about summary refs log tree commit diff stats
path: root/003trace.test.cc
blob: 67b4c345046d0dee004cbd290aef07737dd950e3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
void test_trace_check_compares() {
  trace("test layer") << "foo" << end();
  CHECK_TRACE_CONTENTS("test layer: foo");
}

void test_trace_check_ignores_other_layers() {
  trace("test layer 1") << "foo" << end();
  trace("test layer 2") << "bar" << end();
  CHECK_TRACE_CONTENTS("test layer 1: foo");
  CHECK_TRACE_DOESNT_CONTAIN("test layer 2: foo");
}

void test_trace_check_ignores_leading_whitespace() {
  trace("test layer 1") << " foo" << end();
  CHECK_EQ(trace_count("test layer 1", /*too little whitespace*/"foo"), 1);
  CHECK_EQ(trace_count("test layer 1", /*too much whitespace*/"  foo"), 1);
}

void test_trace_check_ignores_other_lines() {
  trace("test layer 1") << "foo" << end();
  trace("test layer 1") << "bar" << end();
  CHECK_TRACE_CONTENTS("test layer 1: foo");
}

void test_trace_check_ignores_other_lines2() {
  trace("test layer 1") << "foo" << end();
  trace("test layer 1") << "bar" << end();
  CHECK_TRACE_CONTENTS("test layer 1: bar");
}

void test_trace_ignores_trailing_whitespace() {
  trace("test layer 1") << "foo\n" << end();
  CHECK_TRACE_CONTENTS("test layer 1: foo");
}

void test_trace_ignores_trailing_whitespace2() {
  trace("test layer 1") << "foo " << end();
  CHECK_TRACE_CONTENTS("test layer 1: foo");
}

void test_trace_orders_across_layers() {
  trace("test layer 1") << "foo" << end();
  trace("test layer 2") << "bar" << end();
  trace("test layer 1") << "qux" << end();
  CHECK_TRACE_CONTENTS("test layer 1: footest layer 2: bartest layer 1: qux");
}

void test_trace_supports_count() {
  trace("test layer 1") << "foo" << end();
  trace("test layer 1") << "foo" << end();
  CHECK_EQ(trace_count("test layer 1", "foo"), 2);
}

void test_trace_supports_count2() {
  trace("test layer 1") << "foo" << end();
  trace("test layer 1") << "bar" << end();
  CHECK_EQ(trace_count("test layer 1"), 2);
}

void test_trace_count_ignores_trailing_whitespace() {
  trace("test layer 1") << "foo\n" << end();
  CHECK_EQ(trace_count("test layer 1", "foo"), 1);
}

// pending: DUMP tests
// pending: readable_contents() adds newline if necessary.
// pending: raise also prints to stderr.
// pending: raise doesn't print to stderr if Hide_errors is set.
// pending: raise doesn't have to be saved if Hide_errors is set, just printed.
// pending: raise prints to stderr if Trace_stream is NULL.
// pending: raise prints to stderr if Trace_stream is NULL even if Hide_errors is set.

// can't check trace because trace methods call 'split'

void test_split_returns_at_least_one_elem() {
  vector<string> result = split("", ",");
  CHECK_EQ(result.size(), 1);
  CHECK_EQ(result.at(0), "");
}

void test_split_returns_entire_input_when_no_delim() {
  vector<string> result = split("abc", ",");
  CHECK_EQ(result.size(), 1);
  CHECK_EQ(result.at(0), "abc");
}

void test_split_works() {
  vector<string> result = split("abc,def", ",");
  CHECK_EQ(result.size(), 2);
  CHECK_EQ(result.at(0), "abc");
  CHECK_EQ(result.at(1), "def");
}

void test_split_works2() {
  vector<string> result = split("abc,def,ghi", ",");
  CHECK_EQ(result.size(), 3);
  CHECK_EQ(result.at(0), "abc");
  CHECK_EQ(result.at(1), "def");
  CHECK_EQ(result.at(2), "ghi");
}

void test_split_handles_multichar_delim() {
  vector<string> result = split("abc,,def,,ghi", ",,");
  CHECK_EQ(result.size(), 3);
  CHECK_EQ(result.at(0), "abc");
  CHECK_EQ(result.at(1), "def");
  CHECK_EQ(result.at(2), "ghi");
}

void test_trim() {
  CHECK_EQ(trim(""), "");
  CHECK_EQ(trim(" "), "");
  CHECK_EQ(trim("  "), "");
  CHECK_EQ(trim("a"), "a");
  CHECK_EQ(trim(" a"), "a");
  CHECK_EQ(trim("  a"), "a");
  CHECK_EQ(trim("  ab"), "ab");
  CHECK_EQ(trim("a "), "a");
  CHECK_EQ(trim("a  "), "a");
  CHECK_EQ(trim("ab  "), "ab");
  CHECK_EQ(trim(" a "), "a");
  CHECK_EQ(trim("  a  "), "a");
  CHECK_EQ(trim("  ab  "), "ab");
}
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
//:: Like container definitions, recipes too can contain type parameters.

