about summary refs log tree commit diff stats
path: root/filesystem.mu
Commit message (Expand)AuthorAgeFilesLines
* 4262 - literal 'null'Kartik Agaram2018-06-171-2/+2
* 3483Kartik K. Agaram2016-10-081-1/+1
* 3389Kartik K. Agaram2016-09-171-2/+2
* 3380Kartik K. Agaram2016-09-171-1/+1
* 3379Kartik K. Agaram2016-09-171-3/+3
* 3238Kartik K. Agaram2016-08-211-2/+0
* 3225 - testable interface for writing filesKartik K. Agaram2016-08-181-9/+15
* 3224Kartik K. Agaram2016-08-181-3/+3
* 3203 - testable interface for reading a fileKartik K. Agaram2016-08-161-0/+16
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
//: Addresses help us spend less time copying data around.

//: So far we've been operating on primitives like numbers and characters, and
//: we've started combining these primitives together into larger logical
//: units (containers or arrays) that may contain many different primitives at
//: once. Containers and arrays can grow quite large in complex programs, and
//: we'd like some way to efficiently share them between recipes without
//: constantly having to make copies. Right now 'next-ingredient' and 'return'
//: copy data across recipe boundaries. To avoid copying large quantities of
//: data around, we'll use *addresses*. An address is a bookmark to some
//: arbitrary quantity of data (the *payload*). It's a primitive, so it's as
//: efficient to copy as a number. To read or modify the payload 'pointed to'
//: by an address, we'll perform a *lookup*.
//:
//: The notion of 'lookup' isn't an instruction like 'add' or 'subtract'.
//: Instead it's an operation that can be performed when reading any of the
//: ingredients of an instruction, and when writing to any of the products. To
//: write to the payload of an ingredient rather than its value, simply add
//: the /lookup property to it. Modern computers provide efficient support for
//: addresses and lookups, making this a realistic feature.
//:
//: To create addresses and allocate memory exclusively for their use, use
//: 'new'. Memory is a finite resource so if the computer can't satisfy your
//: request, 'new' may return a 0 (null) address.
//:
//: Computers these days have lots of memory so in practice we can often
//: assume we'll never run out. If you start running out however, say in a
//: long-running program, you'll need to switch mental gears and start
//: husbanding our memory more carefully. The most important tool to avoid
//: wasting memory is to 'abandon' an address when you don't need it anymore.
//: That frees up the memory allocated to it to be reused in future calls to
//: 'new'.

//: Since memory can be reused multiple times, it can happen that you have a
//: stale copy to an address that has since been abandoned and reused. Using
//: the stale address is almost never safe, but it can be very hard to track
//: down such copies because any errors caused by them may occur even millions
//: of instructions after the copy or abandon instruction. To help track down
//: such issues, Mu tracks an 'alloc id' for each allocation it makes. The
//: first call to 'new' has an alloc id of 1, the second gets 2, and so on.
//: The alloc id is never reused.
:(before "End Globals")
long long Next_alloc_id = 0;
:(before "End Reset")
Next_alloc_id = 0;

//: The 'new' instruction records alloc ids both in the memory being allocated
//: and *also* in the address. The 'abandon' instruction clears alloc ids in
//: both places as well. Tracking alloc ids in this manner allows us to raise
//: errors about stale addresses much earlier: 'lookup' operations always
//: compare alloc ids between the address and its payload.

//: todo: give 'new' a custodian ingredient. Following malloc/free is a temporary hack.

:(code)
void test_new() {
  run(
      // call 'new' two times with identical types without modifying the
      // results; you should get back different results
      "def main [\n"
      "  10:&:num <- new num:type\n"
      "  12:&:num <- new num:type\n"
      "  20:bool <- equal 10:&:num, 12:&:num\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "mem: storing 1000 in location 11\n"
      "mem: storing 0 in location 20\n"
  );
}

void test_new_array() {
  run(
      // call 'new' with a second ingredient to allocate an array of some type
      // rather than a single copy
      "def main [\n"
      "  10:&:@:num <- new num:type, 5\n"
      "  12:&:num <- new num:type\n"
      "  20:num/alloc2, 21:num/alloc1 <- deaddress 10:&:@:num, 12:&:num\n"
      "  30:num <- subtract 21:num/alloc2, 20:num/alloc1\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "run: {10: (\"address\" \"array\" \"number\")} <- new {num: \"type\"}, {5: \"literal\"}\n"
      "mem: array length is 5\n"
      // skip alloc id in allocation
      "mem: storing 1000 in location 11\n"
      // don't forget the extra locations for alloc id and array length
      "mem: storing 7 in location 30\n"
  );
}

void test_dilated_reagent_with_new() {
  run(
      "def main [\n"
      "  10:&:&:num <- new {(& num): type}\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "new: size of '(& num)' is 2\n"
  );
}

