1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
//: Phase 3: Start running a loaded and transformed recipe.
//:
//: So far we've seen recipes as lists of instructions, and instructions point
//: at other recipes. To kick things off mu needs to know how to run certain
//: 'primitive' recipes. That will then give the ability to run recipes
//: containing these primitives.
//:
//: This layer defines a skeleton with just two primitive recipes: IDLE which
//: does nothing, and COPY, which can copy numbers from one memory location to
//: another. Later layers will add more primitives.
:(scenario copy_literal)
def main [
1:number <- copy 23
]
+run: {1: "number"} <- copy {23: "literal"}
+mem: storing 23 in location 1
:(scenario copy)
def main [
1:number <- copy 23
2:number <- copy 1:number
]
+run: {2: "number"} <- copy {1: "number"}
+mem: location 1 is 23
+mem: storing 23 in location 2
:(scenario copy_multiple)
def main [
1:number, 2:number <- copy 23, 24
]
+mem: storing 23 in location 1
+mem: storing 24 in location 2
:(before "End Types")
// Book-keeping while running a recipe.
//: Later layers will replace this to support running multiple routines at once.
struct routine {
recipe_ordinal running_recipe;
int running_step_index;
routine(recipe_ordinal r) :running_recipe(r), running_step_index(0) {}
bool completed() const;
const vector<instruction>& steps() const;
};
:(before "End Globals")
routine* Current_routine = NULL;
map<string, int> Instructions_running;
map<string, int> Locations_read;
map<string, int> Locations_read_by_instruction;
:(code)
void run(recipe_ordinal r) {
routine rr(r);
Current_routine = &rr;
run_current_routine();
}
void run_current_routine()
{ // curly on a separate line, because later layers will modify header
while (!Current_routine->completed()) // later layers will modify condition
{
// Running One Instruction
if (current_instruction().is_label) { ++current_step_index(); continue; }
trace(Initial_callstack_depth + Trace_stream->callstack_depth, "run") << to_string(current_instruction()) << end();
if (get_or_insert(Memory, 0) != 0) {
raise << "something wrote to location 0; this should never happen\n" << end();
put(Memory, 0, 0);
}
// read all ingredients from memory, each potentially spanning multiple locations
vector<vector<double> > ingredients;
if (should_copy_ingredients()) {
for (int i = 0; i < SIZE(current_instruction().ingredients); ++i)
ingredients.push_back(read_memory(current_instruction().ingredients.at(i)));
}
// instructions below will write to 'products'
vector<vector<double> > products;
switch (current_instruction().operation) {
// Primitive Recipe Implementations
case COPY: {
copy(ingredients.begin(), ingredients.end(), inserter(products, products.begin()));
break;
}
// End Primitive Recipe Implementations
default: {
cout << "not a primitive op: " << current_instruction().operation << '\n';
}
}
if (SIZE(products) < SIZE(current_instruction().products)) {
raise << SIZE(products) << " vs " << SIZE(current_instruction().products) << ": failed to write to all products! " << to_original_string(current_instruction()) << '\n' << end();
}
else {
for (int i = 0; i < SIZE(current_instruction().products); ++i) {
write_memory(current_instruction().products.at(i), products.at(i));
}
}
// End of Instruction
finish_instruction:;
++current_step_index();
}
stop_running_current_routine:;
}
bool should_copy_ingredients() {
// End should_copy_ingredients Special-cases
return true;
}
//: Some helpers.
//: We'll need to override these later as we change the definition of routine.
//: Important that they return referrences into the routine.
inline int& current_step_index() {
return Current_routine->running_step_index;
}
inline const string& current_recipe_name() {
return get(Recipe, Current_routine->running_recipe).name;
}
inline const instruction& current_instruction() {
return get(Recipe, Current_routine->running_recipe).steps.at(Current_routine->running_step_index);
}
inline bool routine::completed() const {
return running_step_index >= SIZE(get(Recipe, running_recipe).steps);
}
inline const vector<instruction>& routine::steps() const {
return get(Recipe, running_recipe).steps;
}
//:: Startup flow
//: Step 1: load all .mu files with numeric prefixes (in order)
:(before "End Load Recipes")
// Load .mu Core
//? Trace_file = "interactive";
//? START_TRACING_UNTIL_END_OF_SCOPE;
load_file_or_directory("core.mu");
//? DUMP("");
//? exit(0);
//: Step 2: load any .mu files provided at the commandline
:(before "End Commandline Parsing")
// Check For .mu Files
//? START_TRACING_UNTIL_END_OF_SCOPE
if (argc > 1) {
// skip argv[0]
argv++;
argc--;
// ignore argv past '--'; that's commandline args for 'main'
while (argc > 0) {
if (string(*argv) == "--") break;
load_file_or_directory(*argv);
argv++;
argc--;
}
if (Run_tests) Recipe.erase(get(Recipe_ordinal, "main"));
}
transform_all();
save_snapshots();
//: Step 3: if we aren't running tests, locate a recipe called 'main' and
//: start running it.
