about summary refs log tree commit diff stats
path: root/Readme.md
blob: cf7388cd3129cafa64a964d6df47d0593dacc359 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
## Mu: making programs easier to understand in the large

Imagine a world where you can:

1. think of a tiny improvement to a program you use, clone its sources,
orient yourself on its organization and make your tiny improvement, all in a
single afternoon.

2. Record your program as it runs, and easily convert arbitrary logs of runs
into reproducible automatic tests.

3. Answer arbitrary what-if questions about a codebase by trying out changes
and seeing what tests fail, confident that *every* scenario previous authors
have considered has been encoded as a test.

4. Build first simple and successively more complex versions of a program so
you can stage your learning.

I think all these abilities might be strongly correlated; not only are they
achievable with a few common concepts, but you can't easily attack one of them
without also chasing after the others. The core mechanism enabling them all is
recording manual tests right after the first time you perform them:

* keyboard input
* printing to screen
* disk filling up
* performance metrics
* race conditions
* fault tolerance
* ...

I hope to attain this world by creating a comprehensive library of fakes and
hooks for the entire software stack, at all layers of abstraction (programming
language, OS, standard libraries, application libraries).

To reduce my workload and get to a proof-of-concept quickly, this is a very
*alien* software stack. I've stolen ideas from lots of previous systems, but
it's not like anything you're used to. The 'OS' will lack virtual memory, user
accounts, any unprivileged mode, address space isolation, and many other
features.

To avoid building a compiler I'm going to do all my programming in (virtual
machine) assembly. To keep assembly from getting too painful I'm going to
pervasively use one trick: load-time directives to let me order code however I
want, and to write boilerplate once and insert it in multiple places. If
you're familiar with literate programming or aspect-oriented programming,
these directives may seem vaguely familiar. If you're not, think of them as a
richer interface for function inlining.

Trading off notational convenience for tests may seem regressive, but I
suspect high-level languages aren't particularly helpful in understanding
large codebases. No matter how good a notation is, it can only let you see a
tiny fraction of a large program at a time. Logs, on the other hand, can let
you zoom out and take in an entire *run* at a glance, making them a superior
unit of comprehension. If I'm right, it makes sense to prioritize the right
*tactile* interface for working with and getting feedback on large programs
before we invest in the *visual* tools for making them concise.

## Taking mu for a spin

Prerequisites: Racket from http://racket-lang.org

```shell
  $ cd mu
  $ git clone http://github.com/arclanguage/anarki
```

As a sneak peek, here's how you compute factorial in mu:

```lisp
  def factorial [
    ; allocate some space for local variables
    default-scope/scope-address <- new scope/literal 30/literal
    ; receive args from caller in a queue
    n/integer <- arg
    {
      ; if n=0 return 1
      zero?/boolean <- eq n/integer, 0/literal
      break-unless zero?/boolean
      reply 1/literal
    }
    ; return n*factorial(n-1)
    tmp1/integer <- sub n/integer, 1/literal
    tmp2/integer <- factorial tmp1/integer
    result/integer <- mul tmp2/integer, n/integer
    reply result/integer
  ]
```

Programs are lists of instructions, each on a line, sometimes grouped with
brackets. Instructions take the form:

```
  oargs <- OP args
```

Input and output args have to be simple; no sub-expressions are permitted. But
you can have any number of them. In particular, instructions can return
multiple output arguments. For example, you can perform integer division as
follows:

```
  quotient/integer, remainder/integer <- idiv 11/literal, 3/literal
```

Each arg can have any number of bits of metadata like the types above,
separated by slashes. Anybody can write tools to statically analyze or verify
programs using new metadata. Or they can just be documentation; any metadata
the system doesn't recognize gets silently ignored.

Try this program out now:

```shell
  $ ./anarki/arc mu.arc factorial.mu
  result: 120  # factorial of 5
  ...  # ignore the memory dump for now
```

(The code in `factorial.mu` looks different from the idealized syntax above.
We'll get to an actual parser in time.)

