about summary refs log tree commit diff stats
path: root/033check_operands.cc
blob: bf5d3719507d7c57eb7a9810219c9be32b2b07dc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
//: Since we're tagging operands with their types, let's start checking these
//: operand types for each instruction.

void test_check_missing_imm8_operand() {
  Hide_errors = true;
  run(
      "== code 0x1\n"
      "cd\n"  // interrupt ??
  );
  CHECK_TRACE_CONTENTS(
      "error: 'cd' (software interrupt): missing imm8 operand\n"
  );
}

:(before "Pack Operands(segment code)")
check_operands(code);
if (trace_contains_errors()) return;

:(code)
void check_operands(const segment& code) {
  trace(3, "transform") << "-- check operands" << end();
  for (int i = 0;  i < SIZE(code.lines);  ++i) {
    check_operands(code.lines.at(i));
    if (trace_contains_errors()) return;  // stop at the first mal-formed instruction
  }
}

void check_operands(const line& inst) {
  word op = preprocess_op(inst.words.at(0));
  if (op.data == "0f") {
    check_operands_0f(inst);
    return;
  }
  if (op.data == "f3") {
    check_operands_f3(inst);
    return;
  }
  check_operands(inst, op);
}

word preprocess_op(word/*copy*/ op) {
  op.data = tolower(op.data.c_str());
  // opcodes can't be negative
  if (starts_with(op.data, "0x"))
    op.data = op.data.substr(2);
  if (SIZE(op.data) == 1)
    op.data = string("0")+op.data;
  return op;
}

void test_preprocess_op() {
  word w1;  w1.data = "0xf";
  word w2;  w2.data = "0f";
  CHECK_EQ(preprocess_op(w1).data, preprocess_op(w2).data);
}

//: To check the operands for an opcode, we'll track the permitted operands
//: for each supported opcode in a bitvector. That way we can often compute the
//: 'received' operand bitvector for each instruction's operands and compare
//: it with the 'expected' bitvector.
//:
//: The 'expected' and 'received' bitvectors can be different; the MODRM bit
//: in the 'expected' bitvector maps to multiple 'received' operand types in
//: an instruction. We deal in expected bitvectors throughout.

:(before "End Types")
enum expected_operand_type {
  // start from the least significant bit
  MODRM,  // more complex, may also involve disp8 or disp32
  SUBOP,
  DISP8,
  DISP16,
  DISP32,
  IMM8,
  IMM32,
  NUM_OPERAND_TYPES
};
:(before "End Globals")
vector<string> Operand_type_name;
map<string, expected_operand_type> Operand_type;
:(before "End One-time Setup")
init_op_types();
:(code)
void init_op_types() {
  assert(NUM_OPERAND_TYPES <= /*bits in a uint8_t*/8);
  Operand_type_name.resize(NUM_OPERAND_TYPES);
  #define DEF(type) Operand_type_name.at(type) = tolower(#type), put(Operand_type, tolower(#type), type);
  DEF(MODRM);
  DEF(SUBOP);
  DEF(DISP8);
  DEF(DISP16);
  DEF(DISP32);
  DEF(IMM8);
  DEF(IMM32);
  #undef DEF
}

:(before "End Globals")
map</*op*/string, /*bitvector*/uint8_t> Permitted_operands;
const uint8_t INVALID_OPERANDS = 0xff;  // no instruction uses all the operand types
:(before "End One-time Setup")
init_permitted_operands();
:(code)
void init_permitted_operands() {
  //// Class A: just op, no operands
  // halt
  put(Permitted_operands, "f4", 0x00);
  // inc
  put(Permitted_operands, "40", 0x00);
  put(Permitted_operands, "41", 0x00);
  put(Permitted_operands, "42", 0x00);
  put(Permitted_operands, "43", 0x00);
  put(Permitted_operands, "44", 0x00);
  put(Permitted_operands, "45", 0x00);
  put(Permitted_operands, "46", 0x00);
  put(Permitted_operands, "47", 0x00);
  // dec
  put(Permitted_operands, "48", 0x00);
  put(Permitted_operands, "49", 0x00);
  put(Permitted_operands, "4a", 0x00);
  put(Permitted_operands, "4b", 0x00);
  put(Permitted_operands, "4c", 0x00);
  put(Permitted_operands, "4d", 0x00);
  put(Permitted_operands, "4e", 0x00);
  put(Permitted_operands, "4f", 0x00);
  // push
  put(Permitted_operands, "50", 0x00);
  put(Permitted_operands, "51", 0x00);
  put(Permitted_operands, "52", 0x00);
  put(Permitted_operands, "53", 0x00);
  put(Permitted_operands, "54", 0x00);
  put(Permitted_operands, "55", 0x00);
  put(Permitted_operands, "56", 0x00);
  put(Permitted_operands, "57", 0x00);
  // pop
  put(Permitted_operands, "58", 0x00);
  put(Permitted_operands, "59", 0x00);
  put(Permitted_operands, "5a", 0x00);
  put(Permitted_operands, "5b", 0x00);
  put(Permitted_operands, "5c", 0x00);
  put(Permitted_operands, "5d", 0x00);
  put(Permitted_operands, "5e", 0x00);
  put(Permitted_operands, "5f", 0x00);
  // sign-extend EAX into EDX
  put(Permitted_operands, "99", 0x00);
  // return
  put(Permitted_operands, "c3", 0x00);