:(scenario shape_shifting_recipe)
def main [
  10:point <- merge 14, 15
  11:point <- foo 10:point
]
# non-matching variant
def foo a:num -> result:num [
  local-scope
  load-ingredients
  result <- copy 34
]
# matching shape-shifting variant
def foo a:_t -> result:_t [
  local-scope
  load-ingredients
  result <- copy a
]
+mem: storing 14 in location 11
+mem: storing 15 in location 12

//: Before anything else, disable transforms for shape-shifting recipes and
//: make sure we never try to actually run a shape-shifting recipe. We should
//: be rewriting such instructions to *specializations* with the type
//: ingredients filled in.

//: One exception (and this makes things very ugly): we need to expand type
//: abbreviations in shape-shifting recipes because we need them types for
//: deciding which variant to specialize.

:(before "End Transform Checks")
r.transformed_until = t;
if (Transform.at(t) != static_cast<transform_fn>(expand_type_abbreviations) && any_type_ingredient_in_header(/*recipe_ordinal*/p->first)) continue;

:(after "Running One Instruction")
if (Current_routine->calls.front().running_step_index == 0
    && any_type_ingredient_in_header(Current_routine->calls.front().running_recipe)) {
//?   DUMP("");
  raise << "ran into unspecialized shape-shifting recipe " << current_recipe_name() << '\n' << end();
//?   exit(0);
}

//: Make sure we don't match up literals with type ingredients without
//: specialization.
:(before "End Matching Types For Literal(to)")
if (contains_type_ingredient_name(to)) return false;

:(after "Static Dispatch Phase 3")
candidates = strictly_matching_shape_shifting_variants(inst, variants);
if (!candidates.empty()) {
  recipe_ordinal exemplar = best_shape_shifting_variant(inst, candidates);
  trace(9992, "transform") << "found variant to specialize: " << exemplar << ' ' << get(Recipe, exemplar).name << end();
  recipe_ordinal new_recipe_ordinal = new_variant(exemplar, inst, caller_recipe);
  if (new_recipe_ordinal == 0) goto skip_shape_shifting_variants;
  variants.push_back(new_recipe_ordinal);  // side-effect
  recipe& variant = get(Recipe, new_recipe_ordinal);
  // perform all transforms on the new specialization
  if (!variant.steps.empty()) {
    trace(9992, "transform") << "transforming new specialization: " << variant.name << end();
    for (int t = 0;  t < SIZE(Transform);  ++t) {
      // one exception: skip tangle, which would have already occurred inside new_variant above
      if (Transform.at(t) == /*disambiguate overloading*/static_cast<transform_fn>(insert_fragments))
        continue;
      (*Transform.at(t))(new_recipe_ordinal);
    }
  }
  variant.transformed_until = SIZE(Transform)-1;
  trace(9992, "transform") << "new specialization: " << variant.name << end();
  return variant.name;
}
skip_shape_shifting_variants:;

//: before running Mu programs, make sure no unspecialized shape-shifting
//: recipes can be called

:(before "End Instruction Operation Checks")
if (contains_key(Recipe, inst.operation) && inst.operation >= MAX_PRIMITIVE_RECIPES
    && any_type_ingredient_in_header(inst.operation)) {
  raise << maybe(caller.name) << "instruction '" << inst.name << "' has no valid specialization\n" << end();
  return;
}

:(replace{} "Match Literal Zero Against Address")
if (is_literal(from) && is_mu_address(to))
  return from.name == "0" && !contains_type_ingredient_name(to);

:(code)
// phase 3 of static dispatch
vector<recipe_ordinal> strictly_matching_shape_shifting_variants(const instruction& inst, vector<recipe_ordinal>& variants) {
  vector<recipe_ordinal> result;
  for (int i = 0;  i < SIZE(variants);  ++i) {
    if (variants.at(i) == -1) continue;
    if (!any_type_ingredient_in_header(variants.at(i))) continue;
    if (!all_concrete_header_reagents_strictly_match(inst, get(Recipe, variants.at(i)))) continue;
    result.push_back(variants.at(i));
  }
  return result;
}

bool all_concrete_header_reagents_strictly_match(const instruction& inst, const recipe& variant) {
  for (int i = 0;  i < min(SIZE(inst.ingredients), SIZE(variant.ingredients));  ++i) {
    if (!concrete_type_names_strictly_match(variant.ingredients.at(i), inst.ingredients.at(i))) {
      trace(9993, "transform") << "concrete-type match failed: ingredient " << i << end();
      return false;
    }
  }
  for (int i = 0;  i < min(SIZE(inst.products), SIZE(variant.ingredients));  ++i) {
    if (is_dummy(inst.products.at(i))) continue;
    if (!concrete_type_names_strictly_match(variant.products.at(i), inst.products.at(i))) {
      trace(9993, "transform") << "concrete-type match failed: product " << i << end();
      return false;
    }
  }
  return true;
}