//: 'new' takes a weird 'type' as its first ingredient; don't error on it
:(before "End Mu Types Initialization")
put(Type_ordinal, "type", 0);
:(code)
bool is_mu_type_literal(const reagent& r) {
  return is_literal(r) && r.type && r.type->name == "type";
}

:(before "End Primitive Recipe Declarations")
NEW,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "new", NEW);
:(before "End Primitive Recipe Checks")
case NEW: {
  const recipe& caller = get(Recipe, r);
  if (inst.ingredients.empty() || SIZE(inst.ingredients) > 2) {
    raise << maybe(caller.name) << "'new' requires one or two ingredients, but got '" << to_original_string(inst) << "'\n" << end();
    break;
  }
  // End NEW Check Special-cases
  const reagent& type = inst.ingredients.at(0);
  if (!is_mu_type_literal(type)) {
    raise << maybe(caller.name) << "first ingredient of 'new' should be a type, but got '" << type.original_string << "'\n" << end();
    break;
  }
  if (SIZE(inst.ingredients) > 1 && !is_mu_number(inst.ingredients.at(1))) {
    raise << maybe(caller.name) << "second ingredient of 'new' should be a number (array length), but got '" << type.original_string << "'\n" << end();
    break;
  }
  if (inst.products.empty()) {
    raise << maybe(caller.name) << "result of 'new' should never be ignored\n" << end();
    break;
  }
  if (!product_of_new_is_valid(inst)) {
    raise << maybe(caller.name) << "product of 'new' has incorrect type: '" << to_original_string(inst) << "'\n" << end();
    break;
  }
  break;
}

:(code)
bool product_of_new_is_valid(const instruction& inst) {
  reagent/*copy*/ product = inst.products.at(0);
  // Update NEW product in Check
  if (!product.type || product.type->atom || product.type->left->value != Address_type_ordinal)
    return false;
  drop_from_type(product, "address");
  if (SIZE(inst.ingredients) > 1) {
    // array allocation
    if (!product.type || product.type->atom || product.type->left->value != Array_type_ordinal)
      return false;
    drop_from_type(product, "array");
  }
  reagent/*local*/ expected_product(new_type_tree(inst.ingredients.at(0).name));
  return types_strictly_match(product, expected_product);
}

void drop_from_type(reagent& r, string expected_type) {
  assert(!r.type->atom);
  if (r.type->left->name != expected_type) {
    raise << "can't drop2 " << expected_type << " from '" << to_string(r) << "'\n" << end();
    return;
  }
  // r.type = r.type->right
  type_tree* tmp = r.type;
  r.type = tmp->right;
  tmp->right = NULL;
  delete tmp;
  // if (!r.type->right) r.type = r.type->left
  assert(!r.type->atom);
  if (r.type->right) return;
  tmp = r.type;
  r.type = tmp->left;
  tmp->left = NULL;
  delete tmp;
}

void test_new_returns_incorrect_type() {
  Hide_errors = true;
  run(
      "def main [\n"
      "  1:bool <- new num:type\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: main: product of 'new' has incorrect type: '1:bool <- new num:type'\n"
  );
}

void test_new_discerns_singleton_list_from_atom_container() {
  Hide_errors = true;
  run(
      "def main [\n"
      "  1:&:num <- new {(num): type}\n"  // should be '{num: type}'
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: main: product of 'new' has incorrect type: '1:&:num <- new {(num): type}'\n"
  );
}

void test_new_with_type_abbreviation() {
  run(
      "def main [\n"
      "  1:&:num <- new num:type\n"
      "]\n"
  );
  CHECK_TRACE_COUNT("error", 0);
}

void test_new_with_type_abbreviation_inside_compound() {
  run(
      "def main [\n"
      "  {1: (address address number), raw: ()} <- new {(& num): type}\n"
      "]\n"
  );
  CHECK_TRACE_COUNT("error", 0);
}

void test_equal_result_of_new_with_null() {
  run(
      "def main [\n"
      "  1:&:num <- new num:type\n"
      "  10:bool <- equal 1:&:num, null\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "mem: storing 0 in location 10\n"
  );
}

//: To implement 'new', a Mu transform turns all 'new' instructions into
//: 'allocate' instructions that precompute the amount of memory they want to
//: allocate.

