1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
|
//: Update refcounts when copying addresses.
//: The top of the address layer has more on refcounts.
:(scenario refcounts)
def main [
1:address:num <- copy 1000/unsafe
2:address:num <- copy 1:address:num
1:address:num <- copy 0
2:address:num <- copy 0
]
+run: {1: ("address" "number")} <- copy {1000: "literal", "unsafe": ()}
+mem: incrementing refcount of 1000: 0 -> 1
+run: {2: ("address" "number")} <- copy {1: ("address" "number")}
+mem: incrementing refcount of 1000: 1 -> 2
+run: {1: ("address" "number")} <- copy {0: "literal"}
+mem: decrementing refcount of 1000: 2 -> 1
+run: {2: ("address" "number")} <- copy {0: "literal"}
+mem: decrementing refcount of 1000: 1 -> 0
:(before "End Globals")
//: escape hatch for a later layer
bool Update_refcounts_in_write_memory = true;
:(before "End write_memory(x) Special-cases")
if (Update_refcounts_in_write_memory)
update_any_refcounts(x, data);
:(code)
void update_any_refcounts(const reagent& canonized_x, const vector<double>& data) {
increment_any_refcounts(canonized_x, data); // increment first so we don't reclaim on x <- copy x
decrement_any_refcounts(canonized_x);
}
void increment_any_refcounts(const reagent& canonized_x, const vector<double>& data) {
if (is_mu_address(canonized_x)) {
assert(scalar(data));
assert(!canonized_x.metadata.size);
increment_refcount(data.at(0));
}
// End Increment Refcounts(canonized_x)
}
void increment_refcount(int new_address) {
assert(new_address >= 0);
if (new_address == 0) return;
int new_refcount = get_or_insert(Memory, new_address);
trace(9999, "mem") << "incrementing refcount of " << new_address << ": " << new_refcount << " -> " << new_refcount+1 << end();
put(Memory, new_address, new_refcount+1);
}
void decrement_any_refcounts(const reagent& canonized_x) {
if (is_mu_address(canonized_x)) {
assert(canonized_x.value);
assert(!canonized_x.metadata.size);
decrement_refcount(get_or_insert(Memory, canonized_x.value), canonized_x.type->right, payload_size(canonized_x));
}
// End Decrement Refcounts(canonized_x)
}
void decrement_refcount(int old_address, const type_tree* payload_type, int payload_size) {
assert(old_address >= 0);
if (old_address) {
int old_refcount = get_or_insert(Memory, old_address);
trace(9999, "mem") << "decrementing refcount of " << old_address << ": " << old_refcount << " -> " << old_refcount-1 << end();
--old_refcount;
put(Memory, old_address, old_refcount);
if (old_refcount < 0) {
tb_shutdown();
cerr << "Negative refcount!!! " << old_address << ' ' << old_refcount << '\n';
if (Trace_stream) {
cerr << "Saving trace to last_trace.\n";
ofstream fout("last_trace");
fout << Trace_stream->readable_contents("");
fout.close();
}
exit(0);
}
// End Decrement Refcount(old_address, payload_type, payload_size)
}
}
int payload_size(reagent/*copy*/ x) {
x.properties.push_back(pair<string, string_tree*>("lookup", NULL));
lookup_memory_core(x);
return size_of(x) + /*refcount*/1;
}
:(scenario refcounts_reflexive)
def main [
1:address:num <- new number:type
# idempotent copies leave refcount unchanged
1:address:num <- copy 1:address:num
]
+run: {1: ("address" "number")} <- new {number: "type"}
+mem: incrementing refcount of 1000: 0 -> 1
+run: {1: ("address" "number")} <- copy {1: ("address" "number")}
+mem: incrementing refcount of 1000: 1 -> 2
+mem: decrementing refcount of 1000: 2 -> 1
:(scenario refcounts_call)
def main [
1:address:num <- new number:type
# passing in addresses to recipes increments refcount
foo 1:address:num
# return does NOT yet decrement refcount; memory must be explicitly managed
1:address:num <- new number:type
]
def foo [
2:address:num <- next-ingredient
]
+run: {1: ("address" "number")} <- new {number: "type"}
+mem: incrementing refcount of 1000: 0 -> 1
+run: foo {1: ("address" "number")}
# leave ambiguous precisely when the next increment happens; a later layer
# will mess with that
+mem: incrementing refcount of 1000: 1 -> 2
+run: {1: ("address" "number")} <- new {number: "type"}
+mem: decrementing refcount of 1000: 2 -> 1
//: fix up any instructions that don't follow the usual flow of read_memory
//: before the RUN switch, and write_memory after
:(scenario refcounts_put)
container foo [
x:address:num
]
def main [
1:address:num <- new number:type
2:address:foo <- new foo:type
*2:address:foo <- put *2:address:foo, x:offset, 1:address:num
]
+run: {1: ("address" "number")} <- new {number: "type"}
