1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
|
# quick-n-dirty way to print out floats
######## In hex, following C's %a format
# https://www.exploringbinary.com/hexadecimal-floating-point-constants
# examples:
# 0.5 = 0x3f000000 = 0011| 1111 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000
# = 0 | 01111110 | 00000000000000000000000
# + exponent mantissa
# = 0 | 00000000000000000000000 | 01111110
# mantissa exponent
# = 0 | 000000000000000000000000 | 01111110
# zero-pad mantissa exponent
# = +1.000000 P -01
fn test-print-float-normal {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 0.5
var one/eax: int <- copy 1
var half/xmm0: float <- convert one
var two/eax: int <- copy 2
var two-f/xmm1: float <- convert two
half <- divide two-f
print-float screen, half
#
check-screen-row screen, 1, "1.000000P-01 ", "F - test-print-float-normal"
}
fn test-print-float-normal-2 {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 0.25
var one/eax: int <- copy 1
var quarter/xmm0: float <- convert one
var four/eax: int <- copy 4
var four-f/xmm1: float <- convert four
quarter <- divide four-f
print-float screen, quarter
#
check-screen-row screen, 1, "1.000000P-02 ", "F - test-print-float-normal-2"
}
fn test-print-float-normal-3 {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 0.75
var three/eax: int <- copy 3
var three-quarters/xmm0: float <- convert three
var four/eax: int <- copy 4
var four-f/xmm1: float <- convert four
three-quarters <- divide four-f
print-float screen, three-quarters
#
check-screen-row screen, 1, "1.800000P-01 ", "F - test-print-float-normal-3"
}
fn test-print-float-normal-4 {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 0.1
var one/eax: int <- copy 1
var tenth/xmm0: float <- convert one
var ten/eax: int <- copy 0xa
var ten-f/xmm1: float <- convert ten
tenth <- divide ten-f
print-float screen, tenth
#
check-screen-row screen, 1, "1.99999aP-04 ", "F - test-print-float-normal-4"
}
fn test-print-float-integer {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 1
var one/eax: int <- copy 1
var one-f/xmm0: float <- convert one
print-float screen, one-f
#
check-screen-row screen, 1, "1.000000P00 ", "F - test-print-float-integer"
}
fn test-print-float-zero {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 0
var zero: float
print-float screen, zero
#
check-screen-row screen, 1, "0 ", "F - test-print-float-zero"
}
fn test-print-float-negative-zero {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 0
var n: int
copy-to n, 0x80000000
var negative-zero/xmm0: float <- reinterpret n
print-float screen, negative-zero
#
check-screen-row screen, 1, "-0 ", "F - test-print-float-negative-zero"
}
fn test-print-float-infinity {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print
var n: int
# 0|11111111|00000000000000000000000
# 0111|1111|1000|0000|0000|0000|0000|0000
copy-to n, 0x7f800000
var infinity/xmm0: float <- reinterpret n
print-float screen, infinity
#
check-screen-row screen, 1, "Inf ", "F - test-print-float-infinity"
}
fn test-print-float-negative-infinity {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print
var n: int
copy-to n, 0xff800000
var negative-infinity/xmm0: float <- reinterpret n
print-float screen, negative-infinity
#
check-screen-row screen, 1, "-Inf ", "F - test-print-float-negative-infinity"
}
fn test-print-float-not-a-number {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print
var n: int
copy-to n, 0xffffffff # exponent must be all 1's, and mantissa must be non-zero
var negative-infinity/xmm0: float <- reinterpret n
print-float screen, negative-infinity
#
check-screen-row screen, 1, "Nan ", "F - test-print-float-not-a-number"
}
fn print-float screen: (addr screen), n: float {
# - special names
var bits/eax: int <- reinterpret n
compare bits, 0
{
break-if-!=
print-string screen, "0"
return
}
compare bits, 0x80000000
{
break-if-!=
print-string screen, "-0"
return
}
compare bits, 0x7f800000
{
break-if-!=
print-string screen, "Inf"
return
}
compare bits, 0xff800000
{
break-if-!=
print-string screen, "-Inf"
return
}
var exponent/ecx: int <- copy bits
exponent <- shift-right 0x17 # 23 bits of mantissa
exponent <- and 0xff
exponent <- subtract 0x7f
compare exponent, 0x80
{
break-if-!=
print-string screen, "Nan"
return
}
# - regular numbers
var sign/edx: int <- copy bits
sign <- shift-right 0x1f
{
compare sign, 1
break-if-!=
print-string screen, "-"
}
$print-float:leading-digit: {
# check for subnormal numbers
compare exponent, -0x7f
{
break-if-!=
print-string screen, "0."
exponent <- increment
break $print-float:leading-digit
}
# normal numbers
print-string screen, "1."