//: Ensure that we never call 'allocate' directly, and that there's no 'new'
//: instructions left after the transforms have run.
:(before "End Primitive Recipe Checks")
case ALLOCATE: {
  raise << "never call 'allocate' directly'; always use 'new'\n" << end();
  break;
}
:(before "End Primitive Recipe Implementations")
case NEW: {
  raise << "no implementation for 'new'; why wasn't it translated to 'allocate'? Please save a copy of your program and send it to Kartik.\n" << end();
  break;
}

:(after "Transform.push_back(check_instruction)")  // check_instruction will guard against direct 'allocate' instructions below
Transform.push_back(transform_new_to_allocate);  // idempotent

:(code)
void transform_new_to_allocate(const recipe_ordinal r) {
  trace(101, "transform") << "--- convert 'new' to 'allocate' for recipe " << get(Recipe, r).name << end();
  for (int i = 0;  i < SIZE(get(Recipe, r).steps);  ++i) {
    instruction& inst = get(Recipe, r).steps.at(i);
    // Convert 'new' To 'allocate'
    if (inst.name == "new") {
      if (inst.ingredients.empty()) return;  // error raised elsewhere
      inst.operation = ALLOCATE;
      type_tree* type = new_type_tree(inst.ingredients.at(0).name);
      inst.ingredients.at(0).set_value(size_of(type));
      trace(102, "new") << "size of '" << inst.ingredients.at(0).name << "' is " << inst.ingredients.at(0).value << end();
      delete type;
    }
  }
}

//: implement 'allocate' based on size

:(before "End Globals")
extern const int Reserved_for_tests = 1000;
int Memory_allocated_until = Reserved_for_tests;
int Initial_memory_per_routine = 100000;
:(before "End Reset")
Memory_allocated_until = Reserved_for_tests;
Initial_memory_per_routine = 100000;
:(before "End routine Fields")
int alloc, alloc_max;
:(before "End routine Constructor")
alloc = Memory_allocated_until;
Memory_allocated_until += Initial_memory_per_routine;
alloc_max = Memory_allocated_until;
trace(Callstack_depth+1, "new") << "routine allocated memory from " << alloc << " to " << alloc_max << end();

:(before "End Primitive Recipe Declarations")
ALLOCATE,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "allocate", ALLOCATE);
:(before "End Primitive Recipe Implementations")
case ALLOCATE: {
  // compute the space we need
  int size = ingredients.at(0).at(0);
  int alloc_id = Next_alloc_id;
  Next_alloc_id++;
  if (SIZE(ingredients) > 1) {
    // array allocation
    trace(Callstack_depth+1, "mem") << "array length is " << ingredients.at(1).at(0) << end();
    size = /*space for length*/1 + size*ingredients.at(1).at(0);
  }
  int result = allocate(size);
  // initialize alloc-id in payload
  trace(Callstack_depth+1, "mem") << "storing alloc-id " << alloc_id << " in location " << result << end();
  put(Memory, result, alloc_id);
  if (SIZE(current_instruction().ingredients) > 1) {
    // initialize array length
    trace(Callstack_depth+1, "mem") << "storing array length " << ingredients.at(1).at(0) << " in location " << result+/*skip alloc id*/1 << end();
    put(Memory, result+/*skip alloc id*/1, ingredients.at(1).at(0));
  }
  products.resize(1);
  products.at(0).push_back(alloc_id);
  products.at(0).push_back(result);
  break;
}
:(code)
int allocate(int size) {
  // include space for alloc id
  ++size;
  trace(Callstack_depth+1, "mem") << "allocating size " << size << end();
//?   Total_alloc += size;
//?   ++Num_alloc;
  // Allocate Special-cases
  // compute the region of memory to return
  // really crappy at the moment
  ensure_space(size);
  const int result = Current_routine->alloc;
  trace(Callstack_depth+1, "mem") << "new alloc: " << result << end();
  // initialize allocated space
  for (int address = result;  address < result+size;  ++address) {
    trace(Callstack_depth+1, "mem") << "storing 0 in location " << address << end();
    put(Memory, address, 0);
  }
  Current_routine->alloc += size;
  // no support yet for reclaiming memory between routines
  assert(Current_routine->alloc <= Current_routine->alloc_max);
  return result;
}

//: statistics for debugging
//? :(before "End Globals")
//? int Total_alloc = 0;
//? int Num_alloc = 0;
//? int Total_free = 0;
//? int Num_free = 0;
//? :(before "End Reset")
//? if (!Memory.empty()) {
//?   cerr << Total_alloc << "/" << Num_alloc
//?        << " vs " << Total_free << "/" << Num_free << '\n';
//?   cerr << SIZE(Memory) << '\n';
//? }
//? Total_alloc = Num_alloc = Total_free = Num_free = 0;

