare %" xreg2 " " xreg1 "/x32"
compare var1/xreg1, var2          => "0f 2f/compare *(ebp+" var2.stack-offset ") " xreg1 "/x32"

## Blocks

In themselves, blocks generate no instructions. However, if a block contains
variable declarations, they must be cleaned up when the block ends.

Clean up var on the stack         => "81 0/subop/add %esp " size-of(var) "/imm32"
Clean up var/reg                  => "8f 0/subop/pop %" reg

Clean up var/xreg                 => "f3 0f 10/-> *esp " xreg "/x32"
                                     "81 0/subop/add %esp 4/imm32"

## Jumps

Besides having to clean up any variable declarations (see above) between
themselves and their target, jumps translate like this:

break                             => "e9/jump break/disp32"
break label                       => "e9/jump " label ":break/disp32"
loop                              => "e9/jump loop/disp32"
loop label                        => "e9/jump " label ":loop/disp32"

break-if-=                        => "0f 84/jump-if-= break/disp32"
break-if-= label                  => "0f 84/jump-if-= " label ":break/disp32"
loop-if-=                         => "0f 84/jump-if-= loop/disp32"
loop-if-= label                   => "0f 84/jump-if-= " label ":loop/disp32"

break-if-!=                       => "0f 85/jump-if-!= break/disp32"
break-if-!= label                 => "0f 85/jump-if-!= " label ":break/disp32"
loop-if-!=                        => "0f 85/jump-if-!= loop/disp32"
loop-if-!= label                  => "0f 85/jump-if-!= " label ":loop/disp32"

break-if-<                        => "0f 8c/jump-if-< break/disp32"
break-if-< label                  => "0f 8c/jump-if-< " label ":break/disp32"
loop-if-<                         => "0f 8c/jump-if-< loop/disp32"
loop-if-< label                   => "0f 8c/jump-if-< " label ":loop/disp32"

break-if->                        => "0f 8f/jump-if-> break/disp32"
break-if-> label                  => "0f 8f/jump-if-> " label ":break/disp32"
loop-if->                         => "0f 8f/jump-if-> loop/disp32"
loop-if-> label                   => "0f 8f/jump-if-> " label ":loop/disp32"

break-if-<=                       => "0f 8e/jump-if-<= break/disp32"
break-if-<= label                 => "0f 8e/jump-if-<= " label ":break/disp32"
loop-if-<=                        => "0f 8e/jump-if-<= loop/disp32"
loop-if-<= label                  => "0f 8e/jump-if-<= " label ":loop/disp32"

break-if->=                       => "0f 8d/jump-if->= break/disp32"
break-if->= label                 => "0f 8d/jump-if->= " label ":break/disp32"
loop-if->=                        => "0f 8d/jump-if->= loop/disp32"
loop-if->= label                  => "0f 8d/jump-if->= " label ":loop/disp32"

break-if-addr<                    => "0f 82/jump-if-addr< break/disp32"
break-if-addr< label              => "0f 82/jump-if-addr< " label ":break/disp32"
loop-if-addr<                     => "0f 82/jump-if-addr< loop/disp32"
loop-if-addr< label               => "0f 82/jump-if-addr< " label ":loop/disp32"

break-if-addr>                    => "0f 87/jump-if-addr> break/disp32"
break-if-addr> label              => "0f 87/jump-if-addr> " label ":break/disp32"
loop-if-addr>                     => "0f 87/jump-if-addr> loop/disp32"
loop-if-addr> label               => "0f 87/jump-if-addr> " label ":loop/disp32"

break-if-addr<=                   => "0f 86/jump-if-addr<= break/disp32"
break-if-addr<= label             => "0f 86/jump-if-addr<= " label ":break/disp32"
loop-if-addr<=                    => "0f 86/jump-if-addr<= loop/disp32"
loop-if-addr<= label              => "0f 86/jump-if-addr<= " label ":loop/disp32"

break-if-addr>=                   => "0f 83/jump-if-addr>= break/disp32"
break-if-addr>= label             => "0f 83/jump-if-addr>= " label ":break/disp32"
loop-if-addr>=                    => "0f 83/jump-if-addr>= loop/disp32"
loop-if-addr>= label              => "0f 83/jump-if-addr>= " label ":loop/disp32"

Similar float variants like `break-if-float<` are aliases for the corresponding
`addr` equivalents. The x86 instruction set stupidly has floating-point
operations only update a subset of flags.

