about summary refs log tree commit diff stats
path: root/099hardware_checks.cc
blob: cee68bdbf767c0b5a197b82d6bcdfdd5a574e359 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
//: Let's raise errors when students use real hardware in any recipes besides
//: 'main'. Part of the goal is to teach them testing hygiene and dependency
//: injection.
//:
//: This is easy to sidestep, it's for feedback rather than safety.

:(before "End Globals")
vector<type_tree*> Real_hardware_types;
:(before "Begin transform_all")
setup_real_hardware_types();
:(before "End transform_all")
teardown_real_hardware_types();
:(code)
void setup_real_hardware_types() {
  Real_hardware_types.push_back(parse_type("address:screen"));
  Real_hardware_types.push_back(parse_type("address:console"));
  Real_hardware_types.push_back(parse_type("address:resources"));
}
type_tree* parse_type(string s) {
  reagent x("x:"+s);
  type_tree* result = x.type;
  x.type = NULL;  // don't deallocate on return
  return result;
}
void teardown_real_hardware_types() {
  for (int i = 0;  i < SIZE(Real_hardware_types);  ++i)
    delete Real_hardware_types.at(i);
  Real_hardware_types.clear();
}

:(before "End Checks")
Transform.push_back(check_for_misuse_of_real_hardware);
:(code)
void check_for_misuse_of_real_hardware(const recipe_ordinal r) {
  const recipe& caller = get(Recipe, r);
  if (caller.name == "main") return;
  if (starts_with(caller.name, "scenario_")) return;
  trace(9991, "transform") << "--- check if recipe " << caller.name << " has any dependency-injection mistakes" << end();
  for (int index = 0;  index < SIZE(caller.steps);  ++index) {
    const instruction& inst = caller.steps.at(index);
    if (is_primitive(inst.operation)) continue;
    for (int i = 0;  i < SIZE(inst.ingredients);  ++i) {
      const reagent& ing = inst.ingredients.at(i);
      if (!is_literal(ing) || ing.name != "0") continue;
      const recipe& callee = get(Recipe, inst.operation);
      if (!callee.has_header) continue;
      if (i >= SIZE(callee.ingredients)) continue;
      const reagent& expected_ing = callee.ingredients.at(i);
      for (int j = 0;  j < SIZE(Real_hardware_types);  ++j) {
        if (*Real_hardware_types.at(j) == *expected_ing.type)
          raise << maybe(caller.name) << "'" << to_original_string(inst) << "': only 'main' can pass 0 into a " << to_string(expected_ing.type) << '\n' << end();
      }
    }
  }
}

:(scenarios transform)
:(scenario warn_on_using_real_screen_directly_in_non_main_recipe)
% Hide_errors = true;
def foo [
  print 0, 34
]
+error: foo: 'print 0, 34': only 'main' can pass 0 into a (address screen)





                                                                                                                            
                                      


                                                        
                                                      









                                                    
                                                                              