:(code)
void ensure_space(int size) {
  if (size > Initial_memory_per_routine) {
    cerr << "can't allocate " << size << " locations, that's too much compared to " << Initial_memory_per_routine << ".\n";
    exit(1);
  }
  if (Current_routine->alloc + size > Current_routine->alloc_max) {
    // waste the remaining space and create a new chunk
    Current_routine->alloc = Memory_allocated_until;
    Memory_allocated_until += Initial_memory_per_routine;
    Current_routine->alloc_max = Memory_allocated_until;
    trace(Callstack_depth+1, "new") << "routine allocated memory from " << Current_routine->alloc << " to " << Current_routine->alloc_max << end();
  }
}

void test_new_initializes() {
  Memory_allocated_until = 10;
  put(Memory, Memory_allocated_until, 1);
  run(
      "def main [\n"
      "  1:&:num <- new num:type\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "mem: storing 0 in location 10\n"
      "mem: storing 0 in location 11\n"
      "mem: storing 10 in location 2\n"
  );
}

void test_new_initializes_alloc_id() {
  Memory_allocated_until = 10;
  put(Memory, Memory_allocated_until, 1);
  Next_alloc_id = 23;
  run(
      "def main [\n"
      "  1:&:num <- new num:type\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      // initialize memory
      "mem: storing 0 in location 10\n"
      "mem: storing 0 in location 11\n"
      // alloc-id in payload
      "mem: storing alloc-id 23 in location 10\n"
      // alloc-id in address
      "mem: storing 23 in location 1\n"
  );
}

void test_new_size() {
  run(
      "def main [\n"
      "  10:&:num <- new num:type\n"
      "  12:&:num <- new num:type\n"
      "  20:num/alloc1, 21:num/alloc2 <- deaddress 10:&:num, 12:&:num\n"
      "  30:num <- subtract 21:num/alloc2, 20:num/alloc1\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      // size of number + alloc id
      "mem: storing 2 in location 30\n"
  );
}

void test_new_array_size() {
  run(
      "def main [\n"
      "  10:&:@:num <- new num:type, 5\n"
      "  12:&:num <- new num:type\n"
      "  20:num/alloc1, 21:num/alloc2 <- deaddress 10:&:num, 12:&:num\n"
      "  30:num <- subtract 21:num/alloc2, 20:num/alloc1\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      // 5 locations for array contents + array length + alloc id
      "mem: storing 7 in location 30\n"
  );
}

void test_new_empty_array() {
  run(
      "def main [\n"
      "  10:&:@:num <- new num:type, 0\n"
      "  12:&:num <- new num:type\n"
      "  20:num/alloc1, 21:num/alloc2 <- deaddress 10:&:@:num, 12:&:num\n"
      "  30:num <- subtract 21:num/alloc2, 20:num/alloc1\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "run: {10: (\"address\" \"array\" \"number\")} <- new {num: \"type\"}, {0: \"literal\"}\n"
      "mem: array length is 0\n"
      // one location for array length and one for alloc id
      "mem: storing 2 in location 30\n"
  );
}

//: If a routine runs out of its initial allocation, it should allocate more.
void test_new_overflow() {
  Initial_memory_per_routine = 3;  // barely enough room for point allocation below
  run(
      "def main [\n"
      "  10:&:num <- new num:type\n"
      "  12:&:point <- new point:type\n"  // not enough room in initial page
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "new: routine allocated memory from 1000 to 1003\n"
      "new: routine allocated memory from 1003 to 1006\n"
  );
}

void test_new_without_ingredient() {
  Hide_errors = true;
  run(
      "def main [\n"
      "  1:&:num <- new\n"  // missing ingredient
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: main: 'new' requires one or two ingredients, but got '1:&:num <- new'\n"
  );
}

//: a little helper: convert address to number

:(before "End Primitive Recipe Declarations")
DEADDRESS,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "deaddress", DEADDRESS);
:(before "End Primitive Recipe Checks")
case DEADDRESS: {
  // primary goal of these checks is to forbid address arithmetic
  for (int i = 0;  i < SIZE(inst.ingredients);  ++i) {
    if (!is_mu_address(inst.ingredients.at(i))) {
      raise << maybe(get(Recipe, r).name) << "'deaddress' requires address ingredients, but got '" << inst.ingredients.at(i).original_string << "'\n" << end();
      goto finish_checking_instruction;
    }
  }
  if (SIZE(inst.products) > SIZE(inst.ingredients)) {
    raise << maybe(get(Recipe, r).name) << "too many products in '" << to_original_string(inst) << "'\n" << end();
    break;
  }
  for (int i = 0;  i < SIZE(inst.products);  ++i) {
    if (!is_real_mu_number(inst.products.at(i))) {
      raise << maybe(get(Recipe, r).name) << "'deaddress' requires number products, but got '" << inst.products.at(i).original_string << "'\n" << end();
      goto finish_checking_instruction;
    }
  }
  break;
}
:(before "End Primitive Recipe Implementations")
case DEADDRESS: {
  products.resize(SIZE(ingredients));
  for (int i = 0;  i < SIZE(ingredients);  ++i) {
    products.at(i).push_back(ingredients.at(i).at(/*skip alloc id*/1));
  }
  break;
}