| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
| |
Both manual tests described in commit 7222 now work.
To make them work I had to figure out how to copy a file. It
requires a dependency on a new syscall: lseek.
|
|
|
|
| |
All tests passing again.
|
| |
|
|
|
|
| |
This found several bugs due to me not checking for null strings.
|
| |
|
|
|
|
|
|
|
|
| |
Move some implementation around for floating-point.
I originally thought I wouldn't bother supporting sigils like %xmm0. But
it turns out I need them to pass floats into SubX function calls. And it
turns out the sigils work fine for free.
|
|
|
|
|
| |
We don't yet support emulating these instructions in `bootstrap`. But generated
binaries containing them run natively just fine.
|
| |
|
| |
|
|
|
|
| |
An extra test that should have been in commit 6781.
|
|
|
|
| |
This was surprisingly hard; bugs discovered all over the place.
|
|
|
|
|
|
| |
No support for combining characters. Graphemes are currently just utf-8
encodings of a single Unicode code-point. No support for code-points that
require more than 32 bits in utf-8.
|
|
|
|
|
|
|
|
| |
1000+ LoC spent; just 300+ excluding tests.
Still one known gap; we don't check the entirety of an array's element
type if it's a compound. So far we just check if say both sides start with
'addr'. Obviously that's not good enough.
|
|
|
|
|
| |
As a side-effect I find that my Linode can print ~100k chars/s. At 50 rows
and 200 columns per screen, it's 10 frames/s.
|
|
|
|
|
|
| |
https://archive.org/details/akkartik-2min-2020-07-01
In the process I found a bug, added a new syscall, and 'emulated' it.
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
Several bugs fixed in the process, and expectation of further bugs is growing.
I'd somehow started assuming I don't need to have separate cases for rm32
as a register vs mem. That's not right. We might need more reg-reg Primitives.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
I thought I'd done this in the previous commit, but I hadn't. And, what's
more, there was a bug that seemed pretty tough for a time. Turns out my
self-hosted translator doesn't support '.' comment tokens in data segments.
Hopefully I'm past the valley of the shadow of death now.
"I HAVE NO TOOLS BECAUSE I’VE DESTROYED MY TOOLS WITH MY TOOLS."
-- James Mickens (https://www.usenix.org/system/files/1311_05-08_mickens.pdf)
|
|
|
|
| |
CI should start passing again now.
|
|
|
|
|
|
|
|
|
| |
Cleaner abstraction, but adds 3 instructions to our overhead for handles,
including one potentially-hard-to-predict jump :/
I wish I could have put the alloc id in eax for the comparison as well,
to save a few bytes of instruction space. But that messes up the non-null
case.
|
|
|
|
|
|
|
|
| |
I just needed to adjust row-sizes when accessing the Registers table.
This commit dedicated to a fun hour on https://hn.town.siempre.io. Thanks
Cyrus!
(via https://news.ycombinator.com/item?id=22818300)
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
So far it's unclear how to do this in a series of small commits. Still
nibbling around the edges. In this commit we standardize some terminology:
The length of an array or stream is denominated in the high-level elements.
The _size_ is denominated in bytes.
The thing we encode into the type is always the size, not the length.
There's still an open question of what to do about the Mu `length` operator.
I'd like to modify it to provide the length. Currently it provides the
size. If I can't fix that I'll rename it.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
At the SubX level we have to put up with null-terminated kernel strings
for commandline args. But so far we haven't done much with them. Rather
than try to support them we'll just convert them transparently to standard
length-prefixed strings.
In the process I realized that it's not quite right to treat the combination
of argc and argv as an array of kernel strings. Argc counts the number
of elements, whereas the length of an array is usually denominated in bytes.
|
|
|
|
| |
Using these is quite unsafe. But what isn't, here?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If indexing into a type with power-of-2-sized elements we can access them
in one instruction:
x/reg1: (addr int) <- index A/reg2: (addr array int), idx/reg3: int
This translates to a single instruction because x86 instructions support
an addressing mode with left-shifts.
For non-powers-of-2, however, we need a multiply. To keep things type-safe,
it is performed like this:
x/reg1: (offset T) <- compute-offset A: (addr array T), idx: int
y/reg2: (addr T) <- index A, x
An offset is just an int that is guaranteed to be a multiple of size-of(T).
Offsets can only be used in index instructions, and the types will eventually
be required to line up.
In the process, I have to expand Input-size because mu.subx is growing
big.
|
|
|
|
| |
Support parsing ints from strings rather than slices.
|
| |
|
| |
|
|
|
|
| |
Fix CI.
|
|
|
|
| |
One more error condition when desugaring function calls in SubX.
|
| |
|
|
|
|
|
| |
Fix CI. apps/survey was running out of space in the trace segment when
translating apps/mu.subx
|
| |
|
|
|
|
| |
Expand some buffer sizes to continue building mu.subx natively.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Anytime we create a slice, the first check tends to be whether it's empty.
If we handle ill-formed slices here where start > end, that provides a
measure of safety.
In the Mu translator (mu.subx) we often check for a trailing ':' or ','
and decrement slice->end to ignore it. But that could conceivably yield
ill-formed slices if the slice started out empty. Now we make sure we never
operate on such ill-formed slices.
|
|
|
|
|
|
|
| |
Layers 0-89 are used in self-hosting SubX.
Layers 90-99 are not needed for self-hosting SubX, and therefore could
use transitional levels of syntax sugar.
Layers 100 and up use all SubX syntax sugar.
|
| |
|
|
|
|
|
| |
Try to make the comments consistent with the type system we'll eventually
have.
|
| |
|