---

An alternative way to define factorial is by including *labels*, and later
inserting code at them.

```lisp
  def factorial [
    default-scope/scope-address <- new scope/literal 30/literal
    n/integer <- arg
    {
      base-case
    }
    recursive-case
  ]

  after base-case [
    ; if n=0 return 1
    zero?/boolean <- eq n/integer, 0/literal
    break-unless zero?/boolean
    reply 1/literal
  ]

  after recursive-case [
    ; return n*factorial(n-1)
    tmp1/integer <- sub n/integer, 1/literal
    tmp2/integer <- factorial tmp1/integer
    result/integer <- mul tmp2/integer, n/integer
    reply result/integer
  ]
```

(You'll find this version in `tangle.mu`.)

---

Another example, this time with concurrency.

```shell
  $ ./anarki/arc mu.arc fork.mu
```

Notice that it repeatedly prints either '34' or '35' at random. Hit ctrl-c to
stop.

Yet another example forks two 'routines' that communicate over a channel:

```shell
  $ ./anarki/arc mu.arc channel.mu
  produce: 0
  produce: 1
  produce: 2
  produce: 3
  consume: 0
  consume: 1
  consume: 2
  produce: 4
  consume: 3
  consume: 4

  # The exact order above might shift over time, but you'll never see a number
  # consumed before it's produced.
```

Channels are the unit of synchronization in mu. Blocking on channels are the
only way tasks can sleep waiting for results. The plan is to do all I/O over
channels that wait for data to return.

Routines are expected to communicate purely by message passing, though nothing
stops them from sharing memory since all routines share a common address
space. However, idiomatic mu will make it hard to accidentally read or clobber
random memory locations. Bounds checking is baked deeply into the semantics,
and pointer arithmetic will be mostly forbidden (except inside the memory
allocator and a few other places).

---

Try running the tests:

```shell
  $ ./anark/arc mu.arc.t
  $  # all tests passed!
```

Now start reading `mu.arc.t` to see how it works. A colorized copy of it is at
`mu.arc.t.html` and http://akkartik.github.io/mu.

You might also want to peek in the `.traces` directory, which automatically
includes logs for each test showing you just how it ran on my machine. If mu
eventually gets complex enough that you have trouble running examples, these
logs might help figure out if my system is somehow different from yours or if
I've just been insufficiently diligent and my documentation is out of date.

The immediate goal of mu is to build up towards an environment for parsing and
visualizing these traces in a hierarchical manner, and to easily turn traces
into reproducible tests by flagging inputs entering the log and outputs
leaving it. The former will have to be faked in, and the latter will want to
be asserted on, to turn a trace into a test.

## Credits

Mu builds on many ideas that have come before, especially:

- [Peter Naur](http://alistair.cockburn.us/ASD+book+extract%3A+%22Naur,+Ehn,+Musashi%22)
  for articulating the paramount problem of programming: communicating a
  codebase to others;
- [Christopher Alexander](http://www.amazon.com/Notes-Synthesis-Form-Harvard-Paperbacks/dp/0674627512)
  and [Richard Gabriel](http://dreamsongs.net/Files/PatternsOfSoftware.pdf) for
  the intellectual tools for reasoning about the higher order design of a
  codebase;
- Unix and C for showing us how to co-evolve language and OS, and for teaching
  the (much maligned, misunderstood and underestimated) value of concise
  *implementation* in addition to a clean interface;
- Donald Knuth's [literate programming](http://www.literateprogramming.com/knuthweb.pdf)
  for liberating "code for humans to read" from the tyranny of compiler order;
- [David Parnas](http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf)
  and others for highlighting the value of separating concerns and stepwise
  refinement;
- [Lisp](http://www.paulgraham.com/rootsoflisp.html) for showing the power of
  dynamic languages, late binding and providing the right primitives a la
  carte, especially lisp macros;
- The folklore of debugging by print and the trace facility in many lisp
  systems;
- Automated tests for showing the value of developing programs inside an
  elaborate harness;
- [Python doctest](http://docs.python.org/2/library/doctest.html) for
  exemplifying interactive documentation that doubles as tests;
- [ReStructuredText](https://en.wikipedia.org/wiki/ReStructuredText)
  and [its antecedents](https://en.wikipedia.org/wiki/Setext) for showing that
  markup can be clean;
- BDD for challenging us all to write tests at a higher level;
- JavaScript and CSS for demonstrating the power of a DOM for complex
  structured documents.
*/ .highlight .go { color: #888888 } /* Generic.Output */ .highlight .gp { color: #555555 } /* Generic.Prompt */ .highlight .gs { font-weight: bold } /* Generic.Strong */ .highlight .gu { color: #666666 } /* Generic.Subheading */ .highlight .gt { color: #aa0000 } /* Generic.Traceback */ .highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */ .highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */ .highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */ .highlight .kp { color: #008800 } /* Keyword.Pseudo */ .highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */ .highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */ .highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */ .highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */ .highlight .na { color: #336699 } /* Name.Attribute */ .highlight .nb { color: #003388 } /* Name.Builtin */ .highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */ .highlight .no { color: #003366; font-weight: bold } /* Name.Constant */ .highlight .nd { color: #555555 } /* Name.Decorator */ .highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */ .highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */ .highlight .nl { color: #336699; font-style: italic } /* Name.Label */ .highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */ .highlight .py { color: #336699; font-weight: bold } /* Name.Property */ .highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */ .highlight .nv { color: #336699 } /* Name.Variable */ .highlight .ow { color: #008800 } /* Operator.Word */ .highlight .w { color: #bbbbbb } /* Text.Whitespace */ .highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */ .highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */ .highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */ .highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */ .highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */ .highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */ .highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */ .highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */ .highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */ .highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */ .highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */ .highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */ .highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */ .highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */ .highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */ .highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */ .highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */ .highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */ .highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */ .highlight .vc { color: #336699 } /* Name.Variable.Class */ .highlight .vg { color: #dd7700 } /* Name.Variable.Global */ .highlight .vi { color: #3333bb } /* Name.Variable.Instance */ .highlight .vm { color: #336699 } /* Name.Variable.Magic */ .highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
# Copyright (C) 2009, 2010  Roman Zimbelmann <romanz@lavabit.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

'''
This is the default file for command definitions.

Each command is a subclass of `Command'.  Several methods are defined
to interface with the console:
	execute: call this method when the command is executed.
	cancel: call this method when closing the console without executing.
	tab: call this method when tab is pressed.
	quick: call this method after each keypress.

The return values for tab() can be either:
	None: There is no tab completion
	A string: Change the console to this string
	A list/tuple/generator: cycle through every item in it
The return value for quick() can be:
	False: Nothing happens
	True: Execute the command afterwards
The return value for execute() doesn't matter.

If you want to add custom commands, you can create a file
~/.config/ranger/commands.py, add the line:
	from ranger.api.commands import *

and write some command definitions, for example:

	class tabnew(Command):
		def execute(self):
			self.fm.tab_new()

	class tabgo(Command):
		"""
		:tabgo <n>

		Go to the nth tab.
		"""
		def execute(self):
			num = self.line.split()[1]
			self.fm.tab_open(int(num))

For a list of all actions, check /ranger/core/actions.py.
'''

from ranger.api.commands import *
from ranger.ext.get_executables import get_executables
from ranger.core.runner import ALLOWED_FLAGS

alias('e', 'edit')
alias('q', 'quit')
alias('q!', 'quitall')
alias('console!', 'console_bang')
alias('qall', 'quitall')

class cd(Command):
	"""
	:cd [-r] <dirname>

	The cd command changes the directory.
	The command 'cd -' is equivalent to typing ``.
	Using the option "-r" will get you to the real path.
	"""

	def execute(self):
		if self.arg(1) == '-r':
			import os.path
			self.shift()
			destination = os.path.realpath(self.rest(1))
		else:
			destination = self.rest(1)

		if not destination:
			destination = '~'

		if destination == '-':
			self.fm.enter_bookmark('`')
		else:
			self.fm.cd(destination)

	def tab(self):
		from os.path import dirname, basename, expanduser, join, isdir

		line = parse(self.line)
		cwd = self.fm.env.cwd.path

		try:
			rel_dest = line.rest(1)
		except IndexError:
			rel_dest = ''

		bookmarks = [v.path for v in self.fm.bookmarks.dct.values()
				if rel_dest in v.path ]