  //// Class B: just op and disp8
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  0     0     0      |0       1     0     0

  // jump
  put(Permitted_operands, "eb", 0x04);
  put(Permitted_operands, "72", 0x04);
  put(Permitted_operands, "73", 0x04);
  put(Permitted_operands, "74", 0x04);
  put(Permitted_operands, "75", 0x04);
  put(Permitted_operands, "76", 0x04);
  put(Permitted_operands, "77", 0x04);
  put(Permitted_operands, "7c", 0x04);
  put(Permitted_operands, "7d", 0x04);
  put(Permitted_operands, "7e", 0x04);
  put(Permitted_operands, "7f", 0x04);

  //// Class D: just op and disp32
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  0     0     1      |0       0     0     0
  put(Permitted_operands, "e8", 0x10);  // call
  put(Permitted_operands, "e9", 0x10);  // jump

  //// Class E: just op and imm8
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  0     1     0      |0       0     0     0
  put(Permitted_operands, "cd", 0x20);  // software interrupt

  //// Class F: just op and imm32
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  1     0     0      |0       0     0     0
  put(Permitted_operands, "05", 0x40);  // add
  put(Permitted_operands, "2d", 0x40);  // subtract
  put(Permitted_operands, "25", 0x40);  // and
  put(Permitted_operands, "0d", 0x40);  // or
  put(Permitted_operands, "35", 0x40);  // xor
  put(Permitted_operands, "3d", 0x40);  // compare
  put(Permitted_operands, "68", 0x40);  // push
  // copy
  put(Permitted_operands, "b8", 0x40);
  put(Permitted_operands, "b9", 0x40);
  put(Permitted_operands, "ba", 0x40);
  put(Permitted_operands, "bb", 0x40);
  put(Permitted_operands, "bc", 0x40);
  put(Permitted_operands, "bd", 0x40);
  put(Permitted_operands, "be", 0x40);
  put(Permitted_operands, "bf", 0x40);

  //// Class M: using ModR/M byte
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  0     0     0      |0       0     0     1

  // add
  put(Permitted_operands, "01", 0x01);
  put(Permitted_operands, "03", 0x01);
  // subtract
  put(Permitted_operands, "29", 0x01);
  put(Permitted_operands, "2b", 0x01);
  // and
  put(Permitted_operands, "21", 0x01);
  put(Permitted_operands, "23", 0x01);
  // or
  put(Permitted_operands, "09", 0x01);
  put(Permitted_operands, "0b", 0x01);
  // xor
  put(Permitted_operands, "31", 0x01);
  put(Permitted_operands, "33", 0x01);
  // compare
  put(Permitted_operands, "39", 0x01);
  put(Permitted_operands, "3b", 0x01);
  // copy
  put(Permitted_operands, "88", 0x01);
  put(Permitted_operands, "89", 0x01);
  put(Permitted_operands, "8a", 0x01);
  put(Permitted_operands, "8b", 0x01);
  // swap
  put(Permitted_operands, "87", 0x01);
  // copy address (lea)
  put(Permitted_operands, "8d", 0x01);

  //// Class N: op, ModR/M and subop (not r32)
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  0     0     0      |0       0     1     1
  put(Permitted_operands, "8f", 0x03);  // pop
  put(Permitted_operands, "d3", 0x03);  // shift
  put(Permitted_operands, "f7", 0x03);  // test/not/mul/div
  put(Permitted_operands, "ff", 0x03);  // jump/push/call