                                                                                
Opcodes currently supported by SubX:
  01: add r32 to rm32 (add)
  03: add rm32 to r32 (add)
  05: add imm32 to EAX (add)
  09: rm32 = bitwise OR of r32 with rm32 (or)
  0b: r32 = bitwise OR of r32 with rm32 (or)
  0d: EAX = bitwise OR of imm32 with EAX (or)
  21: rm32 = bitwise AND of r32 with rm32 (and)
  23: r32 = bitwise AND of r32 with rm32 (and)
  25: EAX = bitwise AND of imm32 with EAX (and)
  29: subtract r32 from rm32 (sub)
  2b: subtract rm32 from r32 (sub)
  2d: subtract imm32 from EAX (sub)
  31: rm32 = bitwise XOR of r32 with rm32 (xor)
  33: r32 = bitwise XOR of r32 with rm32 (xor)
  35: EAX = bitwise XOR of imm32 with EAX (xor)
  39: compare: set SF if rm32 < r32 (cmp)
  3b: compare: set SF if r32 < rm32 (cmp)
  3d: compare: set SF if EAX < imm32 (cmp)
  40: increment EAX (inc)
  41: increment ECX (inc)
  42: increment EDX (inc)
  43: increment EBX (inc)
  44: increment ESP (inc)
  45: increment EBP (inc)
  46: increment ESI (inc)
  47: increment EDI (inc)
  48: decrement EAX (dec)
  49: decrement ECX (dec)
  4a: decrement EDX (dec)
  4b: decrement EBX (dec)
  4c: decrement ESP (dec)
  4d: decrement EBP (dec)
  4e: decrement ESI (dec)
  4f: decrement EDI (dec)
  50: push EAX to stack (push)
  51: push ECX to stack (push)
  52: push EDX to stack (push)
  53: push EBX to stack (push)
  54: push ESP to stack (push)
  55: push EBP to stack (push)
  56: push ESI to stack (push)
  57: push EDI to stack (push)
  58: pop top of stack to EAX (pop)
  59: pop top of stack to ECX (pop)
  5a: pop top of stack to EDX (pop)
  5b: pop top of stack to EBX (pop)
  5c: pop top of stack to ESP (pop)
  5d: pop top of stack to EBP (pop)
  5e: pop top of stack to ESI (pop)
  5f: pop top of stack to EDI (pop)
  68: push imm32 to stack (push)
  69: multiply rm32 by imm32 and store result in r32 (imul)
  70: jump disp8 bytes away if OF is set (jcc/jo)
  71: jump disp8 bytes away if OF is unset (jcc/jno)
  72: jump disp8 bytes away if lesser (addr, float), if CF is set (jcc/jb/jnae)
  73: jump disp8 bytes away if greater or equal (addr, float), if CF is unset (jcc/jae/jnb)
  74: jump disp8 bytes away if equal, if ZF is set (jcc/jz/je)
  75: jump disp8 bytes away if not equal, if ZF is not set (jcc/jnz/jne)
  76: jump disp8 bytes away if lesser or equal (addr, float), if ZF is set or CF is set (jcc/jbe/jna)
  77: jump disp8 bytes away if greater (addr, float), if ZF is unset and CF is unset (jcc/ja/jnbe)
  7c: jump disp8 bytes away if lesser, if SF != OF (jcc/jl/jnge)
  7d: jump disp8 bytes away if greater or equal, if SF == OF (jcc/jge/jnl)
  7e: jump disp8 bytes away if lesser or equal, if ZF is set or SF != OF (jcc/jle/jng)
  7f: jump disp8 bytes away if greater, if ZF is unset and SF == OF (jcc/jg/jnle)
  81: combine rm32 with imm32 based on subop (add/sub/and/or/xor/cmp)
  87: swap the contents of r32 and rm32 (xchg)
  88: copy r8 to r8/m8-at-r32
  89: copy r32 to rm32 (mov)
  8a: copy r8/m8-at-r32 to r8
  8b: copy rm32 to r32 (mov)
  8d: copy address in rm32 into r32 (lea)
  8f: pop top of stack to rm32 (pop)
  99: sign-extend EAX into EDX (cdq)
  b8: copy imm32 to EAX (mov)
  b9: copy imm32 to ECX (mov)
  ba: copy imm32 to EDX (mov)
  bb: copy imm32 to EBX (mov)
  bc: copy imm32 to ESP (mov)
  bd: copy imm32 to EBP (mov)
  be: copy imm32 to ESI (mov)
  bf: copy imm32 to EDI (mov)
  c1: shift rm32 by imm8 bits depending on subop (sal/sar/shl/shr)