+mem: incrementing refcount of 1000: 0 -> 1
+run: {2: ("address" "foo")} <- new {foo: "type"}
+mem: incrementing refcount of 1002: 0 -> 1
+run: {2: ("address" "foo"), "lookup": ()} <- put {2: ("address" "foo"), "lookup": ()}, {x: "offset"}, {1: ("address" "number")}
# put increments refcount
+mem: incrementing refcount of 1000: 1 -> 2
:(after "Write Memory in PUT in Run")
reagent/*copy*/ element = element_type(base.type, offset);
assert(!has_property(element, "lookup"));
element.set_value(address);
update_any_refcounts(element, ingredients.at(2));
:(scenario refcounts_put_index)
def main [
1:address:num <- new number:type
2:address:array:address:num <- new {(address number): type}, 3
*2:address:array:address:num <- put-index *2:address:array:address:num, 0, 1:address:num
]
+run: {1: ("address" "number")} <- new {number: "type"}
+mem: incrementing refcount of 1000: 0 -> 1
+run: {2: ("address" "array" "address" "number")} <- new {(address number): "type"}, {3: "literal"}
+mem: incrementing refcount of 1002: 0 -> 1
+run: {2: ("address" "array" "address" "number"), "lookup": ()} <- put-index {2: ("address" "array" "address" "number"), "lookup": ()}, {0: "literal"}, {1: ("address" "number")}
# put-index increments refcount
+mem: incrementing refcount of 1000: 1 -> 2
:(after "Write Memory in PUT_INDEX in Run")
update_any_refcounts(element, value);
:(scenario refcounts_maybe_convert)
exclusive-container foo [
x:num
p:address:num
]
def main [
1:address:num <- new number:type
2:foo <- merge 1/p, 1:address:num
4:address:num, 5:bool <- maybe-convert 2:foo, 1:variant/p
]
+run: {1: ("address" "number")} <- new {number: "type"}
+mem: incrementing refcount of 1000: 0 -> 1
# merging in an address increments refcount
+run: {2: "foo"} <- merge {1: "literal", "p": ()}, {1: ("address" "number")}
+mem: incrementing refcount of 1000: 1 -> 2
+run: {4: ("address" "number")}, {5: "boolean"} <- maybe-convert {2: "foo"}, {1: "variant", "p": ()}
# maybe-convert increments refcount on success
+mem: incrementing refcount of 1000: 2 -> 3
:(after "Write Memory in Successful MAYBE_CONVERT")
// TODO: double-check data here as well
vector<double> data;
for (int i = 0; i < size_of(product); ++i)
data.push_back(get_or_insert(Memory, base_address+/*skip tag*/1+i));
update_any_refcounts(product, data);
//:: manage refcounts in instructions that copy multiple locations at a time
:(scenario refcounts_copy_nested)
container foo [
x:address:num # address inside container
]
def main [
1:address:num <- new number:type
2:address:foo <- new foo:type
*2:address:foo <- put *2:address:foo, x:offset, 1:address:num
3:foo <- copy *2:address:foo
]
+transform: compute address offsets for container foo
+transform: checking container foo, element 0
+transform: address at offset 0
+run: {1: ("address" "number")} <- new {number: "type"}
+mem: incrementing refcount of 1000: 0 -> 1
+run: {2: ("address" "foo"), "lookup": ()} <- put {2: ("address" "foo"), "lookup": ()}, {x: "offset"}, {1: ("address" "number")}
+mem: incrementing refcount of 1000: 1 -> 2
# copying a container increments refcounts of any contained addresses
+run: {3: "foo"} <- copy {2: ("address" "foo"), "lookup": ()}
+mem: incrementing refcount of 1000: 2 -> 3
:(after "End type_tree Definition")
struct address_element_info {
int offset; // where inside a container type (after flattening nested containers!) the address lies
const type_tree* payload_type; // all the information we need to compute sizes of items inside an address inside a container. Doesn't need to be a full-scale reagent, since an address inside a container can never be an array, and arrays are the only type that need to know their location to compute their size.
address_element_info(int o, const type_tree* p) {
offset = o;
payload_type = p;
}
address_element_info(const address_element_info& other) {
offset = other.offset;
payload_type = other.payload_type ? new type_tree(*other.payload_type) : NULL;
}
~address_element_info() {
if (payload_type) {
delete payload_type;
payload_type = NULL;
}
}
address_element_info& operator=(const address_element_info& other) {
offset = other.offset;
if (payload_type) delete payload_type;
payload_type = other.payload_type ? new type_tree(*other.payload_type) : NULL;
return *this;
}
};
// For exclusive containers we might sometimes have an address at some offset
// if some other offset has a specific tag. This struct encapsulates such
// guards.