// tie-breaker for phase 3
recipe_ordinal best_shape_shifting_variant(const instruction& inst, vector<recipe_ordinal>& candidates) {
  assert(!candidates.empty());
  // primary score
  int max_score = -1;
  for (int i = 0;  i < SIZE(candidates);  ++i) {
    int score = number_of_concrete_type_names(candidates.at(i));
    assert(score > -1);
    if (score > max_score) max_score = score;
  }
  // break any ties at max_score by a secondary score
  int min_score2 = 999;
  int best_index = 0;
  for (int i = 0;  i < SIZE(candidates);  ++i) {
    int score1 = number_of_concrete_type_names(candidates.at(i));
    assert(score1 <= max_score);
    if (score1 != max_score) continue;
    const recipe& candidate = get(Recipe, candidates.at(i));
    int score2 = (SIZE(candidate.products)-SIZE(inst.products))
                           + (SIZE(inst.ingredients)-SIZE(candidate.ingredients));
    assert(score2 < 999);
    if (score2 < min_score2) {
      min_score2 = score2;
      best_index = i;
    }
  }
  return candidates.at(best_index);
}

bool any_type_ingredient_in_header(recipe_ordinal variant) {
  const recipe& caller = get(Recipe, variant);
  for (int i = 0;  i < SIZE(caller.ingredients);  ++i) {
    if (contains_type_ingredient_name(caller.ingredients.at(i)))
      return true;
  }
  for (int i = 0;  i < SIZE(caller.products);  ++i) {
    if (contains_type_ingredient_name(caller.products.at(i)))
      return true;
  }
  return false;
}

bool concrete_type_names_strictly_match(reagent/*copy*/ to, reagent/*copy*/ from) {
  canonize_type(to);
  canonize_type(from);
  return concrete_type_names_strictly_match(to.type, from.type, from);
}

bool concrete_type_names_strictly_match(const type_tree* to, const type_tree* from, const reagent& rhs_reagent) {
  if (!to) return !from;
  if (!from) return !to;
  if (to->atom && is_type_ingredient_name(to->name)) return true;  // type ingredient matches anything
  if (!to->atom && to->right == NULL && to->left != NULL && to->left->atom && is_type_ingredient_name(to->left->name)) return true;
  if (from->atom && is_mu_address(to))
    return from->name == "literal" && rhs_reagent.name == "0";
  if (!from->atom && !to->atom)
    return concrete_type_names_strictly_match(to->left, from->left, rhs_reagent)
        && concrete_type_names_strictly_match(to->right, from->right, rhs_reagent);
  if (from->atom != to->atom) return false;
  // both from and to are atoms
  if (from->name == "literal")
    return Literal_type_names.find(to->name) != Literal_type_names.end();
  if (to->name == "literal")
    return Literal_type_names.find(from->name) != Literal_type_names.end();
  return to->name == from->name;
}

bool contains_type_ingredient_name(const reagent& x) {
  return contains_type_ingredient_name(x.type);
}

bool contains_type_ingredient_name(const type_tree* type) {
  if (!type) return false;
  if (is_type_ingredient_name(type->name)) return true;
  return contains_type_ingredient_name(type->left) || contains_type_ingredient_name(type->right);
}

int number_of_concrete_type_names(recipe_ordinal r) {
  const recipe& caller = get(Recipe, r);
  int result = 0;
  for (int i = 0;  i < SIZE(caller.ingredients);  ++i)
    result += number_of_concrete_type_names(caller.ingredients.at(i));
  for (int i = 0;  i < SIZE(caller.products);  ++i)
    result += number_of_concrete_type_names(caller.products.at(i));
  return result;
}

int number_of_concrete_type_names(const reagent& r) {
  return number_of_concrete_type_names(r.type);
}

int number_of_concrete_type_names(const type_tree* type) {
  if (!type) return 0;
  if (type->atom)
    return is_type_ingredient_name(type->name) ? 0 : 1;
  return number_of_concrete_type_names(type->left)
       + number_of_concrete_type_names(type->right);
}

recipe_ordinal new_variant(recipe_ordinal exemplar, const instruction& inst, const recipe& caller_recipe) {
  string new_name = next_unused_recipe_name(inst.name);
  assert(!contains_key(Recipe_ordinal, new_name));
  recipe_ordinal new_recipe_ordinal = put(Recipe_ordinal, new_name, Next_recipe_ordinal++);
  // make a copy
  assert(contains_key(Recipe, exemplar));
  assert(!contains_key(Recipe, new_recipe_ordinal));
  recipe new_recipe = get(Recipe, exemplar);
  new_recipe.name = new_name;
  new_recipe.is_autogenerated = true;
  trace(9993, "transform") << "switching " << inst.name << " to specialized " << header_label(new_recipe) << end();

  // Replace type ingredients with concrete types in new_recipe.
  //
  // preprocessing: micro-manage a couple of transforms
  // a) perform tangle *before* replacing type ingredients, just in case
  // inserted code involves type ingredients
  insert_fragments(new_recipe);
  // b) do the work of check_or_set_types_by_name (and its prerequisites)
  // while supporting type-ingredients
  expand_type_abbreviations(new_recipe);
  compute_type_names(new_recipe);
  // that gives enough information to replace type-ingredients with concrete types
  {
    map<string, const type_tree*> mappings;
    bool error = false;
    compute_type_ingredient_mappings(get(Recipe, exemplar), inst, mappings, caller_recipe, &error);
    if (!error) error = (SIZE(mappings) != type_ingredient_count_in_header(exemplar));
    if (!error) replace_type_ingredients(new_recipe, mappings);
    for (map<string, const type_tree*>::iterator p = mappings.begin();  p != mappings.end();  ++p)
      delete p->second;
    if (error) return 0;
  }
  ensure_all_concrete_types(new_recipe, get(Recipe, exemplar));
  put(Recipe, new_recipe_ordinal, new_recipe);
  return new_recipe_ordinal;
}