  //// Class O: op, ModR/M, subop (not r32) and imm8
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  0     1     0      |0       0     1     1
  put(Permitted_operands, "c1", 0x23);  // combine
  put(Permitted_operands, "c6", 0x23);  // copy

  //// Class P: op, ModR/M, subop (not r32) and imm32
  //  imm32 imm8  disp32 |disp16  disp8 subop modrm
  //  1     0     0      |0       0     1     1
  put(Permitted_operands, "81", 0x43);  // combine
  put(Permitted_operands, "c7", 0x43);  // copy

  // End Init Permitted Operands
}

#define HAS(bitvector, bit)  ((bitvector) & (1 << (bit)))
#define SET(bitvector, bit)  ((bitvector) | (1 << (bit)))
#define CLEAR(bitvector, bit)  ((bitvector) & (~(1 << (bit))))

void check_operands(const line& inst, const word& op) {
  if (!is_hex_byte(op)) return;
  uint8_t expected_bitvector = get(Permitted_operands, op.data);
  if (HAS(expected_bitvector, MODRM)) {
    check_operands_modrm(inst, op);
    compare_bitvector_modrm(inst, expected_bitvector, op);
  }
  else {
    compare_bitvector(inst, expected_bitvector, op);
  }
}

//: Many instructions can be checked just by comparing bitvectors.

void compare_bitvector(const line& inst, uint8_t expected, const word& op) {
  if (all_hex_bytes(inst) && has_operands(inst)) return;  // deliberately programming in raw hex; we'll raise a warning elsewhere
  uint8_t bitvector = compute_expected_operand_bitvector(inst);
  if (trace_contains_errors()) return;  // duplicate operand type
  if (bitvector == expected) return;  // all good with this instruction
  for (int i = 0;  i < NUM_OPERAND_TYPES;  ++i, bitvector >>= 1, expected >>= 1) {
//?     cerr << "comparing " << HEXBYTE << NUM(bitvector) << " with " << NUM(expected) << '\n';
    if ((bitvector & 0x1) == (expected & 0x1)) continue;  // all good with this operand
    const string& optype = Operand_type_name.at(i);
    if ((bitvector & 0x1) > (expected & 0x1))
      raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": unexpected " << optype << " operand\n" << end();
    else
      raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": missing " << optype << " operand\n" << end();
    // continue giving all errors for a single instruction
  }
  // ignore settings in any unused bits
}

string maybe_name(const word& op) {
  if (!is_hex_byte(op)) return "";
  if (!contains_key(Name, op.data)) return "";
  // strip stuff in parens from the name
  const string& s = get(Name, op.data);
  return " ("+s.substr(0, s.find(" ("))+')';
}

uint32_t compute_expected_operand_bitvector(const line& inst) {
  set<string> operands_found;
  uint32_t bitvector = 0;
  for (int i = /*skip op*/1;  i < SIZE(inst.words);  ++i) {
    bitvector = bitvector | expected_bit_for_received_operand(inst.words.at(i), operands_found, inst);
    if (trace_contains_errors()) return INVALID_OPERANDS;  // duplicate operand type
  }
  return bitvector;
}

bool has_operands(const line& inst) {
  return SIZE(inst.words) > first_operand(inst);
}

int first_operand(const line& inst) {
  if (inst.words.at(0).data == "0f") return 2;
  if (inst.words.at(0).data == "f2" || inst.words.at(0).data == "f3") {
    if (inst.words.at(1).data == "0f")
      return 3;
    else
      return 2;
  }
  return 1;
}

// Scan the metadata of 'w' and return the expected bit corresponding to any operand type.
// Also raise an error if metadata contains multiple operand types.
uint32_t expected_bit_for_received_operand(const word& w, set<string>& instruction_operands, const line& inst) {
  uint32_t bv = 0;
  bool found = false;
  for (int i = 0;  i < SIZE(w.metadata);  ++i) {
    string/*copy*/ curr = w.metadata.at(i);
    string expected_metadata = curr;
    if (curr == "mod" || curr == "rm32" || curr == "r32" || curr == "scale" || curr == "index" || curr == "base")
      expected_metadata = "modrm";
    else if (!contains_key(Operand_type, curr)) continue;  // ignore unrecognized metadata
    if (found) {
      raise << "'" << w.original << "' has conflicting operand types; it should have only one\n" << end();
      return INVALID_OPERANDS;
    }
    if (instruction_operands.find(curr) != instruction_operands.end()) {
      raise << "'" << to_string(inst) << "': duplicate " << curr << " operand\n" << end();
      return INVALID_OPERANDS;
    }
    instruction_operands.insert(curr);
    bv = (1 << get(Operand_type, expected_metadata));
    found = true;
  }
  return bv;
}

void test_conflicting_operand_type() {
  Hide_errors = true;
  run(
      "== code 0x1\n"
      "cd/software-interrupt 80/imm8/imm32\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: '80/imm8/imm32' has conflicting operand types; it should have only one\n"
  );
}

