1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
//: A simple memory allocator to create space for new variables at runtime.
:(scenarios run)
:(scenario new)
# call new two times with identical arguments; you should get back different results
recipe main [
1:address:number/raw <- new number:type
2:address:number/raw <- new number:type
3:boolean/raw <- equal 1:address:number/raw, 2:address:number/raw
]
+mem: storing 0 in location 3
:(before "End Globals")
long long int Reserved_for_tests = 1000;
long long int Memory_allocated_until = Reserved_for_tests;
long long int Initial_memory_per_routine = 100000;
:(before "End Setup")
Memory_allocated_until = Reserved_for_tests;
Initial_memory_per_routine = 100000;
:(before "End routine Fields")
long long int alloc, alloc_max;
:(before "End routine Constructor")
alloc = Memory_allocated_until;
Memory_allocated_until += Initial_memory_per_routine;
alloc_max = Memory_allocated_until;
trace(Primitive_recipe_depth, "new") << "routine allocated memory from " << alloc << " to " << alloc_max;
//:: First handle 'type' operands.
:(before "End Mu Types Initialization")
Type_number["type"] = 0;
:(after "Per-recipe Transforms")
// replace type names with type_numbers
if (inst.operation == Recipe_number["new"]) {
// End NEW Transform Special-cases
// first arg must be of type 'type'
assert(SIZE(inst.ingredients) >= 1);
if (!is_literal(inst.ingredients.at(0)))
raise << "expected literal, got " << inst.ingredients.at(0).to_string() << '\n' << die();
if (inst.ingredients.at(0).properties.at(0).second.at(0) != "type")
raise << "tried to allocate non-type " << inst.ingredients.at(0).to_string() << " in recipe " << Recipe[r].name << '\n' << die();
if (Type_number.find(inst.ingredients.at(0).name) == Type_number.end())
raise << "unknown type " << inst.ingredients.at(0).name << " in recipe " << Recipe[r].name << '\n' << die();
//? cerr << "type " << inst.ingredients.at(0).name << " => " << Type_number[inst.ingredients.at(0).name] << '\n'; //? 1
inst.ingredients.at(0).set_value(Type_number[inst.ingredients.at(0).name]);
trace(Primitive_recipe_depth, "new") << inst.ingredients.at(0).name << " -> " << inst.ingredients.at(0).name;
end_new_transform:;
}
//:: Now implement the primitive recipe.
//: todo: build 'new' in mu itself
:(before "End Primitive Recipe Declarations")
NEW,
:(before "End Primitive Recipe Numbers")
Recipe_number["new"] = NEW;
:(before "End Primitive Recipe Implementations")
case NEW: {
// compute the space we need
long long int size = 0;
long long int array_length = 0;
{
vector<type_number> type;
assert(is_literal(current_instruction().ingredients.at(0)));
type.push_back(current_instruction().ingredients.at(0).value);
//? trace(Primitive_recipe_depth, "mem") << "type " << current_instruction().ingredients.at(0).to_string() << ' ' << type.size() << ' ' << type.back() << " has size " << size_of(type); //? 1
if (SIZE(current_instruction().ingredients) > 1) {
// array
array_length = ingredients.at(1).at(0);
trace(Primitive_recipe_depth, "mem") << "array size is " << array_length;
size = array_length*size_of(type) + /*space for length*/1;
}
else {
// scalar
size = size_of(type);
}
}
// compute the region of memory to return
// really crappy at the moment
ensure_space(size);
const long long int result = Current_routine->alloc;
trace(Primitive_recipe_depth, "mem") << "new alloc: " << result;
//? trace(Primitive_recipe_depth, "mem") << "size: " << size << " locations"; //? 1
// save result
products.resize(1);
products.at(0).push_back(result);
// initialize allocated space
for (long long int address = result; address < result+size; ++address) {
Memory[address] = 0;
}
if (SIZE(current_instruction().ingredients) > 1) {
Memory[result] = array_length;
}
// bump
Current_routine->alloc += size;
// no support for reclaiming memory
assert(Current_routine->alloc <= Current_routine->alloc_max);
break;
}
:(code)
void ensure_space(long long int size) {
assert(size <= Initial_memory_per_routine);
//? cout << Current_routine->alloc << " " << Current_routine->alloc_max << " " << size << '\n'; //? 1
if (Current_routine->alloc + size > Current_routine->alloc_max) {
// waste the remaining space and create a new chunk
Current_routine->alloc = Memory_allocated_until;
Memory_allocated_until += Initial_memory_per_routine;
Current_routine->alloc_max = Memory_allocated_until;
trace(Primitive_recipe_depth, "new") << "routine allocated memory from " << Current_routine->alloc << " to " << Current_routine->alloc_max;
}
}
:(scenario new_initializes)
% Memory_allocated_until = 10;
% Memory[Memory_allocated_until] = 1;
recipe main [
1:address:number <- new number:type
2:number <- copy 1:address:number/deref
]
+mem: storing 0 in location 2
:(scenario new_array)
recipe main [
1:address:array:number/raw <- new number:type, 5:literal
2:address:number/raw <- new number:type
3:number/raw <- subtract 2:address:number/raw, 1:address:array:number/raw
]
+run: 1:address:array:number/raw <- new number:type, 5:literal
+mem: array size is 5
# don't forget the extra location for array size
+mem: storing 6 in location 3
:(scenario new_empty_array)
recipe main [
1:address:array:number/raw <- new number:type, 0:literal
2:address:number/raw <- new number:type
3:number/raw <- subtract 2:address:number/raw, 1:address:array:number/raw
]
+run: 1:address:array:number/raw <- new number:type, 0:literal
+mem: array size is 0
+mem: storing 1 in location 3
//: Make sure that each routine gets a different alloc to start.