void compute_type_names(recipe& variant) {
  trace(9993, "transform") << "-- compute type names: " << variant.name << end();
  map<string, type_tree*> type_names;
  for (int i = 0;  i < SIZE(variant.ingredients);  ++i)
    save_or_deduce_type_name(variant.ingredients.at(i), type_names, variant, "");
  for (int i = 0;  i < SIZE(variant.products);  ++i)
    save_or_deduce_type_name(variant.products.at(i), type_names, variant, "");
  for (int i = 0;  i < SIZE(variant.steps);  ++i) {
    instruction& inst = variant.steps.at(i);
    trace(9993, "transform") << "  instruction: " << to_string(inst) << end();
    for (int in = 0;  in < SIZE(inst.ingredients);  ++in)
      save_or_deduce_type_name(inst.ingredients.at(in), type_names, variant, " in '" + to_original_string(inst) + "'");
    for (int out = 0;  out < SIZE(inst.products);  ++out)
      save_or_deduce_type_name(inst.products.at(out), type_names, variant, " in '" + to_original_string(inst) + "'");
  }
}

void save_or_deduce_type_name(reagent& x, map<string, type_tree*>& type, const recipe& variant, const string& context) {
  trace(9994, "transform") << "    checking " << to_string(x) << ": " << names_to_string(x.type) << end();
  if (!x.type && contains_key(type, x.name)) {
    x.type = new type_tree(*get(type, x.name));
    trace(9994, "transform") << "    deducing type to " << names_to_string(x.type) << end();
    return;
  }
  if (!x.type) {
    raise << maybe(variant.original_name) << "unknown type for '" << x.original_string << "'" << context << " (check the name for typos)\n" << end();
    return;
  }
  if (contains_key(type, x.name)) return;
  if (x.type->name == "offset" || x.type->name == "variant") return;  // special-case for container-access instructions
  put(type, x.name, x.type);
  trace(9993, "transform") << "type of '" << x.name << "' is " << names_to_string(x.type) << end();
}

void compute_type_ingredient_mappings(const recipe& exemplar, const instruction& inst, map<string, const type_tree*>& mappings, const recipe& caller_recipe, bool* error) {
  int limit = min(SIZE(inst.ingredients), SIZE(exemplar.ingredients));
  for (int i = 0;  i < limit;  ++i) {
    const reagent& exemplar_reagent = exemplar.ingredients.at(i);
    reagent/*copy*/ ingredient = inst.ingredients.at(i);
    canonize_type(ingredient);
    if (is_mu_address(exemplar_reagent) && ingredient.name == "0") continue;  // assume it matches
    accumulate_type_ingredients(exemplar_reagent, ingredient, mappings, exemplar, inst, caller_recipe, error);
  }
  limit = min(SIZE(inst.products), SIZE(exemplar.products));
  for (int i = 0;  i < limit;  ++i) {
    const reagent& exemplar_reagent = exemplar.products.at(i);
    reagent/*copy*/ product = inst.products.at(i);
    if (is_dummy(product)) continue;
    canonize_type(product);
    accumulate_type_ingredients(exemplar_reagent, product, mappings, exemplar, inst, caller_recipe, error);
  }
}

void accumulate_type_ingredients(const reagent& exemplar_reagent, reagent& refinement, map<string, const type_tree*>& mappings, const recipe& exemplar, const instruction& call_instruction, const recipe& caller_recipe, bool* error) {
  assert(refinement.type);
  accumulate_type_ingredients(exemplar_reagent.type, refinement.type, mappings, exemplar, exemplar_reagent, call_instruction, caller_recipe, error);
}

void accumulate_type_ingredients(const type_tree* exemplar_type, const type_tree* refinement_type, map<string, const type_tree*>& mappings, const recipe& exemplar, const reagent& exemplar_reagent, const instruction& call_instruction, const recipe& caller_recipe, bool* error) {
  if (!exemplar_type) return;
  if (!refinement_type) {
    // probably a bug in mu
    // todo: make this smarter; only flag an error if exemplar_type contains some *new* type ingredient
    raise << maybe(exemplar.name) << "missing type ingredient for " << exemplar_reagent.original_string << '\n' << end();
    raise << "  (called from '" << to_original_string(call_instruction) << "')\n" << end();
    return;
  }
  if (!exemplar_type->atom && exemplar_type->right == NULL && !refinement_type->atom && refinement_type->right != NULL) {
    exemplar_type = exemplar_type->left;
    assert_for_now(exemplar_type->atom);
  }
  if (exemplar_type->atom) {
    if (is_type_ingredient_name(exemplar_type->name)) {
      const type_tree* curr_refinement_type = NULL;  // temporary heap allocation; must always be deleted before it goes out of scope
      if (exemplar_type->atom)
        curr_refinement_type = new type_tree(*refinement_type);
      else {
        assert(!refinement_type->atom);
        curr_refinement_type = new type_tree(*refinement_type->left);
      }
      if (!contains_key(mappings, exemplar_type->name)) {
        trace(9993, "transform") << "adding mapping from " << exemplar_type->name << " to " << to_string(curr_refinement_type) << end();
        put(mappings, exemplar_type->name, new type_tree(*curr_refinement_type));
      }
      else {
        if (!deeply_equal_type_names(get(mappings, exemplar_type->name), curr_refinement_type)) {
          raise << maybe(caller_recipe.name) << "no call found for '" << to_original_string(call_instruction) << "'\n" << end();
          *error = true;
          delete curr_refinement_type;
          return;
        }
        if (get(mappings, exemplar_type->name)->name == "literal") {
          delete get(mappings, exemplar_type->name);
          put(mappings, exemplar_type->name, new type_tree(*curr_refinement_type));
        }
      }
      delete curr_refinement_type;
    }
  }
  else {
    accumulate_type_ingredients(exemplar_type->left, refinement_type->left, mappings, exemplar, exemplar_reagent, call_instruction, caller_recipe, error);
    accumulate_type_ingredients(exemplar_type->right, refinement_type->right, mappings, exemplar, exemplar_reagent, call_instruction, caller_recipe, error);
  }
}