//: Instructions computing effective addresses have more complex rules, so
//: we'll hard-code a common set of instruction-decoding rules.

void test_check_missing_mod_operand() {
  Hide_errors = true;
  run(
      "== code 0x1\n"
      "81 0/add/subop       3/rm32/ebx 1/imm32\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: '81 0/add/subop 3/rm32/ebx 1/imm32' (combine rm32 with imm32 based on subop): missing mod operand\n"
  );
}

void check_operands_modrm(const line& inst, const word& op) {
  if (all_hex_bytes(inst)) return;  // deliberately programming in raw hex; we'll raise a warning elsewhere
  check_operand_metadata_present(inst, "mod", op);
  check_operand_metadata_present(inst, "rm32", op);
  // no check for r32; some instructions don't use it; just assume it's 0 if missing
  if (op.data == "81" || op.data == "8f" || op.data == "ff") {  // keep sync'd with 'help subop'
    check_operand_metadata_present(inst, "subop", op);
    check_operand_metadata_absent(inst, "r32", op, "should be replaced by subop");
  }
  if (trace_contains_errors()) return;
  if (metadata(inst, "rm32").data != "4") return;
  // SIB byte checks
  uint8_t mod = hex_byte(metadata(inst, "mod").data);
  if (mod != /*direct*/3) {
    check_operand_metadata_present(inst, "base", op);
    check_operand_metadata_present(inst, "index", op);  // otherwise why go to SIB?
  }
  else {
    check_operand_metadata_absent(inst, "base", op, "direct mode");
    check_operand_metadata_absent(inst, "index", op, "direct mode");
  }
  // no check for scale; 0 (2**0 = 1) by default
}

// same as compare_bitvector, with one additional exception for modrm-based
// instructions: they may use an extra displacement on occasion
void compare_bitvector_modrm(const line& inst, uint8_t expected, const word& op) {
  if (all_hex_bytes(inst) && has_operands(inst)) return;  // deliberately programming in raw hex; we'll raise a warning elsewhere
  uint8_t bitvector = compute_expected_operand_bitvector(inst);
  if (trace_contains_errors()) return;  // duplicate operand type
  // update 'expected' bitvector for the additional exception
  if (has_operand_metadata(inst, "mod")) {
    int32_t mod = parse_int(metadata(inst, "mod").data);
    switch (mod) {
    case 0:
      if (has_operand_metadata(inst, "rm32") && parse_int(metadata(inst, "rm32").data) == 5)
        expected |= (1<<DISP32);
      break;
    case 1:
      expected |= (1<<DISP8);
      break;
    case 2:
      expected |= (1<<DISP32);
      break;
    }
  }
  if (bitvector == expected) return;  // all good with this instruction
  for (int i = 0;  i < NUM_OPERAND_TYPES;  ++i, bitvector >>= 1, expected >>= 1) {
//?     cerr << "comparing for modrm " << HEXBYTE << NUM(bitvector) << " with " << NUM(expected) << '\n';
    if ((bitvector & 0x1) == (expected & 0x1)) continue;  // all good with this operand
    const string& optype = Operand_type_name.at(i);
    if ((bitvector & 0x1) > (expected & 0x1))
      raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": unexpected " << optype << " operand\n" << end();
    else
      raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": missing " << optype << " operand\n" << end();
    // continue giving all errors for a single instruction
  }
  // ignore settings in any unused bits
}

void check_operand_metadata_present(const line& inst, const string& type, const word& op) {
  if (!has_operand_metadata(inst, type))
    raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": missing " << type << " operand\n" << end();
}

void check_operand_metadata_absent(const line& inst, const string& type, const word& op, const string& msg) {
  if (has_operand_metadata(inst, type))
    raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": unexpected " << type << " operand (" << msg << ")\n" << end();
}

