1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
//: A program is a book of 'recipes' (functions)
:(before "End Globals")
//: Each recipe is stored at a specific page number, or ordinal.
map<recipe_ordinal, recipe> Recipe;
//: You can also refer to each recipe by its name.
map<string, recipe_ordinal> Recipe_ordinal;
recipe_ordinal Next_recipe_ordinal = 1;
//: Ordinals are like numbers, except you can't do arithmetic on them. Ordinal
//: 1 is not less than 2, it's just different. Phone numbers are ordinals;
//: adding two phone numbers is meaningless. Here each recipe does something
//: incommensurable with any other recipe.
:(after "Types")
typedef long long int recipe_ordinal;
:(before "End Types")
// Recipes are lists of instructions. To perform or 'run' a recipe, the
// computer runs its instructions.
struct recipe {
string name;
vector<instruction> steps;
// End recipe Fields
};
:(before "struct recipe")
// Each instruction is either of the form:
// product1, product2, product3, ... <- operation ingredient1, ingredient2, ingredient3, ...
// or just a single 'label' starting with a non-alphanumeric character
// +label
// Labels don't do anything, they're just waypoints.
struct instruction {
bool is_label;
string label; // only if is_label
string name; // only if !is_label
recipe_ordinal operation; // Recipe_ordinal[name]
vector<reagent> ingredients; // only if !is_label
vector<reagent> products; // only if !is_label
// End instruction Fields
instruction();
void clear();
string to_string() const;
};
:(before "struct instruction")
// Ingredients and products are a single species -- a reagent. Reagents refer
// either to numbers or to locations in memory along with 'type' tags telling
// us how to interpret them. They also can contain arbitrary other lists of
// properties besides types, but we're getting ahead of ourselves.
struct reagent {
string original_string;
vector<pair<string, vector<string> > > properties;
string name;
double value;
bool initialized;
vector<type_ordinal> types;
reagent(string s);
reagent();
void set_value(double v) { value = v; initialized = true; }
string to_string() const;
};
:(before "struct reagent")
struct property {
vector<string> values;
};
:(before "End Globals")
// Locations refer to a common 'memory'. Each location can store a number.
map<long long int, double> Memory;
:(before "End Setup")
Memory.clear();
:(after "Types")
// Mu types encode how the numbers stored in different parts of memory are
// interpreted. A location tagged as a 'character' type will interpret the
// number 97 as the letter 'a', while a different location of type 'number'
// would not.
//
// Unlike most computers today, mu stores types in a single big table, shared
// by all the mu programs on the computer. This is useful in providing a
// seamless experience to help understand arbitrary mu programs.
typedef long long int type_ordinal;
:(before "End Globals")
map<string, type_ordinal> Type_ordinal;
map<type_ordinal, type_info> Type;
type_ordinal Next_type_ordinal = 1;
:(code)
void setup_types() {
Type.clear(); Type_ordinal.clear();
Type_ordinal["literal"] = 0;
Next_type_ordinal = 1;
// Mu Types Initialization
type_ordinal number = Type_ordinal["number"] = Next_type_ordinal++;
Type_ordinal["location"] = Type_ordinal["number"]; // wildcard type: either a pointer or a scalar
Type[number].name = "number";
type_ordinal address = Type_ordinal["address"] = Next_type_ordinal++;
Type[address].name = "address";
type_ordinal boolean = Type_ordinal["boolean"] = Next_type_ordinal++;
Type[boolean].name = "boolean";
type_ordinal character = Type_ordinal["character"] = Next_type_ordinal++;
Type[character].name = "character";
// Array types are a special modifier to any other type. For example,
// array:number or array:address:boolean.
type_ordinal array = Type_ordinal["array"] = Next_type_ordinal++;
Type[array].name = "array";
// End Mu Types Initialization
}
:(before "End One-time Setup")
setup_types();
:(before "End Types")
// You can construct arbitrary new types. New types are either 'containers'
// with multiple 'elements' of other types, or 'exclusive containers' containing
// one of multiple 'variants'. (These are similar to C structs and unions,
// respectively, though exclusive containers implicitly include a tag element
// recording which variant they should be interpreted as.)
//
// For example, storing bank balance and name for an account might require a
// container, but if bank accounts may be either for individuals or groups,
// with different properties for each, that may require an exclusive container
// whose variants are individual-account and joint-account containers.
enum kind_of_type {
primitive,
container,
exclusive_container
};
struct type_info {
string name;
kind_of_type kind;
long long int size; // only if type is not primitive; primitives and addresses have size 1 (except arrays are dynamic)
vector<vector<type_ordinal> > elements;
vector<string> element_names;
// End type_info Fields
type_info() :kind(primitive), size(0) {}
};
enum primitive_recipes {
IDLE = 0,
COPY,
// End Primitive Recipe Declarations
MAX_PRIMITIVE_RECIPES,
};
:(code)
//: It's all very well to construct recipes out of other recipes, but we need
//: to know how to do *something* out of the box. For the following
//: recipes there are only codes, no entries in the book, because mu just knows
//: what to do for them.
void setup_recipes() {
Recipe.clear(); Recipe_ordinal.clear();
Recipe_ordinal["idle"] = IDLE;
// Primitive Recipe Numbers
Recipe_ordinal["copy"] = COPY;
// End Primitive Recipe Numbers
}
//: We could just reset the recipe table after every test, but that gets slow
//: all too quickly. Instead, initialize the common stuff just once at
//: startup. Later layers will carefully undo each test's additions after
//: itself.