Four sets of conditional jumps are useful for detecting overflow.

break-if-carry                    => "0f 82/jump-if-carry break/disp32"
break-if-carry label              => "0f 82/jump-if-carry " label "/disp32"
loop-if-carry                     => "0f 82/jump-if-carry break/disp32"
loop-if-carry label               => "0f 82/jump-if-carry " label "/disp32"

break-if-not-carry                => "0f 83/jump-if-not-carry break/disp32"
break-if-not-carry label          => "0f 83/jump-if-not-carry " label "/disp32"
loop-if-not-carry                 => "0f 83/jump-if-not-carry break/disp32"
loop-if-not-carry label           => "0f 83/jump-if-not-carry " label "/disp32"

break-if-overflow                 => "0f 80/jump-if-overflow break/disp32"
break-if-overflow label           => "0f 80/jump-if-overflow " label ":break/disp32"
loop-if-overflow                  => "0f 80/jump-if-overflow loop/disp32"
loop-if-overflow label            => "0f 80/jump-if-overflow " label ":loop/disp32"

break-if-not-overflow             => "0f 81/jump-if-not-overflow break/disp32"
break-if-not-overflow label       => "0f 81/jump-if-not-overflow " label ":break/disp32"
loop-if-not-overflow              => "0f 81/jump-if-not-overflow loop/disp32"
loop-if-not-overflow label        => "0f 81/jump-if-not-overflow " label ":loop/disp32"

All this relies on a convention that every `{}` block is delimited by labels
ending in `:loop` and `:break`.

## Returns

The `return` instruction cleans up variable declarations just like an unconditional
`jump` to end of function, but also emits a series of copies before the final
`jump`, copying each argument of `return` to the register appropriate to the
respective function output. This doesn't work if a function output register
contains a later `return` argument (e.g. if the registers for two outputs are
swapped in `return`), so you can't do that.

return                            => "c3/return"

---

In the following instructions types are provided for clarity even if they must
be provided in an earlier 'var' declaration.

# Address operations

var/reg: (addr T) <- address var2: T
  => "8d/copy-address *(ebp+" var2.stack-offset ") " reg "/r32"

# Array operations

var/reg: (addr T) <- index arr/rega: (addr array T), idx/regi: int
  | if size-of(T) is 1, 2, 4 or 8
      => "81 7/subop/compare %" rega " 0/imm32"
         "0f 84/jump-if-= __mu-abort-null-index-base-address/disp32"
         "(__check-mu-array-bounds *" rega " %" regi " " size-of(T) ")"
         "8d/copy-address *(" rega "+" regi "<<" log2(size-of(T)) "+4) " reg "/r32"
var/reg: (addr T) <- index arr: (array T len), idx/regi: int
  => "(__check-mu-array-bounds *(ebp+" arr.stack-offset ") %" regi " " size-of(T) ")"
     "8d/copy-address *(ebp+" regi "<<" log2(size-of(T)) "+" (arr.stack-offset + 4) ") " reg "/r32"
var/reg: (addr T) <- index arr/rega: (addr array T), n
  => "81 7/subop/compare %" rega " 0/imm32"
     "0f 84/jump-if-= __mu-abort-null-index-base-address/disp32"
     "(__check-mu-array-bounds *" rega " " n " " size-of(T) ")"
     "8d/copy-address *(" rega "+" (n*size-of(T)+4) ") " reg "/r32"
var/reg: (addr T) <- index arr: (array T len), n
  => "(__check-mu-array-bounds *(ebp+" arr.stack-offset ") " n " " size-of(T) ")"
     "8d/copy-address *(ebp+" (arr.stack-offset+4+n*size-of(T)) ") " reg "/r32"