struct tag_condition_info {
int offset;
int tag;
tag_condition_info(int o, int t) :offset(o), tag(t) {}
};
:(before "End container_metadata Fields")
// a list of facts of the form:
//
// IF offset o1 has tag t2 AND offset o2 has tag t2 AND .., THEN
// for all address_element_infos:
// you need to update refcounts for the address at offset pointing to a payload of type payload_type (just in case we need to abandon something in the process)
map<set<tag_condition_info>, set<address_element_info> > address;
:(code)
bool operator<(const set<tag_condition_info>& a, const set<tag_condition_info>& b) {
if (a.size() != b.size()) return a.size() < b.size();
for (set<tag_condition_info>::const_iterator pa = a.begin(), pb = b.begin(); pa != a.end(); ++pa, ++pb) {
if (pa->offset != pb->offset) return pa->offset < pb->offset;
if (pa->tag != pb->tag) return pa->tag < pb->tag;
}
return false; // equal
}
bool operator<(const tag_condition_info& a, const tag_condition_info& b) {
if (a.offset != b.offset) return a.offset < b.offset;
if (a.tag != b.tag) return a.tag < b.tag;
return false; // equal
}
bool operator<(const set<address_element_info>& a, const set<address_element_info>& b) {
if (a.size() != b.size()) return a.size() < b.size();
for (set<address_element_info>::const_iterator pa = a.begin(), pb = b.begin(); pa != a.end(); ++pa, ++pb) {
if (pa->offset != pb->offset) return pa->offset < pb->offset;
}
return false; // equal
}
bool operator<(const address_element_info& a, const address_element_info& b) {
if (a.offset != b.offset) return a.offset < b.offset;
return false; // equal
}
//: populate metadata.address in a separate transform, because it requires
//: already knowing the sizes of all types
:(after "Transform.push_back(compute_container_sizes)")
Transform.push_back(compute_container_address_offsets);
:(code)
void compute_container_address_offsets(const recipe_ordinal r) {
recipe& caller = get(Recipe, r);
trace(9992, "transform") << "--- compute address offsets for " << caller.name << end();
for (int i = 0; i < SIZE(caller.steps); ++i) {
instruction& inst = caller.steps.at(i);
trace(9993, "transform") << "- compute address offsets for " << to_string(inst) << end();
for (int i = 0; i < SIZE(inst.ingredients); ++i)
compute_container_address_offsets(inst.ingredients.at(i));
for (int i = 0; i < SIZE(inst.products); ++i)
compute_container_address_offsets(inst.products.at(i));
}
}
void compute_container_address_offsets(reagent& r) {
if (is_literal(r) || is_dummy(r)) return;
compute_container_address_offsets(r.type);
if (contains_key(Container_metadata, r.type))
r.metadata = get(Container_metadata, r.type);
}
// the recursive structure of this function needs to exactly match
// compute_container_sizes
void compute_container_address_offsets(const type_tree* type) {
if (!type) return;
if (!type->atom) {
assert(type->left->atom);
if (type->left->name == "address") {
compute_container_address_offsets(type->right);
}
else if (type->left->name == "array") {
const type_tree* element_type = type->right;
// hack: support both array:num:3 and array:address:num
if (!element_type->atom && element_type->right && element_type->right->atom && is_integer(element_type->right->name))
element_type = element_type->left;
compute_container_address_offsets(element_type);
}
// End compute_container_address_offsets Non-atom Cases
}
if (!contains_key(Type, root_type(type)->value)) return; // error raised elsewhere
type_info& info = get(Type, root_type(type)->value);
if (info.kind == CONTAINER) {
compute_container_address_offsets(info, type);
}
if (info.kind == EXCLUSIVE_CONTAINER) {
compute_exclusive_container_address_offsets(info, type);
}
}
void compute_container_address_offsets(const type_info& container_info, const type_tree* full_type) {
container_metadata& metadata = get(Container_metadata, full_type);
if (!metadata.address.empty()) return;
trace(9994, "transform") << "compute address offsets for container " << container_info.name << end();
append_addresses(0, full_type, metadata.address, set<tag_condition_info>());
}
void compute_exclusive_container_address_offsets(const type_info& exclusive_container_info, const type_tree* full_type) {
container_metadata& metadata = get(Container_metadata, full_type);
trace(9994, "transform") << "compute address offsets for exclusive container " << exclusive_container_info.name << end();
for (int tag = 0; tag < SIZE(exclusive_container_info.elements); ++tag) {
set<tag_condition_info> key;
key.insert(tag_condition_info(/*tag is at offset*/0, tag));
append_addresses(/*skip tag offset*/1, variant_type(full_type, tag).type, metadata.address, key);
}
}
void append_addresses(int base_offset, const type_tree* type, map<set<tag_condition_info>, set<address_element_info> >& out, const set<tag_condition_info>& key) {
if (is_mu_address(type)) {