:(before "End One-time Setup")
setup_recipes();
assert(MAX_PRIMITIVE_RECIPES < 200); // level 0 is primitives; until 199
Next_recipe_ordinal = 200;
Recipe_ordinal["main"] = Next_recipe_ordinal++;
// End Load Recipes
:(before "End Test Run Initialization")
assert(Next_recipe_ordinal < 1000); // recipes being tested didn't overflow into test space
:(before "End Setup")
Next_recipe_ordinal = 1000; // consistent new numbers for each test
//:: Helpers
:(code)
instruction::instruction() :is_label(false), operation(IDLE) {
// End instruction Constructor
}
void instruction::clear() { is_label=false; label.clear(); operation=IDLE; ingredients.clear(); products.clear(); }
// Reagents have the form <name>:<type>:<type>:.../<property>/<property>/...
reagent::reagent(string s) :original_string(s), value(0), initialized(false) {
// Parsing reagent(string s)
istringstream in(s);
in >> std::noskipws;
// properties
while (!in.eof()) {
istringstream row(slurp_until(in, '/'));
row >> std::noskipws;
string name = slurp_until(row, ':');
vector<string> values;
while (!row.eof())
values.push_back(slurp_until(row, ':'));
properties.push_back(pair<string, vector<string> >(name, values));
}
// structures for the first row of properties
name = properties.at(0).first;
for (long long int i = 0; i < SIZE(properties.at(0).second); ++i) {
string type = properties.at(0).second.at(i);
if (Type_ordinal.find(type) == Type_ordinal.end()
// types can contain integers, like for array sizes
&& !is_integer(type)) {
Type_ordinal[type] = Next_type_ordinal++;
}
types.push_back(Type_ordinal[type]);
}
if (is_integer(name) && types.empty()) {
types.push_back(0);
properties.at(0).second.push_back("literal");
}
if (name == "_" && types.empty()) {
types.push_back(0);
properties.at(0).second.push_back("dummy");
}
// End Parsing reagent
}
reagent::reagent() :value(0), initialized(false) {
// The first property is special, so ensure we always have it.
// Other properties can be pushed back, but the first must always be
// assigned to.
properties.push_back(pair<string, vector<string> >("", vector<string>()));
}
string reagent::to_string() const {
ostringstream out;
out << "{name: \"" << name << "\"";
if (!properties.empty()) {
out << ", properties: [";
for (long long int i = 0; i < SIZE(properties); ++i) {
out << "\"" << properties.at(i).first << "\": ";
for (long long int j = 0; j < SIZE(properties.at(i).second); ++j) {
if (j > 0) out << ':';
out << "\"" << properties.at(i).second.at(j) << "\"";
}
if (i < SIZE(properties)-1) out << ", ";
else out << "]";
}
}
out << "}";
return out.str();
}
string instruction::to_string() const {
if (is_label) return label;
ostringstream out;
for (long long int i = 0; i < SIZE(products); ++i) {
if (i > 0) out << ", ";
out << products.at(i).original_string;
}
if (!products.empty()) out << " <- ";
out << name << ' ';
for (long long int i = 0; i < SIZE(ingredients); ++i) {
if (i > 0) out << ", ";
out << ingredients.at(i).original_string;
}
return out.str();
}
string slurp_until(istream& in, char delim) {
ostringstream out;
char c;
while (in >> c) {
if (c == delim) {
// drop the delim
break;
}
out << c;
}
return out.str();
}
bool has_property(reagent x, string name) {
for (long long int i = /*skip name:type*/1; i < SIZE(x.properties); ++i) {
if (x.properties.at(i).first == name) return true;
}
return false;
}
vector<string> property(const reagent& r, const string& name) {
for (long long int p = /*skip name:type*/1; p != SIZE(r.properties); ++p) {
if (r.properties.at(p).first == name)
return r.properties.at(p).second;
}
return vector<string>();
}
void dump_memory() {
for (map<long long int, double>::iterator p = Memory.begin(); p != Memory.end(); ++p) {
cout << p->first << ": " << no_scientific(p->second) << '\n';
}
}
:(before "End Types")
struct no_scientific {
double x;
explicit no_scientific(double y) :x(y) {}
};
:(code)
ostream& operator<<(ostream& os, no_scientific x) {
if (!isfinite(x.x)) {
// Infinity or NaN
os << x.x;
return os;
}
ostringstream tmp;
tmp << std::fixed << x.x;
os << trim_floating_point(tmp.str());
return os;
}
string trim_floating_point(const string& in) {
if (in.empty()) return "";
long long int len = SIZE(in);
while (len > 1) {
if (in.at(len-1) != '0') break;
--len;
}
if (in.at(len-1) == '.') --len;
//? cerr << in << ": " << in.substr(0, len) << '\n';
return in.substr(0, len);
}
void test_trim_floating_point() {
CHECK_EQ("", trim_floating_point(""));
CHECK_EQ("0", trim_floating_point("000000000"));
CHECK_EQ("1.5", trim_floating_point("1.5000"));
CHECK_EQ("1.000001", trim_floating_point("1.000001"));
CHECK_EQ("23", trim_floating_point("23.000000"));
CHECK_EQ("23", trim_floating_point("23.0"));
CHECK_EQ("23", trim_floating_point("23."));
CHECK_EQ("23", trim_floating_point("23"));
CHECK_EQ("3", trim_floating_point("3.000000"));
CHECK_EQ("3", trim_floating_point("3.0"));
CHECK_EQ("3", trim_floating_point("3."));
CHECK_EQ("3", trim_floating_point("3"));
}
:(before "End Includes")
#include<utility>
using std::pair;
#include<math.h>
|