  c3: return from most recent unfinished call (ret)
  c6: copy imm8 to r8/m8-at-r32 with subop 0 (mov)
  c7: copy imm32 to rm32 with subop 0 (mov)
  cd: software interrupt (int)
  d3: shift rm32 by CL bits depending on subop (sal/sar/shl/shr)
  e8: call disp32 (call)
  e9: jump disp32 bytes away (jmp)
  eb: jump disp8 bytes away (jmp)
  f4: halt (hlt)
  f7: negate/multiply/divide rm32 (with EAX and EDX if necessary) depending on subop (neg/mul/idiv)
  ff: increment/decrement/jump/push/call rm32 based on subop (inc/dec/jmp/push/call)
  0f 2f: compare: set CF if x32 < xm32 (comiss)
  0f 80: jump disp32 bytes away if OF is set (jcc/jo)
  0f 81: jump disp32 bytes away if OF is unset (jcc/jno)
  0f 82: jump disp32 bytes away if lesser (addr, float), if CF is set (jcc/jb/jnae)
  0f 83: jump disp32 bytes away if greater or equal (addr, float), if CF is unset (jcc/jae/jnb)
  0f 84: jump disp32 bytes away if equal, if ZF is set (jcc/jz/je)
  0f 85: jump disp32 bytes away if not equal, if ZF is not set (jcc/jnz/jne)
  0f 86: jump disp32 bytes away if lesser or equal (addr, float), if ZF is set or CF is set (jcc/jbe/jna)
  0f 87: jump disp32 bytes away if greater (addr, float), if ZF is unset and CF is unset (jcc/ja/jnbe)
  0f 8c: jump disp32 bytes away if lesser, if SF != OF (jcc/jl/jnge)
  0f 8d: jump disp32 bytes away if greater or equal, if SF == OF (jcc/jge/jnl)
  0f 8e: jump disp32 bytes away if lesser or equal, if ZF is set or SF != OF (jcc/jle/jng)
  0f 8f: jump disp32 bytes away if greater, if ZF is unset and SF == OF (jcc/jg/jnle)
  0f 92: set r8/m8-at-rm32 to 1 if lesser (addr, float), if CF is set, 0 otherwise (setcc/setb/setnae)
  0f 93: set r8/m8-at-rm32 to 1 if greater or equal (addr, float), if CF is unset, 0 otherwise (setcc/setae/setnb)
  0f 94: set r8/m8-at-rm32 to 1 if equal, if ZF is set, 0 otherwise (setcc/setz/sete)
  0f 95: set r8/m8-at-rm32 to 1 if not equal, if ZF is not set, 0 otherwise (setcc/setnz/setne)
  0f 96: set r8/m8-at-rm32 to 1 if lesser or equal (addr, float), if ZF is set or CF is set, 0 otherwise (setcc/setbe/setna)
  0f 97: set r8/m8-at-rm32 to 1 if greater (addr, float), if ZF is unset and CF is unset, 0 otherwise (setcc/seta/setnbe)
  0f 9c: set r8/m8-at-rm32 to 1 if lesser, if SF != OF, 0 otherwise (setcc/setl/setnge)
  0f 9d: set r8/m8-at-rm32 to 1 if greater or equal, if SF == OF, 0 otherwise (setcc/setge/setnl)
  0f 9e: set r8/m8-at-rm32 to 1 if lesser or equal, if ZF is set or SF != OF, 0 otherwise (setcc/setle/setng)
  0f 9f: set r8/m8-at-rm32 to 1 if greater, if ZF is unset and SF == OF, 0 otherwise (setcc/setg/setnle)
  0f af: multiply rm32 into r32 (imul)
  f3 0f 10: copy xm32 to x32 (movss)
  f3 0f 11: copy x32 to xm32 (movss)
  f3 0f 2a: convert integer to floating-point (cvtsi2ss)
  f3 0f 2c: truncate floating-point to int (cvttss2si)
  f3 0f 2d: convert floating-point to int (cvtss2si)
  f3 0f 51: square root of float (sqrtss)
  f3 0f 52: inverse square root of float (rsqrtss)
  f3 0f 53: reciprocal of float (rcpss)
  f3 0f 58: add floats (addss)
  f3 0f 59: multiply floats (mulss)
  f3 0f 5c: subtract floats (subss)
  f3 0f 5d: minimum of two floats (minss)
  f3 0f 5e: divide floats (divss)
  f3 0f 5f: maximum of two floats (maxss)
Run `bootstrap help instructions` for details on words like 'r32' and 'disp8'.
For complete details on these instructions, consult the IA-32 manual (volume 2).
There's various versions of it online, such as https://c9x.me/x86.
The mnemonics in brackets will help you locate each instruction.