}
var mantissa/ebx: int <- copy bits
mantissa <- and 0x7fffff
mantissa <- shift-left 1 # pad to whole nibbles
print-int32-hex-bits screen, mantissa, 0x18
# print exponent
print-string screen, "P"
compare exponent, 0
{
break-if->=
print-string screen, "-"
}
var exp-magnitude/eax: int <- abs exponent
print-int32-hex-bits screen, exp-magnitude, 8
}
#? fn main -> _/ebx: int {
#? run-tests
#? #? test-print-float-negative-zero
#? #? print-int32-hex 0, 0
#? #? test-print-float-normal
#? return 0
#? }
######## In decimal
# Try to keep it short.
fn test-print-float-decimal-approximate-normal {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 0.5
var one/eax: int <- copy 1
var half/xmm0: float <- convert one
var two/eax: int <- copy 2
var two-f/xmm1: float <- convert two
half <- divide two-f
print-float-decimal-approximate screen, half
#
check-screen-row screen, 1, "0.5 ", "F - test-print-float-decimal-approximate-normal"
}
fn test-print-float-decimal-approximate-normal-2 {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 0.25
var one/eax: int <- copy 1
var quarter/xmm0: float <- convert one
var four/eax: int <- copy 4
var four-f/xmm1: float <- convert four
quarter <- divide four-f
print-float-decimal-approximate screen, quarter
#
check-screen-row screen, 1, "0.25 ", "F - test-print-float-decimal-approximate-normal-2"
}
fn test-print-float-decimal-approximate-normal-3 {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 0.75
var three/eax: int <- copy 3
var three-quarters/xmm0: float <- convert three
var four/eax: int <- copy 4
var four-f/xmm1: float <- convert four
three-quarters <- divide four-f
print-float-decimal-approximate screen, three-quarters
#
check-screen-row screen, 1, "0.75 ", "F - test-print-float-decimal-approximate-normal-3"
}
# 3 decimal places = ok
fn test-print-float-decimal-approximate-normal-4 {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 0.125
var one/eax: int <- copy 1
var eighth/xmm0: float <- convert one
var eight/eax: int <- copy 8
var eight-f/xmm1: float <- convert eight
eighth <- divide eight-f
print-float-decimal-approximate screen, eighth
#
check-screen-row screen, 1, "0.125 ", "F - test-print-float-decimal-approximate-normal-4"
}
# Start truncating past 3 decimal places.
fn test-print-float-decimal-approximate-normal-5 {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 0.0625
var one/eax: int <- copy 1
var sixteenth/xmm0: float <- convert one
var sixteen/eax: int <- copy 0x10
var sixteen-f/xmm1: float <- convert sixteen
sixteenth <- divide sixteen-f
print-float-decimal-approximate screen, sixteenth
#
check-screen-row screen, 1, "0.062 ", "F - test-print-float-decimal-approximate-normal-5"
}
# print whole integers without decimals
fn test-print-float-decimal-approximate-integer {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 1
var one/eax: int <- copy 1
var one-f/xmm0: float <- convert one
print-float-decimal-approximate screen, one-f
#
check-screen-row screen, 1, "1 ", "F - test-print-float-decimal-approximate-integer"
}
fn test-print-float-decimal-approximate-integer-2 {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 2
var two/eax: int <- copy 2
var two-f/xmm0: float <- convert two
print-float-decimal-approximate screen, two-f
#
check-screen-row screen, 1, "2 ", "F - test-print-float-decimal-approximate-integer-2"
}
fn test-print-float-decimal-approximate-integer-3 {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 10
var ten/eax: int <- copy 0xa
var ten-f/xmm0: float <- convert ten
print-float-decimal-approximate screen, ten-f
#
check-screen-row screen, 1, "10 ", "F - test-print-float-decimal-approximate-integer-3"
}
fn test-print-float-decimal-approximate-integer-4 {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print -10
var minus-ten/eax: int <- copy -0xa
var minus-ten-f/xmm0: float <- convert minus-ten
print-float-decimal-approximate screen, minus-ten-f
#
check-screen-row screen, 1, "-10 ", "F - test-print-float-decimal-approximate-integer-4"
}
fn test-print-float-decimal-approximate-integer-5 {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 100000
var hundred-thousand/eax: int <- copy 0x186a0
var hundred-thousand-f/xmm0: float <- convert hundred-thousand
print-float-decimal-approximate screen, hundred-thousand-f
#
check-screen-row screen, 1, "100000 ", "F - test-print-float-decimal-approximate-integer-5"
