about summary refs log tree commit diff stats
path: root/.gitignore
diff options
context:
space:
mode:
Diffstat (limited to '.gitignore')
0 files changed, 0 insertions, 0 deletions
='#n47'>47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
//: Addresses help us spend less time copying data around.

//: So far we've been operating on primitives like numbers and characters, and
//: we've started combining these primitives together into larger logical
//: units (containers or arrays) that may contain many different primitives at
//: once. Containers and arrays can grow quite large in complex programs, and
//: we'd like some way to efficiently share them between recipes without
//: constantly having to make copies. Right now 'next-ingredient' and 'return'
//: copy data across recipe boundaries. To avoid copying large quantities of
//: data around, we'll use *addresses*. An address is a bookmark to some
//: arbitrary quantity of data (the *payload*). It's a primitive, so it's as
//: efficient to copy as a number. To read or modify the payload 'pointed to'
//: by an address, we'll perform a *lookup*.
//:
//: The notion of 'lookup' isn't an instruction like 'add' or 'subtract'.
//: Instead it's an operation that can be performed when reading any of the
//: ingredients of an instruction, and when writing to any of the products. To
//: write to the payload of an ingredient rather than its value, simply add
//: the /lookup property to it. Modern computers provide efficient support for
//: addresses and lookups, making this a realistic feature.
//:
//: To recap: an address is a bookmark to some potentially large payload, and
//: you can replace any ingredient or product with a lookup to an address of
//: the appropriate type. But how do we get addresses to begin with? That
//: requires a little more explanation. Once we introduce the notion of
//: bookmarks to data, we have to think about the life cycle of a piece of
//: data and its bookmarks (because remember, bookmarks can be copied around
//: just like anything else). Otherwise several bad outcomes can result (and
//: indeed *have* resulted in past languages like C):
//:
//:   a) You can run out of memory if you don't have a way to reclaim
//:   data.
//:   b) If you allow data to be reclaimed, you have to be careful not to
//:   leave any stale addresses pointing at it. Otherwise your program might
//:   try to lookup such an address and find something unexpected. Such
//:   problems can be very hard to track down, and they can also be exploited
//:   to break into your computer over the network, etc.
//:
//: To avoid these problems, we introduce the notion of a *reference count* or
//: refcount. The life cycle of a bit of data accessed through addresses looks
//: like this.
//:
//:    We create space in computer memory for it using the 'new' instruction.
//:    The 'new' instruction takes a type as an ingredient, allocates
//:    sufficient space to hold that type, and returns an address (bookmark)
//:    to the allocated space.
//:
//:      x:address:num <- new number:type
//:
//:                     +------------+
//:          x -------> |  number    |
//:                     +------------+
//:
//:    That isn't entirely accurate. Under the hood, 'new' allocates an extra
//:    number -- the refcount:
//:
//:                     +------------+------------+
//:          x -------> | refcount   |  number    |
//:                     +------------+------------+
//:
//:    This probably seems like a waste of space. In practice it isn't worth
//:    allocating individual numbers and our payload will tend to be larger,
//:    so the picture would look more like this (zooming out a bit):
//:
//:                         +-------------------------+
//:                     +---+                         |
//:          x -------> | r |                         |
//:                     +---+        DATA             |
//:                         |                         |
//:                         |                         |
//:                         +-------------------------+
//:
//:    (Here 'r' denotes the refcount. It occupies a tiny amount of space
//:    compared to the payload.)
//:
//:    Anyways, back to our example where the data is just a single number.
//:    After the call to 'new', Mu's map of memory looks like this:
//:
//:                     +---+------------+
//:          x -------> | 1 |  number    |
//:                     +---+------------+
//:
//:    The refcount of 1 here indicates that this number has one bookmark
//:    outstanding. If you then make a copy of x, the refcount increments:
//:
//:      y:address:num <- copy x
//:
//:          x ---+     +---+------------+
//:               +---> | 2 |  number    |
//:          y ---+     +---+------------+
//:
//:    Whether you access the payload through x or y, Mu knows how many
//:    bookmarks are outstanding to it. When you change x or y, the refcount
//:    transparently decrements:
//:
//:      x <- copy 0  # an address is just a number, you can always write 0 to it
//:
//:                     +---+------------+
//:          y -------> | 1 |  number    |
//:                     +---+------------+
//:
//:    The final flourish is what happens when the refcount goes down to 0: Mu
//:    reclaims the space occupied by both refcount and payload in memory, and
//:    they're ready to be reused by later calls to 'new'.
//:
//:      y <- copy 0
//:
//:                     +---+------------+
//:                     | 0 |  XXXXXXX   |
//:                     +---+------------+
//:
//: Using refcounts fixes both our problems a) and b) above: you can use
//: memory for many different purposes as many times as you want without
//: running out of memory, and you don't have to worry about ever leaving a
//: dangling bookmark when you reclaim memory.
//:
//: This layer implements creating addresses using 'new'. The next few layers
//: will flesh out the rest of the life cycle.