get_or_insert(out, key).insert(address_element_info(base_offset, new type_tree(*type->right)));
return;
}
const type_tree* root = root_type(type);
const type_info& info = get(Type, root->value);
if (info.kind == CONTAINER) {
for (int curr_index = 0, curr_offset = base_offset; curr_index < SIZE(info.elements); ++curr_index) {
trace(9993, "transform") << "checking container " << root->name << ", element " << curr_index << end();
reagent/*copy*/ element = element_type(type, curr_index); // not root
// Compute Container Address Offset(element)
if (is_mu_address(element)) {
trace(9993, "transform") << "address at offset " << curr_offset << end();
get_or_insert(out, key).insert(address_element_info(curr_offset, new type_tree(*element.type->right)));
++curr_offset;
}
else if (is_mu_container(element)) {
append_addresses(curr_offset, element.type, out, key);
curr_offset += size_of(element);
}
else if (is_mu_exclusive_container(element)) {
const type_tree* element_root_type = root_type(element.type);
const type_info& element_info = get(Type, element_root_type->value);
for (int tag = 0; tag < SIZE(element_info.elements); ++tag) {
set<tag_condition_info> new_key = key;
new_key.insert(tag_condition_info(curr_offset, tag));
if (!contains_key(out, new_key))
append_addresses(curr_offset+/*skip tag*/1, variant_type(element.type, tag).type, out, new_key);
}
curr_offset += size_of(element);
}
else {
// non-address primitive
++curr_offset;
}
}
}
else if (info.kind == EXCLUSIVE_CONTAINER) {
for (int tag = 0; tag < SIZE(info.elements); ++tag) {
set<tag_condition_info> new_key = key;
new_key.insert(tag_condition_info(base_offset, tag));
if (!contains_key(out, new_key))
append_addresses(base_offset+/*skip tag*/1, variant_type(type, tag).type, out, new_key);
}
}
}
int payload_size(const type_tree* type) {
assert(type->name == "address");
assert(type->right->name != "array");
return size_of(type->right) + /*refcount*/1;
}
//: for the following unit tests we'll do the work of the transform by hand
:(before "End Unit Tests")
void test_container_address_offsets_empty() {
int old_size = SIZE(Container_metadata);
// define a container with no addresses
reagent r("x:point");
compute_container_sizes(r); // need to first pre-populate the metadata
// scan
compute_container_address_offsets(r);
// global metadata contains just the entry for foo
// no entries for non-container types or other junk
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
// the reagent we scanned knows it has no addresses
CHECK(r.metadata.address.empty());
// the global table contains an identical entry
CHECK(contains_key(Container_metadata, r.type));
CHECK(get(Container_metadata, r.type).address.empty());
// compute_container_address_offsets creates no new entries
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
}
void test_container_address_offsets() {
int old_size = SIZE(Container_metadata);
// define a container with an address at offset 0 that we have the size for
run("container foo [\n"
" x:address:num\n"
"]\n");
reagent r("x:foo");
compute_container_sizes(r); // need to first pre-populate the metadata
// scan
compute_container_address_offsets(r);
// global metadata contains just the entry for foo
// no entries for non-container types or other junk
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
// the reagent we scanned knows it has an address at offset 0
CHECK_EQ(SIZE(r.metadata.address), 1);
CHECK(contains_key(r.metadata.address, set<tag_condition_info>()));
const set<address_element_info>& address_offsets = get(r.metadata.address, set<tag_condition_info>()); // unconditional for containers
CHECK_EQ(SIZE(address_offsets), 1);
CHECK_EQ(address_offsets.begin()->offset, 0);
CHECK(address_offsets.begin()->payload_type->atom);
CHECK_EQ(address_offsets.begin()->payload_type->name, "number");
// the global table contains an identical entry
CHECK(contains_key(Container_metadata, r.type));
const set<address_element_info>& address_offsets2 = get(get(Container_metadata, r.type).address, set<tag_condition_info>());
CHECK_EQ(SIZE(address_offsets2), 1);
CHECK_EQ(address_offsets2.begin()->offset, 0);
CHECK(address_offsets2.begin()->payload_type->atom);
CHECK_EQ(address_offsets2.begin()->payload_type->name, "number");
// compute_container_address_offsets creates no new entries
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
}
void test_container_address_offsets_2() {
int old_size = SIZE(Container_metadata);
// define a container with an address at offset 1 that we have the size for
run("container foo [\n"
" x:num\n"
" y:address:num\n"
"]\n");
reagent r("x:foo");
compute_container_sizes(r); // need to first pre-populate the metadata
// global metadata contains just the entry for foo
// no entries for non-container types or other junk
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
// scan
compute_container_address_offsets(r);
