1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
//: Run a second routine concurrently using 'start-running', without any
//: guarantees on how the operations in each are interleaved with each other.
:(scenario scheduler)
recipe f1 [
start-running f2:recipe
1:integer <- copy 3:literal
]
recipe f2 [
2:integer <- copy 4:literal
]
+schedule: f1
+schedule: f2
//: first, add a deadline to run(routine)
//: these changes are ugly and brittle; just close your nose and get through the next few lines
:(replace "void run_current_routine()")
void run_current_routine(size_t time_slice)
:(replace "while (!Current_routine->completed())" following "void run_current_routine(size_t time_slice)")
size_t ninstrs = 0;
while (Current_routine->state == RUNNING && ninstrs < time_slice)
:(after "Running One Instruction")
ninstrs++;
//: now the rest of the scheduler is clean
:(before "struct routine")
enum routine_state {
RUNNING,
COMPLETED,
// End routine States
};
:(before "End routine Fields")
enum routine_state state;
:(before "End routine Constructor")
state = RUNNING;
:(before "End Globals")
vector<routine*> Routines;
index_t Current_routine_index = 0;
size_t Scheduling_interval = 500;
:(before "End Setup")
Scheduling_interval = 500;
:(replace{} "void run(recipe_number r)")
void run(recipe_number r) {
Routines.push_back(new routine(r));
Current_routine_index = 0, Current_routine = Routines[0];
while (!all_routines_done()) {
skip_to_next_routine();
//? cout << "scheduler: " << Current_routine_index << '\n'; //? 1
assert(Current_routine);
assert(Current_routine->state == RUNNING);
trace("schedule") << current_recipe_name();
run_current_routine(Scheduling_interval);
if (Current_routine->completed())
Current_routine->state = COMPLETED;
// End Scheduler State Transitions
}
//? cout << "done with run\n"; //? 1
}
:(code)
bool all_routines_done() {
for (index_t i = 0; i < Routines.size(); ++i) {
//? cout << "routine " << i << ' ' << Routines[i]->state << '\n'; //? 1
if (Routines[i]->state == RUNNING) {
return false;
}
}
return true;
}
// skip Current_routine_index past non-RUNNING routines
void skip_to_next_routine() {
assert(!Routines.empty());
assert(Current_routine_index < Routines.size());
for (index_t i = (Current_routine_index+1)%Routines.size(); i != Current_routine_index; i = (i+1)%Routines.size()) {
if (Routines[i]->state == RUNNING) {
//? cout << "switching to " << i << '\n'; //? 1
Current_routine_index = i;
Current_routine = Routines[i];
return;
}
}
//? cout << "all done\n"; //? 1
}
:(before "End Teardown")
for (index_t i = 0; i < Routines.size(); ++i)
delete Routines[i];
Routines.clear();
//:: To schedule new routines to run, call 'start-running'.
//: 'start-running' will return a unique id for the routine that was created.
:(before "End routine Fields")
index_t id;
:(before "End Globals")
index_t Next_routine_id = 1;
:(before "End Setup")
Next_routine_id = 1;
:(before "End routine Constructor")
id = Next_routine_id;
Next_routine_id++;
:(before "End Primitive Recipe Declarations")
START_RUNNING,
:(before "End Primitive Recipe Numbers")
Recipe_number["start-running"] = START_RUNNING;
:(before "End Primitive Recipe Implementations")
case START_RUNNING: {
trace("run") << "ingredient 0 is " << current_instruction().ingredients[0].name;
assert(!current_instruction().ingredients[0].initialized);
routine* new_routine = new routine(Recipe_number[current_instruction().ingredients[0].name]);
// populate ingredients
for (index_t i = 1; i < current_instruction().ingredients.size(); ++i)
new_routine->calls.top().ingredient_atoms.push_back(read_memory(current_instruction().ingredients[i]));
Routines.push_back(new_routine);
if (!current_instruction().products.empty()) {
vector<long long int> result;
result.push_back(new_routine->id);
write_memory(current_instruction().products[0], result);
}
break;
}
:(scenario scheduler_runs_single_routine)
% Scheduling_interval = 1;
recipe f1 [
1:integer <- copy 0:literal
2:integer <- copy 0:literal
]
+schedule: f1
+run: instruction f1/0
+schedule: f1
+run: instruction f1/1
:(scenario scheduler_interleaves_routines)
% Scheduling_interval = 1;
recipe f1 [
start-running f2:recipe
1:integer <- copy 0:literal
2:integer <- copy 0:literal
]
recipe f2 [
3:integer <- copy 4:literal
4:integer <- copy 4:literal
]
+schedule: f1
+run: instruction f1/0
+schedule: f2
+run: instruction f2/0
+schedule: f1
+run: instruction f1/1
+schedule: f2
+run: instruction f2/1
+schedule: f1
+run: instruction f1/2
:(scenario start_running_takes_args)
recipe f1 [
start-running f2:recipe, 3:literal
]
recipe f2 [
1:integer <- next-ingredient
2:integer <- add 1:integer, 1:literal
]
+mem: storing 4 in location 2
:(scenario start_running_returns_routine_id)
recipe f1 [
1:integer <- start-running f2:recipe
]
recipe f2 [
12:integer <- copy 44:literal
]
+mem: storing 2 in location 1
:(scenario scheduler_skips_completed_routines)
# this scenario will require some careful setup in escaped C++
# (straining our tangle capabilities to near-breaking point)
% recipe_number f1 = load("recipe f1 [\n1:integer <- copy 0:literal\n]").front();
% recipe_number f2 = load("recipe f2 [\n2:integer <- copy 0:literal\n]").front();
% Routines.push_back(new routine(f1)); // f1 meant to run
% Routines.push_back(new routine(f2));
% Routines.back()->state = COMPLETED; // f2 not meant to run
#? % Trace_stream->dump_layer = "all";
# must have at least one routine without escaping
recipe f3 [
3:integer <- copy 0:literal
]
# by interleaving '+' lines with '-' lines, we allow f1 and f3 to run in any order
+schedule: f1
+mem: storing 0 in location 1
-schedule: f2
-mem: storing 0 in location 2
+schedule: f3
+mem: storing 0 in location 3
:(scenario scheduler_starts_at_middle_of_routines)
% Routines.push_back(new routine(COPY));
% Routines.back()->state = COMPLETED;
recipe f1 [
1:integer <- copy 0:literal
2:integer <- copy 0:literal
]
+schedule: f1
-run: idle
//:: 'routine-state' can tell if a given routine id is running
:(scenario routine_state_test)
% Scheduling_interval = 2;
recipe f1 [
1:integer/child-id <- start-running f2:recipe
12:integer <- copy 0:literal # race condition since we don't care about location 12
# thanks to Scheduling_interval, f2's one instruction runs in between here and completes
2:integer/state <- routine-state 1:integer/child-id
]
recipe f2 [
12:integer <- copy 0:literal
# trying to run a second instruction marks routine as completed
]
# recipe f2 should be in state COMPLETED
+mem: storing 1 in location 2
:(before "End Primitive Recipe Declarations")
ROUTINE_STATE,
:(before "End Primitive Recipe Numbers")
Recipe_number["routine-state"] = ROUTINE_STATE;
:(before "End Primitive Recipe Implementations")
case ROUTINE_STATE: {
vector<long long int> result;
index_t id = read_memory(current_instruction().ingredients[0])[0];
for (index_t i = 0; i < Routines.size(); ++i) {
if (Routines[i]->id == id) {
result.push_back(Routines[i]->state);
write_memory(current_instruction().products[0], result);
break;
}
}
break;
}
|