about summary refs log tree commit diff stats
path: root/028call_return.cc
blob: 056db7b94cbcde97f90f4c132c2b06a020e8f91f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
//: Calls can also generate products, using 'reply' or 'return'.

void test_return() {
  run(
      "def main [\n"
      "  1:num, 2:num <- f 34\n"
      "]\n"
      "def f [\n"
      "  12:num <- next-ingredient\n"
      "  13:num <- add 1, 12:num\n"
      "  return 12:num, 13:num\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "mem: storing 34 in location 1\n"
      "mem: storing 35 in location 2\n"
  );
}

void test_reply() {
  run(
      "def main [\n"
      "  1:num, 2:num <- f 34\n"
      "]\n"
      "def f [\n"
      "  12:num <- next-ingredient\n"
      "  13:num <- add 1, 12:num\n"
      "  reply 12:num, 13:num\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "mem: storing 34 in location 1\n"
      "mem: storing 35 in location 2\n"
  );
}

:(before "End Primitive Recipe Declarations")
RETURN,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "return", RETURN);
put(Recipe_ordinal, "reply", RETURN);  // synonym while teaching
put(Recipe_ordinal, "output", RETURN);  // experiment
:(before "End Primitive Recipe Checks")
case RETURN: {
  break;  // checks will be performed by a transform below
}
:(before "End Primitive Recipe Implementations")
case RETURN: {
  // Begin Return
  trace(Callstack_depth+1, "trace") << current_instruction().name << ": decrementing callstack depth from " << Callstack_depth << end();
  --Callstack_depth;
  if (Callstack_depth < 0) {
    Current_routine->calls.clear();
    goto stop_running_current_routine;
  }
  Current_routine->calls.pop_front();
  // just in case 'main' returns a value, drop it for now
  if (Current_routine->calls.empty()) goto stop_running_current_routine;
  for (int i = 0;  i < SIZE(ingredients);  ++i)
    trace(Callstack_depth+1, "run") << "result " << i << " is " << to_string(ingredients.at(i)) << end();
  // make return products available to caller
  copy(ingredients.begin(), ingredients.end(), inserter(products, products.begin()));
  // End Return
  break;  // continue to process rest of *caller* instruction
}

//: Types in return instructions are checked ahead of time.

:(before "End Checks")
Transform.push_back(check_types_of_return_instructions);  // idempotent
:(code)
void check_types_of_return_instructions(const recipe_ordinal r) {
  const recipe& caller = get(Recipe, r);
  trace(9991, "transform") << "--- check types of return instructions in recipe " << caller.name << end();
  for (int i = 0;  i < SIZE(caller.steps);  ++i) {
    const instruction& caller_instruction = caller.steps.at(i);
    if (caller_instruction.is_label) continue;
    if (caller_instruction.products.empty()) continue;
    if (is_primitive(caller_instruction.operation)) continue;
    const recipe& callee = get(Recipe, caller_instruction.operation);
    for (int i = 0;  i < SIZE(callee.steps);  ++i) {
      const instruction& return_inst = callee.steps.at(i);
      if (return_inst.operation != RETURN) continue;
      // check types with the caller
      if (SIZE(caller_instruction.products) > SIZE(return_inst.ingredients)) {
        raise << maybe(caller.name) << "too few values returned from " << callee.name << '\n' << end();
        break;
      }
      for (int i = 0;  i < SIZE(caller_instruction.products);  ++i) {
        reagent/*copy*/ lhs = return_inst.ingredients.at(i);
        reagent/*copy*/ rhs = caller_instruction.products.at(i);
        // End Check RETURN Copy(lhs, rhs)
        if (!types_coercible(rhs, lhs)) {
          raise << maybe(callee.name) << return_inst.name << " ingredient '" << lhs.original_string << "' can't be saved in '" << rhs.original_string << "'\n" << end();
          raise << "  ['" << to_string(lhs.type) << "' vs '" << to_string(rhs.type) << "']\n" << end();
          goto finish_return_check;
        }
      }
      // check that any return ingredients with /same-as-ingredient connect up
      // the corresponding ingredient and product in the caller.
      for (int i = 0;  i < SIZE(caller_instruction.products);  ++i) {
        if (has_property(return_inst.ingredients.at(i), "same-as-ingredient")) {
          string_tree* tmp = property(return_inst.ingredients.at(i), "same-as-ingredient");
          if (!tmp || !tmp->atom) {
            raise << maybe(caller.name) << "'same-as-ingredient' metadata should take exactly one value in '" << to_original_string(return_inst) << "'\n" << end();
            goto finish_return_check;
          }
          int ingredient_index = to_integer(tmp->value);
          if (ingredient_index >= SIZE(caller_instruction.ingredients)) {
            raise << maybe(caller.name) << "too few ingredients in '" << to_original_string(caller_instruction) << "'\n" << end();
            goto finish_return_check;
          }
          if (!is_dummy(caller_instruction.products.at(i)) && !is_literal(caller_instruction.ingredients.at(ingredient_index)) && caller_instruction.products.at(i).name != caller_instruction.ingredients.at(ingredient_index).name) {
            raise << maybe(caller.name) << "'" << to_original_string(caller_instruction) << "' should write to '" << caller_instruction.ingredients.at(ingredient_index).original_string << "' rather than '" << caller_instruction.products.at(i).original_string << "'\n" << end();
          }
        }
      }
      finish_return_check:;
    }
  }
}

bool is_primitive(recipe_ordinal r) {
  return r < MAX_PRIMITIVE_RECIPES;
}

void test_return_type_mismatch() {
  Hide_errors = true;
  run(
      "def main [\n"
      "  3:num <- f 2\n"
      "]\n"
      "def f [\n"
      "  12:num <- next-ingredient\n"
      "  13:num <- copy 35\n"
      "  14:point <- copy 12:point/raw\n"
      "  return 14:point\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: f: return ingredient '14:point' can't be saved in '3:num'\n"
  );
}

//: In Mu we'd like to assume that any instruction doesn't modify its
//: ingredients unless they're also products. The /same-as-ingredient inside
//: the recipe's 'return' indicates that an ingredient is intended to be
//: modified in place, and will help catch accidental misuse of such
//: 'ingredient-products' (sometimes called in-out parameters in other
//: languages).

void test_return_same_as_ingredient() {
  Hide_errors = true;
  run(
      "def main [\n"
      "  1:num <- copy 0\n"
      "  2:num <- test1 1:num  # call with different ingredient and product\n"
      "]\n"
      "def test1 [\n"
      "  10:num <- next-ingredient\n"
      "  return 10:num/same-as-ingredient:0\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: main: '2:num <- test1 1:num' should write to '1:num' rather than '2:num'\n"
  );
}

void test_return_same_as_ingredient_dummy() {
  run(
      "def main [\n"
      "  1:num <- copy 0\n"
      "  _ <- test1 1:num  # call with different ingredient and product\n"
      "]\n"
      "def test1 [\n"
      "  10:num <- next-ingredient\n"
      "  return 10:num/same-as-ingredient:0\n"
      "]\n"
  );
  CHECK_TRACE_COUNT("error", 0);
}

string to_string(const vector<double>& in) {
  if (in.empty()) return "[]";
  ostringstream out;
  if (SIZE(in) == 1) {
    out << no_scientific(in.at(0));
    return out.str();
  }
  out << "[";
  for (int i = 0;  i < SIZE(in);  ++i) {
    if (i > 0) out << ", ";
    out << no_scientific(in.at(i));
  }
  out << "]";
  return out.str();
}