// compute_container_address_offsets creates no new entries
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
// the reagent we scanned knows it has an address at offset 1
CHECK_EQ(SIZE(r.metadata.address), 1);
CHECK(contains_key(r.metadata.address, set<tag_condition_info>()));
const set<address_element_info>& address_offsets = get(r.metadata.address, set<tag_condition_info>());
CHECK_EQ(SIZE(address_offsets), 1);
CHECK_EQ(address_offsets.begin()->offset, 1); //
CHECK(address_offsets.begin()->payload_type->atom);
CHECK_EQ(address_offsets.begin()->payload_type->name, "number");
// the global table contains an identical entry
CHECK(contains_key(Container_metadata, r.type));
const set<address_element_info>& address_offsets2 = get(get(Container_metadata, r.type).address, set<tag_condition_info>());
CHECK_EQ(SIZE(address_offsets2), 1);
CHECK_EQ(address_offsets2.begin()->offset, 1); //
CHECK(address_offsets2.begin()->payload_type->atom);
CHECK_EQ(address_offsets2.begin()->payload_type->name, "number");
}
void test_container_address_offsets_nested() {
int old_size = SIZE(Container_metadata);
// define a container with a nested container containing an address
run("container foo [\n"
" x:address:num\n"
" y:num\n"
"]\n"
"container bar [\n"
" p:point\n"
" f:foo\n" // nested container containing address
"]\n");
reagent r("x:bar");
compute_container_sizes(r); // need to first pre-populate the metadata
// global metadata contains entries for bar and included types: point and foo
// no entries for non-container types or other junk
CHECK_EQ(SIZE(Container_metadata)-old_size, 3);
// scan
compute_container_address_offsets(r);
// the reagent we scanned knows it has an address at offset 2
CHECK_EQ(SIZE(r.metadata.address), 1);
CHECK(contains_key(r.metadata.address, set<tag_condition_info>()));
const set<address_element_info>& address_offsets = get(r.metadata.address, set<tag_condition_info>());
CHECK_EQ(SIZE(address_offsets), 1);
CHECK_EQ(address_offsets.begin()->offset, 2); //
CHECK(address_offsets.begin()->payload_type->atom);
CHECK_EQ(address_offsets.begin()->payload_type->name, "number");
// the global table also knows its address offset
CHECK(contains_key(Container_metadata, r.type));
const set<address_element_info>& address_offsets2 = get(get(Container_metadata, r.type).address, set<tag_condition_info>());
CHECK_EQ(SIZE(address_offsets2), 1);
CHECK_EQ(address_offsets2.begin()->offset, 2); //
CHECK(address_offsets2.begin()->payload_type->atom);
CHECK_EQ(address_offsets2.begin()->payload_type->name, "number");
// compute_container_address_offsets creates no new entries
CHECK_EQ(SIZE(Container_metadata)-old_size, 3);
}
void test_container_address_offsets_from_address() {
int old_size = SIZE(Container_metadata);
// define a container with an address at offset 0
run("container foo [\n"
" x:address:num\n"
"]\n");
reagent r("x:address:foo");
compute_container_sizes(r); // need to first pre-populate the metadata
// global metadata contains just the entry for foo
// no entries for non-container types or other junk
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
// scan an address to the container
compute_container_address_offsets(r);
// compute_container_address_offsets creates no new entries
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
// scanning precomputed metadata for the container
reagent container("x:foo");
CHECK(contains_key(Container_metadata, container.type));
const set<address_element_info>& address_offsets2 = get(get(Container_metadata, container.type).address, set<tag_condition_info>());
CHECK_EQ(SIZE(address_offsets2), 1);
CHECK_EQ(address_offsets2.begin()->offset, 0);
CHECK(address_offsets2.begin()->payload_type->atom);
CHECK_EQ(address_offsets2.begin()->payload_type->name, "number");
}
void test_container_address_offsets_from_array() {
int old_size = SIZE(Container_metadata);
// define a container with an address at offset 0
run("container foo [\n"
" x:address:num\n"
"]\n");
reagent r("x:array:foo");
compute_container_sizes(r); // need to first pre-populate the metadata
// global metadata contains just the entry for foo
// no entries for non-container types or other junk
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
// scan an array of the container
compute_container_address_offsets(r);
// compute_container_address_offsets creates no new entries
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
// scanning precomputed metadata for the container
reagent container("x:foo");
CHECK(contains_key(Container_metadata, container.type));
const set<address_element_info>& address_offsets2 = get(get(Container_metadata, container.type).address, set<tag_condition_info>());
CHECK_EQ(SIZE(address_offsets2), 1);
CHECK_EQ(address_offsets2.begin()->offset, 0);
CHECK(address_offsets2.begin()->payload_type->atom);
CHECK_EQ(address_offsets2.begin()->payload_type->name, "number");