void replace_type_ingredients(recipe& new_recipe, const map<string, const type_tree*>& mappings) {
  // update its header
  if (mappings.empty()) return;
  trace(9993, "transform") << "replacing in recipe header ingredients" << end();
  for (int i = 0;  i < SIZE(new_recipe.ingredients);  ++i)
    replace_type_ingredients(new_recipe.ingredients.at(i), mappings, new_recipe);
  trace(9993, "transform") << "replacing in recipe header products" << end();
  for (int i = 0;  i < SIZE(new_recipe.products);  ++i)
    replace_type_ingredients(new_recipe.products.at(i), mappings, new_recipe);
  // update its body
  for (int i = 0;  i < SIZE(new_recipe.steps);  ++i) {
    instruction& inst = new_recipe.steps.at(i);
    trace(9993, "transform") << "replacing in instruction '" << to_string(inst) << "'" << end();
    for (int j = 0;  j < SIZE(inst.ingredients);  ++j)
      replace_type_ingredients(inst.ingredients.at(j), mappings, new_recipe);
    for (int j = 0;  j < SIZE(inst.products);  ++j)
      replace_type_ingredients(inst.products.at(j), mappings, new_recipe);
    // special-case for new: replace type ingredient in first ingredient *value*
    if (inst.name == "new" && inst.ingredients.at(0).type->name != "literal-string") {
      type_tree* type = parse_type_tree(inst.ingredients.at(0).name);
      replace_type_ingredients(type, mappings);
      inst.ingredients.at(0).name = inspect(type);
      delete type;
    }
  }
}

void replace_type_ingredients(reagent& x, const map<string, const type_tree*>& mappings, const recipe& caller) {
  string before = to_string(x);
  trace(9993, "transform") << "replacing in ingredient " << x.original_string << end();
  if (!x.type) {
    raise << "specializing " << caller.original_name << ": missing type for '" << x.original_string << "'\n" << end();
    return;
  }
  replace_type_ingredients(x.type, mappings);
}

void replace_type_ingredients(type_tree* type, const map<string, const type_tree*>& mappings) {
  if (!type) return;
  if (!type->atom) {
    if (type->right == NULL && type->left != NULL && type->left->atom && contains_key(mappings, type->left->name) && !get(mappings, type->left->name)->atom && get(mappings, type->left->name)->right != NULL) {
      *type = *get(mappings, type->left->name);
      return;
    }
    replace_type_ingredients(type->left, mappings);
    replace_type_ingredients(type->right, mappings);
    return;
  }
  if (contains_key(Type_ordinal, type->name))  // todo: ugly side effect
    type->value = get(Type_ordinal, type->name);
  if (!contains_key(mappings, type->name))
    return;
  const type_tree* replacement = get(mappings, type->name);
  trace(9993, "transform") << type->name << " => " << names_to_string(replacement) << end();
  if (replacement->atom) {
    if (!contains_key(Type_ordinal, replacement->name)) {
      // error in program; should be reported elsewhere
      return;
    }
    type->name = (replacement->name == "literal") ? "number" : replacement->name;
    type->value = get(Type_ordinal, type->name);
  }
  else {
    *type = *replacement;
  }
}

int type_ingredient_count_in_header(recipe_ordinal variant) {
  const recipe& caller = get(Recipe, variant);
  set<string> type_ingredients;
  for (int i = 0;  i < SIZE(caller.ingredients);  ++i)
    accumulate_type_ingredients(caller.ingredients.at(i).type, type_ingredients);
  for (int i = 0;  i < SIZE(caller.products);  ++i)
    accumulate_type_ingredients(caller.products.at(i).type, type_ingredients);
  return SIZE(type_ingredients);
}

void accumulate_type_ingredients(const type_tree* type, set<string>& out) {
  if (!type) return;
  if (is_type_ingredient_name(type->name)) out.insert(type->name);
  accumulate_type_ingredients(type->left, out);
  accumulate_type_ingredients(type->right, out);
}

type_tree* parse_type_tree(const string& s) {
  string_tree* s2 = parse_string_tree(s);
  type_tree* result = new_type_tree(s2);
  delete s2;
  return result;
}

string inspect(const type_tree* x) {
  ostringstream out;
  dump_inspect(x, out);
  return out.str();
}

void dump_inspect(const type_tree* x, ostream& out) {
  if (!x->left && !x->right) {
    out << x->name;
    return;
  }
  out << '(';
  for (const type_tree* curr = x;  curr;  curr = curr->right) {
    if (curr != x) out << ' ';
    if (curr->left)
      dump_inspect(curr->left, out);
    else
      out << curr->name;
  }
  out << ')';
}