}
fn test-print-float-decimal-approximate-zero {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 0
var zero: float
print-float-decimal-approximate screen, zero
#
check-screen-row screen, 1, "0 ", "F - test-print-float-decimal-approximate-zero"
}
fn test-print-float-decimal-approximate-negative-zero {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print 0
var n: int
copy-to n, 0x80000000
var negative-zero/xmm0: float <- reinterpret n
print-float-decimal-approximate screen, negative-zero
#
check-screen-row screen, 1, "-0 ", "F - test-print-float-decimal-approximate-negative-zero"
}
fn test-print-float-decimal-approximate-infinity {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print
var n: int
# 0|11111111|00000000000000000000000
# 0111|1111|1000|0000|0000|0000|0000|0000
copy-to n, 0x7f800000
var infinity/xmm0: float <- reinterpret n
print-float-decimal-approximate screen, infinity
#
check-screen-row screen, 1, "Inf ", "F - test-print-float-decimal-approximate-infinity"
}
fn test-print-float-decimal-approximate-negative-infinity {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print
var n: int
copy-to n, 0xff800000
var negative-infinity/xmm0: float <- reinterpret n
print-float-decimal-approximate screen, negative-infinity
#
check-screen-row screen, 1, "-Inf ", "F - test-print-float-decimal-approximate-negative-infinity"
}
fn test-print-float-decimal-approximate-not-a-number {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# print
var n: int
copy-to n, 0xffffffff # exponent must be all 1's, and mantissa must be non-zero
var negative-infinity/xmm0: float <- reinterpret n
print-float-decimal-approximate screen, negative-infinity
#
check-screen-row screen, 1, "Nan ", "F - test-print-float-decimal-approximate-not-a-number"
}
fn print-float-decimal-approximate screen: (addr screen), n: float {
# - special names
var bits/eax: int <- reinterpret n
compare bits, 0
{
break-if-!=
print-string screen, "0"
return
}
compare bits, 0x80000000
{
break-if-!=
print-string screen, "-0"
return
}
compare bits, 0x7f800000
{
break-if-!=
print-string screen, "Inf"
return
}
compare bits, 0xff800000
{
break-if-!=
print-string screen, "-Inf"
return
}
var exponent/ecx: int <- copy bits
exponent <- shift-right 0x17 # 23 bits of mantissa
exponent <- and 0xff
#? print-string 0, "exponent0: "
#? print-int32-hex 0, exponent
#? print-string 0, "\n"
exponent <- subtract 0x7f
compare exponent, 0x80
{
break-if-!=
print-string screen, "Nan"
return
}
# - regular numbers
var sign/edx: int <- copy bits
sign <- shift-right 0x1f
{
compare sign, 1
break-if-!=
print-string screen, "-"
}
var mantissa/ebx: int <- copy bits
mantissa <- and 0x7fffff
#? print-string 0, "mantissa0: "
#? print-int32-hex 0, mantissa
#? print-string 0, "\n"
# whole integers
compare exponent, 0
{
break-if-<
#? print-string 0, "mantissa: "
#? print-int32-hex 0, mantissa
#? print-string 0, "\n"
#? print-string 0, "exponent: "
#? print-int32-hex 0, exponent
#? print-string 0, "\n"
var tmp/eax: int <- copy mantissa
tmp <- shift-left 9 # move to MSB
tmp <- repeated-shift-left tmp, exponent
compare tmp, 0
break-if-!=
var result/eax: int <- copy mantissa
result <- or 0x00800000 # insert implicit 1
#? print-string 0, "mantissa2: "
#? print-int32-hex 0, result
#? print-string 0, "\n"
var all-but-exponent/edx: int <- copy 0x17 # 23 bits for mantissa treated as a whole number
all-but-exponent <- subtract exponent
result <- repeated-shift-right result, all-but-exponent
#? print-string 0, "result: "
#? print-int32-hex 0, result
#? print-string 0, "\n"
print-int32-decimal screen, result
return
}
$print-float-decimal-approximate:leading-digit: {
# check for subnormal numbers
compare exponent, -0x7f
{
break-if-!=
print-string screen, "0"
exponent <- increment
break $print-float-decimal-approximate:leading-digit
}
# normal numbers
print-string screen, "1"
}
var mantissa/ebx: int <- copy bits
mantissa <- and 0x7fffff
compare mantissa, 0
{
break-if-=
print-string screen, "."
# TODO
mantissa <- shift-left 1 # whole number of nibbles
print-int32-hex-bits screen, mantissa, 0x18
}
# print exponent if necessary
compare exponent, 0
break-if-=
print-string screen, "P"
print-int32-decimal screen, exponent
}
#? fn main -> _/ebx: int {
#? #? run-tests
#? test-print-float-decimal-approximate-integer-5
#? return 0
#? }
|