}
void test_container_address_offsets_from_address_to_array() {
int old_size = SIZE(Container_metadata);
// define a container with an address at offset 0
run("container foo [\n"
" x:address:num\n"
"]\n");
reagent r("x:address:array:foo");
compute_container_sizes(r); // need to first pre-populate the metadata
// global metadata contains just the entry for foo
// no entries for non-container types or other junk
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
// scan an address to an array of the container
compute_container_address_offsets(r);
// compute_container_address_offsets creates no new entries
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
// scanning precomputed metadata for the container
reagent container("x:foo");
CHECK(contains_key(Container_metadata, container.type));
const set<address_element_info>& address_offsets2 = get(get(Container_metadata, container.type).address, set<tag_condition_info>());
CHECK_EQ(SIZE(address_offsets2), 1);
CHECK_EQ(address_offsets2.begin()->offset, 0);
CHECK(address_offsets2.begin()->payload_type->atom);
CHECK_EQ(address_offsets2.begin()->payload_type->name, "number");
}
void test_container_address_offsets_from_static_array() {
int old_size = SIZE(Container_metadata);
// define a container with an address at offset 0
run("container foo [\n"
" x:address:num\n"
"]\n");
reagent r("x:array:foo:10");
compute_container_sizes(r); // need to first pre-populate the metadata
// global metadata contains just the entry for foo
// no entries for non-container types or other junk
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
// scan a static array of the container
compute_container_address_offsets(r);
// compute_container_address_offsets creates no new entries
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
// scanning precomputed metadata for the container
reagent container("x:foo");
CHECK(contains_key(Container_metadata, container.type));
const set<address_element_info>& address_offsets2 = get(get(Container_metadata, container.type).address, set<tag_condition_info>());
CHECK_EQ(SIZE(address_offsets2), 1);
CHECK_EQ(address_offsets2.begin()->offset, 0);
CHECK(address_offsets2.begin()->payload_type->atom);
CHECK_EQ(address_offsets2.begin()->payload_type->name, "number");
}
void test_container_address_offsets_from_address_to_static_array() {
int old_size = SIZE(Container_metadata);
// define a container with an address at offset 0
run("container foo [\n"
" x:address:num\n"
"]\n");
reagent r("x:address:array:foo:10");
compute_container_sizes(r); // need to first pre-populate the metadata
// global metadata contains just the entry for foo
// no entries for non-container types or other junk
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
// scan an address to a static array of the container
compute_container_address_offsets(r);
// compute_container_address_offsets creates no new entries
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
// scanning precomputed metadata for the container
reagent container("x:foo");
CHECK(contains_key(Container_metadata, container.type));
const set<address_element_info>& address_offsets2 = get(get(Container_metadata, container.type).address, set<tag_condition_info>());
CHECK_EQ(SIZE(address_offsets2), 1);
CHECK_EQ(address_offsets2.begin()->offset, 0);
CHECK(address_offsets2.begin()->payload_type->atom);
CHECK_EQ(address_offsets2.begin()->payload_type->name, "number");
}
void test_container_address_offsets_from_repeated_address_and_array_types() {
int old_size = SIZE(Container_metadata);
// define a container with an address at offset 0
run("container foo [\n"
" x:address:num\n"
"]\n");
// scan a deep nest of 'address' and 'array' types modifying a container
reagent r("x:address:array:address:address:array:foo:10");
compute_container_sizes(r); // need to first pre-populate the metadata
// global metadata contains just the entry for foo
// no entries for non-container types or other junk
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
compute_container_address_offsets(r);
// compute_container_address_offsets creates no new entries
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
// scanning precomputed metadata for the container
reagent container("x:foo");
CHECK(contains_key(Container_metadata, container.type));
const set<address_element_info>& address_offsets2 = get(get(Container_metadata, container.type).address, set<tag_condition_info>());
CHECK_EQ(SIZE(address_offsets2), 1);
CHECK_EQ(address_offsets2.begin()->offset, 0);
CHECK(address_offsets2.begin()->payload_type->atom);
CHECK_EQ(address_offsets2.begin()->payload_type->name, "number");
}
//: use metadata.address to update refcounts within containers, arrays and
//: exclusive containers
:(before "End Increment Refcounts(canonized_x)")
if (is_mu_container(canonized_x) || is_mu_exclusive_container(canonized_x)) {