:(scenario new_concurrent)
recipe f1 [
start-running f2:recipe
1:address:number/raw <- new number:type
# wait for f2 to complete
{
loop-unless 4:number/raw
}
]
recipe f2 [
2:address:number/raw <- new number:type
# hack: assumes scheduler implementation
3:boolean/raw <- equal 1:address:number/raw, 2:address:number/raw
# signal f2 complete
4:number/raw <- copy 1:literal
]
+mem: storing 0 in location 3
//: If a routine runs out of its initial allocation, it should allocate more.
:(scenario new_overflow)
% Initial_memory_per_routine = 2;
recipe main [
1:address:number/raw <- new number:type
2:address:point/raw <- new point:type # not enough room in initial page
]
+new: routine allocated memory from 1000 to 1002
+new: routine allocated memory from 1002 to 1004
//:: Next, extend 'new' to handle a unicode string literal argument.
:(scenario new_string)
recipe main [
1:address:array:character <- new [abc def]
2:character <- index 1:address:array:character/deref, 5:literal
]
# number code for 'e'
+mem: storing 101 in location 2
:(scenario new_string_handles_unicode)
recipe main [
1:address:array:character <- new [a«c]
2:number <- length 1:address:array:character/deref
3:character <- index 1:address:array:character/deref, 1:literal
]
+mem: storing 3 in location 2
# unicode for '«'
+mem: storing 171 in location 3
:(before "End NEW Transform Special-cases")
if (!inst.ingredients.empty()
&& !inst.ingredients.at(0).properties.empty()
&& !inst.ingredients.at(0).properties.at(0).second.empty()
&& inst.ingredients.at(0).properties.at(0).second.at(0) == "literal-string") {
// skip transform
inst.ingredients.at(0).initialized = true;
goto end_new_transform;
}
:(after "case NEW" following "Primitive Recipe Implementations")
if (is_literal(current_instruction().ingredients.at(0))
&& current_instruction().ingredients.at(0).properties.at(0).second.at(0) == "literal-string") {
// allocate an array just large enough for it
long long int string_length = unicode_length(current_instruction().ingredients.at(0).name);
//? cout << "string_length is " << string_length << '\n'; //? 1
ensure_space(string_length+1); // don't forget the extra location for array size
products.resize(1);
products.at(0).push_back(Current_routine->alloc);
// initialize string
//? cout << "new string literal: " << current_instruction().ingredients.at(0).name << '\n'; //? 1
Memory[Current_routine->alloc++] = string_length;
long long int curr = 0;
const string& contents = current_instruction().ingredients.at(0).name;
const char* raw_contents = contents.c_str();
for (long long int i = 0; i < string_length; ++i) {
uint32_t curr_character;
assert(curr < SIZE(contents));
tb_utf8_char_to_unicode(&curr_character, &raw_contents[curr]);
Memory[Current_routine->alloc] = curr_character;
curr += tb_utf8_char_length(raw_contents[curr]);
++Current_routine->alloc;
}
// mu strings are not null-terminated in memory
break;
}
//: Allocate more to routine when initializing a literal string
:(scenario new_string_overflow)
% Initial_memory_per_routine = 2;
recipe main [
1:address:number/raw <- new number:type
2:address:array:character/raw <- new [a] # not enough room in initial page, if you take the array size into account
]
+new: routine allocated memory from 1000 to 1002
+new: routine allocated memory from 1002 to 1004
//: helpers
:(code)
long long int unicode_length(const string& s) {
const char* in = s.c_str();
long long int result = 0;
long long int curr = 0;
while (curr < SIZE(s)) { // carefully bounds-check on the string
// before accessing its raw pointer
++result;
curr += tb_utf8_char_length(in[curr]);
}
return result;
}
|