//: todo: give 'new' a custodian ingredient. Following malloc/free is a temporary hack.

:(scenario new)
# call 'new' two times with identical types without modifying the results; you
# should get back different results
def main [
  1:address:num/raw <- new number:type
  2:address:num/raw <- new number:type
  3:bool/raw <- equal 1:address:num/raw, 2:address:num/raw
]
+mem: storing 0 in location 3

:(scenario new_array)
# call 'new' with a second ingredient to allocate an array of some type rather than a single copy
def main [
  1:address:array:num/raw <- new number:type, 5
  2:address:num/raw <- new number:type
  3:num/raw <- subtract 2:address:num/raw, 1:address:array:num/raw
]
+run: {1: ("address" "array" "number"), "raw": ()} <- new {number: "type"}, {5: "literal"}
+mem: array length is 5
# don't forget the extra location for array length, and the second extra location for the refcount
+mem: storing 7 in location 3

:(scenario dilated_reagent_with_new)
def main [
  1:address:address:num <- new {(address number): type}
]
+new: size of '(address number)' is 1

//: 'new' takes a weird 'type' as its first ingredient; don't error on it
:(before "End Mu Types Initialization")
put(Type_ordinal, "type", 0);
:(code)
bool is_mu_type_literal(const reagent& r) {
  return is_literal(r) && r.type && r.type->name == "type";
}

:(before "End Primitive Recipe Declarations")
NEW,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "new", NEW);
:(before "End Primitive Recipe Checks")
case NEW: {
  const recipe& caller = get(Recipe, r);
  if (inst.ingredients.empty() || SIZE(inst.ingredients) > 2) {
    raise << maybe(caller.name) << "'new' requires one or two ingredients, but got '" << to_original_string(inst) << "'\n" << end();
    break;
  }
  // End NEW Check Special-cases
  const reagent& type = inst.ingredients.at(0);
  if (!is_mu_type_literal(type)) {
    raise << maybe(caller.name) << "first ingredient of 'new' should be a type, but got '" << type.original_string << "'\n" << end();
    break;
  }
  if (SIZE(inst.ingredients) > 1 && !is_mu_number(inst.ingredients.at(1))) {
    raise << maybe(caller.name) << "second ingredient of 'new' should be a number (array length), but got '" << type.original_string << "'\n" << end();
    break;
  }
  if (inst.products.empty()) {
    raise << maybe(caller.name) << "result of 'new' should never be ignored\n" << end();
    break;
  }
  if (!product_of_new_is_valid(inst)) {
    raise << maybe(caller.name) << "product of 'new' has incorrect type: '" << to_original_string(inst) << "'\n" << end();
    break;
  }
  break;
}
:(code)
bool product_of_new_is_valid(const instruction& inst) {
  reagent/*copy*/ product = inst.products.at(0);
  // Update NEW product in Check
  if (!product.type || product.type->atom || product.type->left->value != get(Type_ordinal, "address"))
    return false;
  drop_from_type(product, "address");
  if (SIZE(inst.ingredients) > 1) {
    // array allocation
    if (!product.type || product.type->atom || product.type->left->value != get(Type_ordinal, "array"))
      return false;
    drop_from_type(product, "array");
  }
  reagent/*local*/ expected_product;
  expected_product.type = new_type_tree(inst.ingredients.at(0).name);
  return types_strictly_match(product, expected_product);
}