var/reg: (offset T) <- compute-offset arr: (addr array T), idx/regi: int  # arr can be in reg or mem
  => "69/multiply %" regi " " size-of(T) "/imm32 " reg "/r32"
var/reg: (offset T) <- compute-offset arr: (addr array T), idx: int       # arr can be in reg or mem
  => "69/multiply *(ebp+" idx.stack-offset ") " size-of(T) "/imm32 " reg "/r32"
var/reg: (addr T) <- index arr/rega: (addr array T), o/rego: (offset T)
  => "81 7/subop/compare %" rega " 0/imm32"
     "0f 84/jump-if-= __mu-abort-null-index-base-address/disp32"
     "(__check-mu-array-bounds %" rega " %" rego " 1 \"" function-name "\")"
     "8d/copy-address *(" rega "+" rego "+4) " reg "/r32"

Computing the length of an array is complex.

var/reg: int <- length arr/reg2: (addr array T)
  | if T is byte (TODO)
      => "8b/-> *" reg2 " " reg "/r32"
  | if size-of(T) is 4 or 8 or 16 or 32 or 64 or 128
      => "8b/-> *" reg2 " " reg "/r32"
         "c1/shift 5/subop/logic-right %" reg " " log2(size-of(T)) "/imm8"
  | otherwise
      x86 has no instruction to divide by a literal, so
      we need up to 3 extra registers! eax/edx for division and say ecx
      => if reg is not eax
          "50/push-eax"
         if reg is not ecx
          "51/push-ecx"
         if reg is not edx
          "52/push-edx"
         "8b/-> *" reg2 " eax/r32"
         "31/xor %edx 2/r32/edx"  # sign-extend, but array size can't be negative
         "b9/copy-to-ecx " size-of(T) "/imm32"
         "f7 7/subop/idiv-eax-edx-by %ecx"
         if reg is not eax
           "89/<- %" reg " 0/r32/eax"
         if reg is not edx
          "5a/pop-to-edx"
         if reg is not ecx
          "59/pop-to-ecx"
         if reg is not eax
          "58/pop-to-eax"

# User-defined types

If a record (product) type T was defined to have elements a, b, c, ... of
types T_a, T_b, T_c, ..., then accessing one of those elements f of type T_f:

var/reg: (addr T_f) <- get var2/reg2: (addr T), f
  => "81 7/subop/compare %" reg2 " 0/imm32"
     "0f 84/jump-if-= __mu-abort-null-get-base-address/disp32"
     "8d/copy-address *(" reg2 "+" offset(f) ") " reg "/r32"
var/reg: (addr T_f) <- get var2: T, f
  => "8d/copy-address *(ebp+" var2.stack-offset "+" offset(f) ") " reg "/r32"

When the base is an address we perform a null check.

# Allocating memory

allocate in: (addr handle T)
  => "(allocate Heap " size-of(T) " " in ")"

populate in: (addr handle array T), num  # can be literal or variable on stack or register
  => "(allocate-array2 Heap " size-of(T) " " num " " in ")"

populate-stream in: (addr handle stream T), num  # can be literal or variable on stack or register
  => "(new-stream Heap " size-of(T) " " num " " in ")"

# Some miscellaneous helpers to avoid error-prone size computations

clear x: (addr T)
  => "(zero-out " s " " size-of(T) ")"

read-from-stream s: (addr stream T), out: (addr T)
  => "(read-from-stream " s " " out " " size-of(T) ")"

write-to-stream s: (addr stream T), in: (addr T)
  => "(write-to-stream " s " " in " " size-of(T) ")"

vim:ft=mu:nowrap:textwidth=0