const container_metadata& metadata = get(Container_metadata, canonized_x.type);
for (map<set<tag_condition_info>, set<address_element_info> >::const_iterator p = metadata.address.begin(); p != metadata.address.end(); ++p) {
if (!all_match(data, p->first)) continue;
for (set<address_element_info>::const_iterator info = p->second.begin(); info != p->second.end(); ++info)
increment_refcount(data.at(info->offset));
}
}
:(before "End Decrement Refcounts(canonized_x)")
if (is_mu_container(canonized_x) || is_mu_exclusive_container(canonized_x)) {
trace(9999, "mem") << "need to read old value of '" << to_string(canonized_x) << "' to figure out what refcounts to decrement" << end();
// read from canonized_x but without canonizing again
// todo: inline without running canonize all over again
reagent/*copy*/ tmp = canonized_x;
tmp.properties.push_back(pair<string, string_tree*>("raw", NULL));
vector<double> data = read_memory(tmp);
trace(9999, "mem") << "done reading old value of '" << to_string(canonized_x) << "'" << end();
const container_metadata& metadata = get(Container_metadata, canonized_x.type);
for (map<set<tag_condition_info>, set<address_element_info> >::const_iterator p = metadata.address.begin(); p != metadata.address.end(); ++p) {
if (!all_match(data, p->first)) continue;
for (set<address_element_info>::const_iterator info = p->second.begin(); info != p->second.end(); ++info)
decrement_refcount(get_or_insert(Memory, canonized_x.value + info->offset), info->payload_type, size_of(info->payload_type)+/*refcount*/1);
}
}
:(code)
bool all_match(const vector<double>& data, const set<tag_condition_info>& conditions) {
for (set<tag_condition_info>::const_iterator p = conditions.begin(); p != conditions.end(); ++p) {
if (data.at(p->offset) != p->tag)
return false;
}
return true;
}
:(scenario refcounts_put_container)
container foo [
a:bar # contains an address
]
container bar [
x:address:num
]
def main [
1:address:num <- new number:type
2:bar <- merge 1:address:num
3:address:foo <- new foo:type
*3:address:foo <- put *3:address:foo, a:offset, 2:bar
]
+run: {1: ("address" "number")} <- new {number: "type"}
+mem: incrementing refcount of 1000: 0 -> 1
+run: {2: "bar"} <- merge {1: ("address" "number")}
+mem: incrementing refcount of 1000: 1 -> 2
+run: {3: ("address" "foo"), "lookup": ()} <- put {3: ("address" "foo"), "lookup": ()}, {a: "offset"}, {2: "bar"}
# put increments refcount inside container
+mem: incrementing refcount of 1000: 2 -> 3
:(scenario refcounts_put_index_array)
container bar [
x:address:num
]
def main [
1:address:num <- new number:type
2:bar <- merge 1:address:num
3:address:array:bar <- new bar:type, 3
*3:address:array:bar <- put-index *3:address:array:bar, 0, 2:bar
]
+run: {1: ("address" "number")} <- new {number: "type"}
+mem: incrementing refcount of 1000: 0 -> 1
+run: {2: "bar"} <- merge {1: ("address" "number")}
+mem: incrementing refcount of 1000: 1 -> 2
+run: {3: ("address" "array" "bar"), "lookup": ()} <- put-index {3: ("address" "array" "bar"), "lookup": ()}, {0: "literal"}, {2: "bar"}
# put-index increments refcount inside container
+mem: incrementing refcount of 1000: 2 -> 3
:(scenario refcounts_maybe_convert_container)
exclusive-container foo [
a:num
b:bar # contains an address
]
container bar [
x:address:num
]
def main [
1:address:num <- new number:type
2:bar <- merge 1:address:num
3:foo <- merge 1/b, 2:bar
5:bar, 6:bool <- maybe-convert 3:foo, 1:variant/b
]
+run: {1: ("address" "number")} <- new {number: "type"}
+mem: incrementing refcount of 1000: 0 -> 1
+run: {2: "bar"} <- merge {1: ("address" "number")}
+mem: incrementing refcount of 1000: 1 -> 2
+run: {3: "foo"} <- merge {1: "literal", "b": ()}, {2: "bar"}
+mem: incrementing refcount of 1000: 2 -> 3
+run: {5: "bar"}, {6: "boolean"} <- maybe-convert {3: "foo"}, {1: "variant", "b": ()}
+mem: incrementing refcount of 1000: 3 -> 4
:(scenario refcounts_copy_doubly_nested)
container foo [
a:bar # no addresses
b:curr # contains addresses
]
container bar [
x:num
y:num
]
container curr [
x:num
y:address:num # address inside container inside container
]
def main [
1:address:num <- new number:type
2:address:curr <- new curr:type
*2:address:curr <- put *2:address:curr, 1:offset/y, 1:address:num
3:address:foo <- new foo:type
*3:address:foo <- put *3:address:foo, 1:offset/b, *2:address:curr
4:foo <- copy *3:address:foo
]
+transform: compute address offsets for container foo
+transform: checking container foo, element 1
+transform: address at offset 3
+run: {1: ("address" "number")} <- new {number: "type"}
+mem: incrementing refcount of 1000: 0 -> 1
# storing an address in a container updates its refcount
+run: {2: ("address" "curr"), "lookup": ()} <- put {2: ("address" "curr"), "lookup": ()}, {1: "offset", "y": ()}, {1: ("address" "number")}
+mem: incrementing refcount of 1000: 1 -> 2