void drop_from_type(reagent& r, string expected_type) {
  assert(!r.type->atom);
  if (r.type->left->name != expected_type) {
    raise << "can't drop2 " << expected_type << " from '" << to_string(r) << "'\n" << end();
    return;
  }
  // r.type = r.type->right
  type_tree* tmp = r.type;
  r.type = tmp->right;
  tmp->right = NULL;
  delete tmp;
  // if (!r.type->right) r.type = r.type->left
  assert(!r.type->atom);
  if (r.type->right) return;
  tmp = r.type;
  r.type = tmp->left;
  tmp->left = NULL;
  delete tmp;
}

:(scenario new_returns_incorrect_type)
% Hide_errors = true;
def main [
  1:bool <- new num:type
]
+error: main: product of 'new' has incorrect type: '1:bool <- new num:type'

:(scenario new_discerns_singleton_list_from_atom_container)
% Hide_errors = true;
def main [
  1:address:num/raw <- new {(num): type}  # should be '{num: type}'
]
+error: main: product of 'new' has incorrect type: '1:address:num/raw <- new {(num): type}'

:(scenario new_with_type_abbreviation)
def main [
  1:address:num/raw <- new num:type
]
$error: 0

:(scenario new_with_type_abbreviation_inside_compound)
def main [
  {1: (address address number), raw: ()} <- new {(& num): type}
]
$error: 0

//: To implement 'new', a Mu transform turns all 'new' instructions into
//: 'allocate' instructions that precompute the amount of memory they want to
//: allocate.

//: Ensure that we never call 'allocate' directly, and that there's no 'new'
//: instructions left after the transforms have run.
:(before "End Primitive Recipe Checks")
case ALLOCATE: {
  raise << "never call 'allocate' directly'; always use 'new'\n" << end();
  break;
}
:(before "End Primitive Recipe Implementations")
case NEW: {
  raise << "no implementation for 'new'; why wasn't it translated to 'allocate'? Please save a copy of your program and send it to Kartik.\n" << end();
  break;
}

:(after "Transform.push_back(check_instruction)")  // check_instruction will guard against direct 'allocate' instructions below
Transform.push_back(transform_new_to_allocate);  // idempotent

:(code)
void transform_new_to_allocate(const recipe_ordinal r) {
  trace(9991, "transform") << "--- convert 'new' to 'allocate' for recipe " << get(Recipe, r).name << end();
  for (int i = 0;  i < SIZE(get(Recipe, r).steps);  ++i) {
    instruction& inst = get(Recipe, r).steps.at(i);
    // Convert 'new' To 'allocate'
    if (inst.name == "new") {
      if (inst.ingredients.empty()) return;  // error raised elsewhere
      inst.operation = ALLOCATE;
      type_tree* type = new_type_tree(inst.ingredients.at(0).name);
      inst.ingredients.at(0).set_value(size_of(type));
      trace(9992, "new") << "size of '" << inst.ingredients.at(0).name << "' is " << inst.ingredients.at(0).value << end();
      delete type;
    }
  }
}

//: implement 'allocate' based on size

:(before "End Globals")
extern const int Reserved_for_tests = 1000;
int Memory_allocated_until = Reserved_for_tests;
int Initial_memory_per_routine = 100000;
:(before "End Reset")
Memory_allocated_until = Reserved_for_tests;
Initial_memory_per_routine = 100000;
:(before "End routine Fields")
int alloc, alloc_max;
:(before "End routine Constructor")
alloc = Memory_allocated_until;
Memory_allocated_until += Initial_memory_per_routine;
alloc_max = Memory_allocated_until;
trace(9999, "new") << "routine allocated memory from " << alloc << " to " << alloc_max << end();