:(before "End Main")
if (!Run_tests && contains_key(Recipe_ordinal, "main") && contains_key(Recipe, get(Recipe_ordinal, "main"))) {
// Running Main
setup();
//? Trace_file = "interactive";
//? START_TRACING_UNTIL_END_OF_SCOPE;
trace(9990, "run") << "=== Starting to run" << end();
assert(Num_calls_to_transform_all == 1);
run_main(argc, argv);
teardown();
}
:(code)
void run_main(int argc, char* argv[]) {
recipe_ordinal r = get(Recipe_ordinal, "main");
if (r) run(r);
}
:(code)
void dump_profile() {
for (map<string, int>::iterator p = Instructions_running.begin(); p != Instructions_running.end(); ++p) {
cerr << p->first << ": " << p->second << '\n';
}
cerr << "== locations read\n";
for (map<string, int>::iterator p = Locations_read.begin(); p != Locations_read.end(); ++p) {
cerr << p->first << ": " << p->second << '\n';
}
cerr << "== locations read by instruction\n";
for (map<string, int>::iterator p = Locations_read_by_instruction.begin(); p != Locations_read_by_instruction.end(); ++p) {
cerr << p->first << ": " << p->second << '\n';
}
}
:(before "End One-time Setup")
//? atexit(dump_profile);
:(code)
void cleanup_main() {
if (!Trace_file.empty() && Trace_stream) {
ofstream fout((Trace_dir+Trace_file).c_str());
fout << Trace_stream->readable_contents("");
fout.close();
}
}
:(before "End One-time Setup")
atexit(cleanup_main);
:(code)
void load_file_or_directory(string filename) {
if (is_directory(filename)) {
load_all(filename);
return;
}
ifstream fin(filename.c_str());
if (!fin) {
raise << "no such file " << filename << '\n' << end();
return;
}
trace(9990, "load") << "=== " << filename << end();
load(fin);
fin.close();
}
bool is_directory(string path) {
struct stat info;
if (stat(path.c_str(), &info)) return false; // error
return info.st_mode & S_IFDIR;
}
void load_all(string dir) {
dirent** files;
int num_files = scandir(dir.c_str(), &files, NULL, alphasort);
for (int i = 0; i < num_files; ++i) {
string curr_file = files[i]->d_name;
if (isdigit(curr_file.at(0)))
load_file_or_directory(dir+'/'+curr_file);
free(files[i]);
files[i] = NULL;
}
free(files);
}
:(before "End Includes")
#include<dirent.h>
#include<sys/stat.h>
//:: Reading from memory, writing to memory.
:(code)
vector<double> read_memory(reagent/*copy*/ x) {
// Begin Preprocess read_memory(x)
vector<double> result;
if (is_literal(x)) {
result.push_back(x.value);
return result;
}
// End Preprocess read_memory(x)
int size = size_of(x);
for (int offset = 0; offset < size; ++offset) {
double val = get_or_insert(Memory, x.value+offset);
trace(9999, "mem") << "location " << x.value+offset << " is " << no_scientific(val) << end();
result.push_back(val);
}
return result;
}
void write_memory(reagent/*copy*/ x, const vector<double>& data) {
// Begin Preprocess write_memory(x, data)
if (!x.type) {
raise << "can't write to " << to_string(x) << "; no type\n" << end();
return;
}
if (is_dummy(x)) return;
if (is_literal(x)) return;
// End Preprocess write_memory(x, data)
if (x.value == 0) return;
if (size_mismatch(x, data)) {
raise << maybe(current_recipe_name()) << "size mismatch in storing to " << x.original_string << " (" << size_of(x.type) << " vs " << SIZE(data) << ") at '" << to_original_string(current_instruction()) << "'\n" << end();
return;
}
// End write_memory(x) Special-cases
for (int offset = 0; offset < SIZE(data); ++offset) {
assert(x.value+offset > 0);
trace(9999, "mem") << "storing " << no_scientific(data.at(offset)) << " in location " << x.value+offset << end();
put(Memory, x.value+offset, data.at(offset));
}
}
:(code)
int size_of(const reagent& r) {
if (r.type == NULL) return 0;
// End size_of(reagent r) Cases
return size_of(r.type);
}
int size_of(const type_tree* type) {
if (type == NULL) return 0;
// End size_of(type) Cases
return 1;
}
bool size_mismatch(const reagent& x, const vector<double>& data) {
if (x.type == NULL) return true;
// End size_mismatch(x) Cases
//? if (size_of(x) != SIZE(data)) cerr << size_of(x) << " vs " << SIZE(data) << '\n';
return size_of(x) != SIZE(data);
}
inline bool is_literal(const reagent& r) {
if (!r.type) return false;
if (r.type->value == 0)
assert(!r.type->left && !r.type->right);
return r.type->value == 0;
}
inline bool scalar(const vector<int>& x) {
return SIZE(x) == 1;
}
inline bool scalar(const vector<double>& x) {
return SIZE(x) == 1;
}
// helper for tests
void run(string form) {
vector<recipe_ordinal> tmp = load(form);
transform_all();
if (tmp.empty()) return;
if (trace_count("error") > 0) return;
// if a test defines main, it probably wants to start there regardless of
// definition order
if (contains_key(Recipe, get(Recipe_ordinal, "main")))
run(get(Recipe_ordinal, "main"));
else
run(tmp.front());
}
:(scenario run_label)
def main [
+foo
1:number <- copy 23
2:number <- copy 1:number
]
+run: {1: "number"} <- copy {23: "literal"}
+run: {2: "number"} <- copy {1: "number"}
-run: +foo
:(scenario run_dummy)
def main [
_ <- copy 0
]
+run: _ <- copy {0: "literal"}
:(scenario write_to_0_disallowed)
% Hide_errors = true;
def main [
0:number <- copy 34
]
-mem: storing 34 in location 0
//: mu is robust to various combinations of commas and spaces. You just have
//: to put spaces around the '<-'.
:(scenario comma_without_space)
def main [
1:number, 2:number <- copy 2,2
]
+mem: storing 2 in location 1
:(scenario space_without_comma)
def main [
1:number, 2:number <- copy 2 2
]
+mem: storing 2 in location 1
:(scenario comma_before_space)
def main [
1:number, 2:number <- copy 2, 2
]
+mem: storing 2 in location 1
:(scenario comma_after_space)
def main [
1:number, 2:number <- copy 2 ,2
]
+mem: storing 2 in location 1
|