void test_modrm_with_displacement() {
  Reg[EAX].u = 0x1;
  transform(
      "== code 0x1\n"
      // just avoid null pointer
      "8b/copy 1/mod/lookup+disp8 0/rm32/EAX 2/r32/EDX 4/disp8\n"  // copy *(EAX+4) to EDX
  );
  CHECK_TRACE_COUNT("error", 0);
}

void test_check_missing_disp8() {
  Hide_errors = true;
  transform(
      "== code 0x1\n"
      "89/copy 1/mod/lookup+disp8 0/rm32/EAX 1/r32/ECX\n"  // missing disp8
  );
  CHECK_TRACE_CONTENTS(
      "error: '89/copy 1/mod/lookup+disp8 0/rm32/EAX 1/r32/ECX' (copy r32 to rm32): missing disp8 operand\n"
  );
}

void test_check_missing_disp32() {
  Hide_errors = true;
  transform(
      "== code 0x1\n"
      "8b/copy 0/mod/indirect 5/rm32/.disp32 2/r32/EDX\n"  // missing disp32
  );
  CHECK_TRACE_CONTENTS(
      "error: '8b/copy 0/mod/indirect 5/rm32/.disp32 2/r32/EDX' (copy rm32 to r32): missing disp32 operand\n"
  );
}

void test_conflicting_operands_in_modrm_instruction() {
  Hide_errors = true;
  run(
      "== code 0x1\n"
      "01/add 0/mod 3/mod\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: '01/add 0/mod 3/mod' has conflicting mod operands\n"
  );
}

void test_conflicting_operand_type_modrm() {
  Hide_errors = true;
  run(
      "== code 0x1\n"
      "01/add 0/mod 3/rm32/r32\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: '3/rm32/r32' has conflicting operand types; it should have only one\n"
  );
}

void test_check_missing_rm32_operand() {
  Hide_errors = true;
  run(
      "== code 0x1\n"
      "81 0/add/subop 0/mod            1/imm32\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: '81 0/add/subop 0/mod 1/imm32' (combine rm32 with imm32 based on subop): missing rm32 operand\n"
  );
}

void test_check_missing_subop_operand() {
  Hide_errors = true;
  run(
      "== code 0x1\n"
      "81             0/mod 3/rm32/ebx 1/imm32\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: '81 0/mod 3/rm32/ebx 1/imm32' (combine rm32 with imm32 based on subop): missing subop operand\n"
  );
}

void test_check_missing_base_operand() {
  Hide_errors = true;
  run(
      "== code 0x1\n"
      "81 0/add/subop 0/mod/indirect 4/rm32/use-sib 1/imm32\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 1/imm32' (combine rm32 with imm32 based on subop): missing base operand\n"
  );
}

void test_check_missing_index_operand() {
  Hide_errors = true;
  run(
      "== code 0x1\n"
      "81 0/add/subop 0/mod/indirect 4/rm32/use-sib 0/base 1/imm32\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 0/base 1/imm32' (combine rm32 with imm32 based on subop): missing index operand\n"
  );
}

void test_check_missing_base_operand_2() {
  Hide_errors = true;
  run(
      "== code 0x1\n"
      "81 0/add/subop 0/mod/indirect 4/rm32/use-sib 2/index 3/scale 1/imm32\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 2/index 3/scale 1/imm32' (combine rm32 with imm32 based on subop): missing base operand\n"
  );
}

void test_check_extra_displacement() {
  Hide_errors = true;
  run(
      "== code 0x1\n"
      "89/copy 0/mod/indirect 0/rm32/EAX 1/r32/ECX 4/disp8\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: '89/copy 0/mod/indirect 0/rm32/EAX 1/r32/ECX 4/disp8' (copy r32 to rm32): unexpected disp8 operand\n"
  );
}

void test_check_duplicate_operand() {
  Hide_errors = true;
  run(
      "== code 0x1\n"
      "89/copy 0/mod/indirect 0/rm32/EAX 1/r32/ECX 1/r32\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: '89/copy 0/mod/indirect 0/rm32/EAX 1/r32/ECX 1/r32': duplicate r32 operand\n"
  );
}

void test_check_base_operand_not_needed_in_direct_mode() {
  run(
      "== code 0x1\n"
      "81 0/add/subop 3/mod/indirect 4/rm32/use-sib 1/imm32\n"
  );
  CHECK_TRACE_COUNT("error", 0);
}

void test_extra_modrm() {
  Hide_errors = true;
  run(
      "== code 0x1\n"
      "59/pop-to-ECX  3/mod/direct 1/rm32/ECX 4/r32/ESP\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: '59/pop-to-ECX 3/mod/direct 1/rm32/ECX 4/r32/ESP' (pop top of stack to ECX): unexpected modrm operand\n"
  );
}