:(before "End Primitive Recipe Declarations")
ALLOCATE,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "allocate", ALLOCATE);
:(before "End Primitive Recipe Implementations")
case ALLOCATE: {
  // compute the space we need
  int size = ingredients.at(0).at(0);
  if (SIZE(ingredients) > 1) {
    // array allocation
    trace(9999, "mem") << "array length is " << ingredients.at(1).at(0) << end();
    size = /*space for length*/1 + size*ingredients.at(1).at(0);
  }
  int result = allocate(size);
  if (SIZE(current_instruction().ingredients) > 1) {
    // initialize array length
    trace(9999, "mem") << "storing " << ingredients.at(1).at(0) << " in location " << result+/*skip refcount*/1 << end();
    put(Memory, result+/*skip refcount*/1, ingredients.at(1).at(0));
  }
  products.resize(1);
  products.at(0).push_back(result);
  break;
}
:(code)
int allocate(int size) {
  // include space for refcount
  ++size;
  trace(9999, "mem") << "allocating size " << size << end();
//?   Total_alloc += size;
//?   ++Num_alloc;
  // Allocate Special-cases
  // compute the region of memory to return
  // really crappy at the moment
  ensure_space(size);
  const int result = Current_routine->alloc;
  trace(9999, "mem") << "new alloc: " << result << end();
  // initialize allocated space
  for (int address = result;  address < result+size;  ++address) {
    trace(9999, "mem") << "storing 0 in location " << address << end();
    put(Memory, address, 0);
  }
  Current_routine->alloc += size;
  // no support yet for reclaiming memory between routines
  assert(Current_routine->alloc <= Current_routine->alloc_max);
  return result;
}

//: statistics for debugging
//? :(before "End Globals")
//? int Total_alloc = 0;
//? int Num_alloc = 0;
//? int Total_free = 0;
//? int Num_free = 0;
//? :(before "End Reset")
//? if (!Memory.empty()) {
//?   cerr << Total_alloc << "/" << Num_alloc
//?        << " vs " << Total_free << "/" << Num_free << '\n';
//?   cerr << SIZE(Memory) << '\n';
//? }
//? Total_alloc = Num_alloc = Total_free = Num_free = 0;

:(code)
void ensure_space(int size) {
  if (size > Initial_memory_per_routine) {
    cerr << "can't allocate " << size << " locations, that's too much compared to " << Initial_memory_per_routine << ".\n";
    exit(1);
  }
  if (Current_routine->alloc + size > Current_routine->alloc_max) {
    // waste the remaining space and create a new chunk
    Current_routine->alloc = Memory_allocated_until;
    Memory_allocated_until += Initial_memory_per_routine;
    Current_routine->alloc_max = Memory_allocated_until;
    trace(9999, "new") << "routine allocated memory from " << Current_routine->alloc << " to " << Current_routine->alloc_max << end();
  }
}

:(scenario new_initializes)
% Memory_allocated_until = 10;
% put(Memory, Memory_allocated_until, 1);
def main [
  1:address:num <- new number:type
]
+mem: storing 0 in location 10

:(scenario new_size)
def main [
  11:address:num/raw <- new number:type
  12:address:num/raw <- new number:type
  13:num/raw <- subtract 12:address:num/raw, 11:address:num/raw
]
# size of number + refcount
+mem: storing 2 in location 13

:(scenario new_array_size)
def main [
  1:address:array:num/raw <- new number:type, 5
  2:address:num/raw <- new number:type
  3:num/raw <- subtract 2:address:num/raw, 1:address:array:num/raw
]
# 5 locations for array contents + array length + refcount
+mem: storing 7 in location 3

:(scenario new_empty_array)
def main [
  1:address:array:num/raw <- new number:type, 0
  2:address:num/raw <- new number:type
  3:num/raw <- subtract 2:address:num/raw, 1:address:array:num/raw
]
+run: {1: ("address" "array" "number"), "raw": ()} <- new {number: "type"}, {0: "literal"}
+mem: array length is 0
# one location for array length, and one for the refcount
+mem: storing 2 in location 3

//: If a routine runs out of its initial allocation, it should allocate more.
:(scenario new_overflow)
% Initial_memory_per_routine = 3;  // barely enough room for point allocation below
def main [
  1:address:num/raw <- new number:type
  2:address:point/raw <- new point:type  # not enough room in initial page
]
+new: routine allocated memory from 1000 to 1003
+new: routine allocated memory from 1003 to 1006

:(scenario new_without_ingredient)
% Hide_errors = true;
def main [
  1:address:number <- new  # missing ingredient
]
+error: main: 'new' requires one or two ingredients, but got '1:address:number <- new'