void ensure_all_concrete_types(/*const*/ recipe& new_recipe, const recipe& exemplar) {
  trace(9993, "transform") << "-- ensure all concrete types in recipe " << new_recipe.name << end();
  for (int i = 0;  i < SIZE(new_recipe.ingredients);  ++i)
    ensure_all_concrete_types(new_recipe.ingredients.at(i), exemplar);
  for (int i = 0;  i < SIZE(new_recipe.products);  ++i)
    ensure_all_concrete_types(new_recipe.products.at(i), exemplar);
  for (int i = 0;  i < SIZE(new_recipe.steps);  ++i) {
    instruction& inst = new_recipe.steps.at(i);
    for (int j = 0;  j < SIZE(inst.ingredients);  ++j)
      ensure_all_concrete_types(inst.ingredients.at(j), exemplar);
    for (int j = 0;  j < SIZE(inst.products);  ++j)
      ensure_all_concrete_types(inst.products.at(j), exemplar);
  }
}

void ensure_all_concrete_types(/*const*/ reagent& x, const recipe& exemplar) {
  if (!x.type || contains_type_ingredient_name(x.type)) {
    raise << maybe(exemplar.name) << "failed to map a type to " << x.original_string << '\n' << end();
    if (!x.type) x.type = new type_tree("", 0);  // just to prevent crashes later
    return;
  }
  if (x.type->value == -1) {
    raise << maybe(exemplar.name) << "failed to map a type to the unknown " << x.original_string << '\n' << end();
    return;
  }
}

:(scenario shape_shifting_recipe_2)
def main [
  10:point <- merge 14, 15
  11:point <- foo 10:point
]
# non-matching shape-shifting variant
def foo a:_t, b:_t -> result:num [
  local-scope
  load-ingredients
  result <- copy 34
]
# matching shape-shifting variant
def foo a:_t -> result:_t [
  local-scope
  load-ingredients
  result <- copy a
]
+mem: storing 14 in location 11
+mem: storing 15 in location 12

:(scenario shape_shifting_recipe_nonroot)
def main [
  10:foo:point <- merge 14, 15, 16
  20:point/raw <- bar 10:foo:point
]
# shape-shifting recipe with type ingredient following some other type
def bar a:foo:_t -> result:_t [
  local-scope
  load-ingredients
  result <- get a, x:offset
]
container foo:_t [
  x:_t
  y:num
]
+mem: storing 14 in location 20
+mem: storing 15 in location 21

:(scenario shape_shifting_recipe_nested)
container c:_a:_b [
  a:_a
  b:_b
]
def main [
  s:text <- new [abc]
  {x: (c (address array character) number)} <- merge s, 34
  foo x
]
def foo x:c:_bar:_baz [
  local-scope
  load-ingredients
]
# no errors

:(scenario shape_shifting_recipe_type_deduction_ignores_offsets)
def main [
  10:foo:point <- merge 14, 15, 16
  20:point/raw <- bar 10:foo:point
]
def bar a:foo:_t -> result:_t [
  local-scope
  load-ingredients
  x:num <- copy 1
  result <- get a, x:offset  # shouldn't collide with other variable
]
container foo:_t [
  x:_t
  y:num
]
+mem: storing 14 in location 20
+mem: storing 15 in location 21

:(scenario shape_shifting_recipe_empty)
def main [
  foo 1
]
# shape-shifting recipe with no body
def foo a:_t [
]
# shouldn't crash

:(scenario shape_shifting_recipe_handles_shape_shifting_new_ingredient)
def main [
  1:&:foo:point <- bar 3
  11:foo:point <- copy *1:&:foo:point
]
container foo:_t [
  x:_t
  y:num
]
def bar x:num -> result:&:foo:_t [
  local-scope
  load-ingredients
  # new refers to _t in its ingredient *value*
  result <- new {(foo _t) : type}
]
+mem: storing 0 in location 11
+mem: storing 0 in location 12
+mem: storing 0 in location 13

:(scenario shape_shifting_recipe_handles_shape_shifting_new_ingredient_2)
def main [
  1:&:foo:point <- bar 3
  11:foo:point <- copy *1:&:foo:point
]
def bar x:num -> result:&:foo:_t [
  local-scope
  load-ingredients
  # new refers to _t in its ingredient *value*
  result <- new {(foo _t) : type}
]
# container defined after use
container foo:_t [
  x:_t
  y:num
]
+mem: storing 0 in location 11
+mem: storing 0 in location 12
+mem: storing 0 in location 13

:(scenario shape_shifting_recipe_called_with_dummy)
def main [
  _ <- bar 34
]
def bar x:_t -> result:&:_t [
  local-scope
  load-ingredients
  result <- copy 0
]
$error: 0

:(code)
// this one needs a little more fine-grained control
void test_shape_shifting_new_ingredient_does_not_pollute_global_namespace() {
  // if you specialize a shape-shifting recipe that allocates a type-ingredient..
  transform("def barz x:_elem [\n"
            "  local-scope\n"
            "  load-ingredients\n"
            "  y:&:num <- new _elem:type\n"
            "]\n"
            "def fooz [\n"
            "  local-scope\n"
            "  barz 34\n"
            "]\n");
  // ..and if you then try to load a new shape-shifting container with that
  // type-ingredient
  run("container foo:_elem [\n"
      "  x:_elem\n"
      "  y:num\n"
      "]\n");
  // then it should work as usual
  reagent callsite("x:foo:point");
  reagent element = element_type(callsite.type, 0);
  CHECK_EQ(element.name, "x");
  CHECK_EQ(element.type->name, "point");
  CHECK(!element.type->right);
}