//:: similarly handle multi-byte opcodes

void check_operands_0f(const line& inst) {
  assert(inst.words.at(0).data == "0f");
  if (SIZE(inst.words) == 1) {
    raise << "opcode '0f' requires a second opcode\n" << end();
    return;
  }
  word op = preprocess_op(inst.words.at(1));
  if (!contains_key(Name_0f, op.data)) {
    raise << "unknown 2-byte opcode '0f " << op.data << "'\n" << end();
    return;
  }
  check_operands_0f(inst, op);
}

void check_operands_f3(const line& /*unused*/) {
  raise << "no supported opcodes starting with f3\n" << end();
}

void test_check_missing_disp32_operand() {
  Hide_errors = true;
  run(
      "== code 0x1\n"
      "  0f 84  # jmp if ZF to ??\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: '0f 84' (jump disp32 bytes away if equal, if ZF is set): missing disp32 operand\n"
  );
}

:(before "End Globals")
map</*op*/string, /*bitvector*/uint8_t> Permitted_operands_0f;
:(before "End Init Permitted Operands")
//// Class D: just op and disp32
//  imm32 imm8  disp32 |disp16  disp8 subop modrm
//  0     0     1      |0       0     0     0
put_new(Permitted_operands_0f, "82", 0x10);
put_new(Permitted_operands_0f, "83", 0x10);
put_new(Permitted_operands_0f, "84", 0x10);
put_new(Permitted_operands_0f, "85", 0x10);
put_new(Permitted_operands_0f, "86", 0x10);
put_new(Permitted_operands_0f, "87", 0x10);
put_new(Permitted_operands_0f, "8c", 0x10);
put_new(Permitted_operands_0f, "8d", 0x10);
put_new(Permitted_operands_0f, "8e", 0x10);
put_new(Permitted_operands_0f, "8f", 0x10);

//// Class M: using ModR/M byte
//  imm32 imm8  disp32 |disp16  disp8 subop modrm
//  0     0     0      |0       0     0     1
put_new(Permitted_operands_0f, "af", 0x01);

:(code)
void check_operands_0f(const line& inst, const word& op) {
  uint8_t expected_bitvector = get(Permitted_operands_0f, op.data);
  if (HAS(expected_bitvector, MODRM))
    check_operands_modrm(inst, op);
  compare_bitvector_0f(inst, CLEAR(expected_bitvector, MODRM), op);
}

void compare_bitvector_0f(const line& inst, uint8_t expected, const word& op) {
  if (all_hex_bytes(inst) && has_operands(inst)) return;  // deliberately programming in raw hex; we'll raise a warning elsewhere
  uint8_t bitvector = compute_expected_operand_bitvector(inst);
  if (trace_contains_errors()) return;  // duplicate operand type
  if (bitvector == expected) return;  // all good with this instruction
  for (int i = 0;  i < NUM_OPERAND_TYPES;  ++i, bitvector >>= 1, expected >>= 1) {
//?     cerr << "comparing " << HEXBYTE << NUM(bitvector) << " with " << NUM(expected) << '\n';
    if ((bitvector & 0x1) == (expected & 0x1)) continue;  // all good with this operand
    const string& optype = Operand_type_name.at(i);
    if ((bitvector & 0x1) > (expected & 0x1))
      raise << "'" << to_string(inst) << "'" << maybe_name_0f(op) << ": unexpected " << optype << " operand\n" << end();
    else
      raise << "'" << to_string(inst) << "'" << maybe_name_0f(op) << ": missing " << optype << " operand\n" << end();
    // continue giving all errors for a single instruction
  }
  // ignore settings in any unused bits
}

string maybe_name_0f(const word& op) {
  if (!is_hex_byte(op)) return "";
  if (!contains_key(Name_0f, op.data)) return "";
  // strip stuff in parens from the name
  const string& s = get(Name_0f, op.data);
  return " ("+s.substr(0, s.find(" ("))+')';
}

string tolower(const char* s) {
  ostringstream out;
  for (/*nada*/;  *s;  ++s)
    out << static_cast<char>(tolower(*s));
  return out.str();
}

#undef HAS
#undef SET
#undef CLEAR

:(before "End Includes")
#include<cctype>