# storing a container in a container updates refcounts of any contained addresses
+run: {3: ("address" "foo"), "lookup": ()} <- put {3: ("address" "foo"), "lookup": ()}, {1: "offset", "b": ()}, {2: ("address" "curr"), "lookup": ()}
+mem: incrementing refcount of 1000: 2 -> 3
# copying a container containing a container containing an address updates refcount
+run: {4: "foo"} <- copy {3: ("address" "foo"), "lookup": ()}
+mem: incrementing refcount of 1000: 3 -> 4
:(scenario refcounts_copy_exclusive_container_within_container)
container foo [
a:num
b:bar
]
exclusive-container bar [
x:num
y:num
z:address:num
]
def main [
1:address:num <- new number:type
2:bar <- merge 0/x, 34
3:foo <- merge 12, 2:bar
5:bar <- merge 1/y, 35
6:foo <- merge 13, 5:bar
8:bar <- merge 2/z, 1:address:num
9:foo <- merge 14, 8:bar
11:foo <- copy 9:foo
]
+run: {1: ("address" "number")} <- new {number: "type"}
+mem: incrementing refcount of 1000: 0 -> 1
# no change while merging items of other types
+run: {8: "bar"} <- merge {2: "literal", "z": ()}, {1: ("address" "number")}
+mem: incrementing refcount of 1000: 1 -> 2
+run: {9: "foo"} <- merge {14: "literal"}, {8: "bar"}
+mem: incrementing refcount of 1000: 2 -> 3
+run: {11: "foo"} <- copy {9: "foo"}
+mem: incrementing refcount of 1000: 3 -> 4
:(scenario refcounts_copy_container_within_exclusive_container)
exclusive-container foo [
a:num
b:bar
]
container bar [
x:num
y:num
z:address:num
]
def main [
1:address:num <- new number:type
2:foo <- merge 0/a, 34
6:foo <- merge 0/a, 35
10:bar <- merge 2/x, 15/y, 1:address:num
13:foo <- merge 1/b, 10:bar
17:foo <- copy 13:foo
]
+run: {1: ("address" "number")} <- new {number: "type"}
+mem: incrementing refcount of 1000: 0 -> 1
# no change while merging items of other types
+run: {10: "bar"} <- merge {2: "literal", "x": ()}, {15: "literal", "y": ()}, {1: ("address" "number")}
+mem: incrementing refcount of 1000: 1 -> 2
+run: {13: "foo"} <- merge {1: "literal", "b": ()}, {10: "bar"}
+mem: incrementing refcount of 1000: 2 -> 3
+run: {17: "foo"} <- copy {13: "foo"}
+mem: incrementing refcount of 1000: 3 -> 4
:(scenario refcounts_copy_exclusive_container_within_exclusive_container)
exclusive-container foo [
a:num
b:bar
]
exclusive-container bar [
x:num
y:address:num
]
def main [
1:address:num <- new number:type
10:foo <- merge 1/b, 1/y, 1:address:num
20:foo <- copy 10:foo
]
+run: {1: ("address" "number")} <- new {number: "type"}
+mem: incrementing refcount of 1000: 0 -> 1
# no change while merging items of other types
+run: {10: "foo"} <- merge {1: "literal", "b": ()}, {1: "literal", "y": ()}, {1: ("address" "number")}
+mem: incrementing refcount of 1000: 1 -> 2
+run: {20: "foo"} <- copy {10: "foo"}
+mem: incrementing refcount of 1000: 2 -> 3
:(scenario refcounts_copy_array_within_container)
container foo [
x:address:array:num
]
def main [
1:address:array:num <- new number:type, 3
2:foo <- merge 1:address:array:num
3:address:array:num <- new number:type, 5
2:foo <- merge 3:address:array:num
]
+run: {1: ("address" "array" "number")} <- new {number: "type"}, {3: "literal"}
+mem: incrementing refcount of 1000: 0 -> 1
+run: {2: "foo"} <- merge {1: ("address" "array" "number")}
+mem: incrementing refcount of 1000: 1 -> 2
+run: {2: "foo"} <- merge {3: ("address" "array" "number")}
+mem: decrementing refcount of 1000: 2 -> 1
:(scenario refcounts_handle_exclusive_containers_with_different_tags)
container foo1 [
x:address:num
y:num
]
container foo2 [
x:num
y:address:num
]
exclusive-container bar [
a:foo1
b:foo2
]
def main [
1:address:num <- copy 12000/unsafe # pretend allocation
*1:address:num <- copy 34
2:bar <- merge 0/foo1, 1:address:num, 97
5:address:num <- copy 13000/unsafe # pretend allocation
*5:address:num <- copy 35
6:bar <- merge 1/foo2, 98, 5:address:num
2:bar <- copy 6:bar
]
+run: {2: "bar"} <- merge {0: "literal", "foo1": ()}, {1: ("address" "number")}, {97: "literal"}
+mem: incrementing refcount of 12000: 1 -> 2
+run: {6: "bar"} <- merge {1: "literal", "foo2": ()}, {98: "literal"}, {5: ("address" "number")}
+mem: incrementing refcount of 13000: 1 -> 2
+run: {2: "bar"} <- copy {6: "bar"}
+mem: incrementing refcount of 13000: 2 -> 3
+mem: decrementing refcount of 12000: 2 -> 1
:(code)
bool is_mu_container(const reagent& r) {
return is_mu_container(r.type);
}
bool is_mu_container(const type_tree* type) {
if (!type) return false;
// End is_mu_container(type) Special-cases
if (type->value == 0) return false;
type_info& info = get(Type, type->value);
return info.kind == CONTAINER;
}
bool is_mu_exclusive_container(const reagent& r) {
return is_mu_exclusive_container(r.type);
}
bool is_mu_exclusive_container(const type_tree* type) {
if (!type) return false;
// End is_mu_exclusive_container(type) Special-cases
if (type->value == 0) return false;
type_info& info = get(Type, type->value);
return info.kind == EXCLUSIVE_CONTAINER;
}
|