//: specializing a type ingredient with a compound type
:(scenario shape_shifting_recipe_supports_compound_types)
def main [
  1:&:point <- new point:type
  *1:&:point <- put *1:&:point, y:offset, 34
  3:&:point <- bar 1:&:point  # specialize _t to address:point
  4:point <- copy *3:&:point
]
def bar a:_t -> result:_t [
  local-scope
  load-ingredients
  result <- copy a
]
+mem: storing 34 in location 5

//: specializing a type ingredient with a compound type -- while *inside* another compound type
:(scenario shape_shifting_recipe_supports_compound_types_2)
container foo:_t [
  value:_t
]
def bar x:&:foo:_t -> result:_t [
  local-scope
  load-ingredients
  result <- get *x, value:offset
]
def main [
  1:&:foo:&:point <- new {(foo address point): type}
  2:&:point <- bar 1:&:foo:&:point
]
# no errors; call to 'bar' successfully specialized

:(scenario shape_shifting_recipe_error)
% Hide_errors = true;
def main [
  a:num <- copy 3
  b:&:num <- foo a
]
def foo a:_t -> b:_t [
  load-ingredients
  b <- copy a
]
+error: main: no call found for 'b:&:num <- foo a'

:(scenario specialize_inside_recipe_without_header)
def main [
  foo 3
]
def foo [
  local-scope
  x:num <- next-ingredient  # ensure no header
  1:num/raw <- bar x  # call a shape-shifting recipe
]
def bar x:_elem -> y:_elem [
  local-scope
  load-ingredients
  y <- add x, 1
]
+mem: storing 4 in location 1

:(scenario specialize_with_literal)
def main [
  local-scope
  # permit literal to map to number
  1:num/raw <- foo 3
]
def foo x:_elem -> y:_elem [
  local-scope
  load-ingredients
  y <- add x, 1
]
+mem: storing 4 in location 1

:(scenario specialize_with_literal_2)
def main [
  local-scope
  # permit literal to map to character
  1:char/raw <- foo 3
]
def foo x:_elem -> y:_elem [
  local-scope
  load-ingredients
  y <- add x, 1
]
+mem: storing 4 in location 1

:(scenario specialize_with_literal_3)
def main [
  local-scope
  # permit '0' to map to address to shape-shifting type-ingredient
  1:&:char/raw <- foo 0
]
def foo x:&:_elem -> y:&:_elem [
  local-scope
  load-ingredients
  y <- copy x
]
+mem: storing 0 in location 1
$error: 0

:(scenario specialize_with_literal_4)
% Hide_errors = true;
def main [
  local-scope
  # ambiguous call: what's the type of its ingredient?!
  foo 0
]
def foo x:&:_elem -> y:&:_elem [
  local-scope
  load-ingredients
  y <- copy x
]
+error: main: instruction 'foo' has no valid specialization

:(scenario specialize_with_literal_5)
def main [
  foo 3, 4  # recipe mapping two variables to literals
]
def foo x:_elem, y:_elem [
  local-scope
  load-ingredients
  1:num/raw <- add x, y
]
+mem: storing 7 in location 1

:(scenario multiple_shape_shifting_variants)
# try to call two different shape-shifting recipes with the same name
def main [
  e1:d1:num <- merge 3
  e2:d2:num <- merge 4, 5
  1:num/raw <- foo e1
  2:num/raw <- foo e2
]
# the two shape-shifting definitions
def foo a:d1:_elem -> b:num [
  local-scope
  load-ingredients
  return 34
]
def foo a:d2:_elem -> b:num [
  local-scope
  load-ingredients
  return 35
]
# the shape-shifting containers they use
container d1:_elem [
  x:_elem
]
container d2:_elem [
  x:num
  y:_elem
]
+mem: storing 34 in location 1
+mem: storing 35 in location 2

:(scenario multiple_shape_shifting_variants_2)
# static dispatch between shape-shifting variants, _including pointer lookups_
def main [
  e1:d1:num <- merge 3
  e2:&:d2:num <- new {(d2 number): type}
  1:num/raw <- foo e1
  2:num/raw <- foo *e2  # different from previous scenario
]
def foo a:d1:_elem -> b:num [
  local-scope
  load-ingredients
  return 34
]
def foo a:d2:_elem -> b:num [
  local-scope
  load-ingredients
  return 35
]
container d1:_elem [
  x:_elem
]
container d2:_elem [
  x:num
  y:_elem
]
+mem: storing 34 in location 1
+mem: storing 35 in location 2

:(scenario missing_type_in_shape_shifting_recipe)
% Hide_errors = true;
def main [
  a:d1:num <- merge 3
  foo a
]
def foo a:d1:_elem -> b:num [
  local-scope
  load-ingredients
  copy e  # no such variable
  return 34
]
container d1:_elem [
  x:_elem
]
+error: foo: unknown type for 'e' in 'copy e' (check the name for typos)
+error: specializing foo: missing type for 'e'
# and it doesn't crash

:(scenario missing_type_in_shape_shifting_recipe_2)
% Hide_errors = true;
def main [
  a:d1:num <- merge 3
  foo a
]
def foo a:d1:_elem -> b:num [
  local-scope
  load-ingredients
  get e, x:offset  # unknown variable in a 'get', which does some extra checking
  return 34
]
container d1:_elem [
  x:_elem
]
+error: foo: unknown type for 'e' in 'get e, x:offset' (check the name for typos)
+error: specializing foo: missing type for 'e'
# and it doesn't crash

:(scenarios transform)
:(scenario specialize_recursive_shape_shifting_recipe)
def main [
  1:num <- copy 34
  2:num <- foo 1:num
]
def foo x:_elem -> y:num [
  local-scope
  load-ingredients
  {
    break
    y:num <- foo x
  }
  return y
]
+transform: new specialization: foo_2
# transform terminates

:(scenarios run)
:(scenario specialize_most_similar_variant)
def main [
  1:&:num <- new number:type
  2:num <- foo 1:&:num
]
def foo x:_elem -> y:num [
  local-scope
  load-ingredients
  return 34
]
def foo x:&:_elem -> y:num [
  local-scope
  load-ingredients
  return 35
]
+mem: storing 35 in location 2

:(scenario specialize_most_similar_variant_2)
# version with headers padded with lots of unrelated concrete types
def main [
  1:num <- copy 23
  2:&:@:num <- copy 0
  3:num <- foo 2:&:@:num, 1:num
]
# variant with concrete type
def foo dummy:&:@:num, x:num -> y:num, dummy:&:@:num [
  local-scope
  load-ingredients
  return 34
]
# shape-shifting variant
def foo dummy:&:@:num, x:_elem -> y:num, dummy:&:@:num [
  local-scope
  load-ingredients
  return 35
]
# prefer the concrete variant
+mem: storing 34 in location 3

:(scenario specialize_most_similar_variant_3)
def main [
  1:text <- new [abc]
  foo 1:text
]
def foo x:text [
  2:num <- copy 34
]
def foo x:&:_elem [
  2:num <- copy 35
]
# make sure the more precise version was used
+mem: storing 34 in location 2

:(scenario specialize_literal_as_number)
def main [
  1:num <- foo 23
]
def foo x:_elem -> y:num [
  local-scope
  load-ingredients
  return 34
]
def foo x:char -> y:num [
  local-scope
  load-ingredients
  return 35
]
+mem: storing 34 in location 1

:(scenario specialize_literal_as_number_2)
# version calling with literal
def main [
  1:num <- foo 0
]
# variant with concrete type
def foo x:num -> y:num [
  local-scope
  load-ingredients
  return 34
]
# shape-shifting variant
def foo x:&:_elem -> y:num [
  local-scope
  load-ingredients
  return 35
]
# prefer the concrete variant, ignore concrete types in scoring the shape-shifting variant
+mem: storing 34 in location 1

:(scenario specialize_literal_as_address)
def main [
  1:num <- foo 0
]
# variant with concrete address type
def foo x:&:num -> y:num [
  local-scope
  load-ingredients
  return 34
]
# shape-shifting variant
def foo x:&:_elem -> y:num [
  local-scope
  load-ingredients
  return 35
]
# prefer the concrete variant, ignore concrete types in scoring the shape-shifting variant
+mem: storing 34 in location 1

:(scenario missing_type_during_specialization)
% Hide_errors = true;
# define a shape-shifting recipe
def foo a:_elem [
]
# define a container with field 'z'
container foo2 [
  z:num
]
def main [
  local-scope
  x:foo2 <- merge 34
  y:num <- get x, z:offse  # typo in 'offset'
  # define a variable with the same name 'z'
  z:num <- copy 34
  # trigger specialization of the shape-shifting recipe
  foo z
]
# shouldn't crash

:(scenario missing_type_during_specialization2)
% Hide_errors = true;
# define a shape-shifting recipe
def foo a:_elem [
]
# define a container with field 'z'
container foo2 [
  z:num
]
def main [
  local-scope
  x:foo2 <- merge 34
  y:num <- get x, z:offse  # typo in 'offset'
  # define a variable with the same name 'z'
  z:&:num <- copy 34
  # trigger specialization of the shape-shifting recipe
  foo *z
]
# shouldn't crash

:(scenario tangle_shape_shifting_recipe)
# shape-shifting recipe
def foo a:_elem [
  local-scope
  load-ingredients
  <label1>
]
# tangle some code that refers to the type ingredient
after <label1> [
  b:_elem <- copy a
]
# trigger specialization
def main [
  local-scope
  foo 34
]
$error: 0

:(scenario tangle_shape_shifting_recipe_with_type_abbreviation)
# shape-shifting recipe
def foo a:_elem [
  local-scope
  load-ingredients
  <label1>
]
# tangle some code that refers to the type ingredient
after <label1> [
  b:bool <- copy 0  # type abbreviation
]
# trigger specialization
def main [
  local-scope
  foo 34
]
$error: 0

:(scenario shape_shifting_recipe_coexists_with_primitive)
# recipe overloading a primitive with a generic type
def add a:&:foo:_elem [
  assert 0, [should not get here]
]
def main [
  # call primitive add with literal 0
  add 0, 0
]
$error: 0