		# expand the tilde into the user directory
		if rel_dest.startswith('~'):
			rel_dest = expanduser(rel_dest)

		# define some shortcuts
		abs_dest = join(cwd, rel_dest)
		abs_dirname = dirname(abs_dest)
		rel_basename = basename(rel_dest)
		rel_dirname = dirname(rel_dest)

		try:
			# are we at the end of a directory?
			if rel_dest.endswith('/') or rel_dest == '':
				_, dirnames, _ = next(os.walk(abs_dest))

			# are we in the middle of the filename?
			else:
				_, dirnames, _ = next(os.walk(abs_dirname))
				dirnames = [dn for dn in dirnames \
						if dn.startswith(rel_basename)]
		except (OSError, StopIteration):
			# os.walk found nothing
			pass
		else:
			dirnames.sort()
			dirnames = bookmarks + dirnames

			# no results, return None
			if len(dirnames) == 0:
				return

			# one result. since it must be a directory, append a slash.
			if len(dirnames) == 1:
				return line.start(1) + join(rel_dirname, dirnames[0]) + '/'

			# more than one result. append no slash, so the user can
			# manually type in the slash to advance into that directory
			return (line.start(1) + join(rel_dirname, dirname) for dirname in dirnames)


class chain(Command):
	"""
	:chain <command1>; <command2>; ...
	Calls multiple commands at once, separated by semicolons.
	"""
	def execute(self):
		for command in self.rest(1).split(";"):
			self.fm.execute_console(command)


class search(Command):
	def execute(self):
		self.fm.search_file(parse(self.line).rest(1), regexp=True)


class search_inc(Command):
	def quick(self):
		self.fm.search_file(parse(self.line).rest(1), regexp=True, offset=0)


class shell(Command):
	def execute(self):
		line = parse(self.line)
		if line.chunk(1) and line.chunk(1)[0] == '-':
			flags = line.chunk(1)[1:]
			command = line.rest(2)
		else:
			flags = ''
			command = line.rest(1)

		if not command and 'p' in flags: command = 'cat %f'
		if command:
			if '%' in command:
				command = self.fm.substitute_macros(command)
			self.fm.execute_command(command, flags=flags)

	def tab(self):
		line = parse(self.line)
		if line.chunk(1) and line.chunk(1)[0] == '-':
			flags = line.chunk(1)[1:]
			command = line.rest(2)
		else:
			flags = ''
			command = line.rest(1)
		start = self.line[0:len(self.line) - len(command)]

		try:
			position_of_last_space = command.rindex(" ")
		except ValueError:
			return (start + program + ' ' for program \
					in get_executables() if program.startswith(command))
		if position_of_last_space == len(command) - 1:
			return self.line + '%s '
		else:
			before_word, start_of_word = self.line.rsplit(' ', 1)
			return (before_word + ' ' + file.shell_escaped_basename \
					for file in self.fm.env.cwd.files \
					if file.shell_escaped_basename.startswith(start_of_word))

class open_with(Command):
	def execute(self):
		line = parse(self.line)
		app, flags, mode = self._get_app_flags_mode(line.rest(1))
		self.fm.execute_file(
				files = [f for f in self.fm.env.cwd.get_selection()],
				app = app,
				flags = flags,
				mode = mode)

	def _get_app_flags_mode(self, string):
		"""
		Extracts the application, flags and mode from a string.

		examples:
		"mplayer d 1" => ("mplayer", "d", 1)
		"aunpack 4" => ("aunpack", "", 4)
		"p" => ("", "p", 0)
		"" => None
		"""

		app = ''
		flags = ''
		mode = 0
		split = string.split()

		if len(split) == 0:
			pass

		elif len(split) == 1:
			part = split[0]
			if self._is_app(part):
				app = part
			elif self._is_flags(part):
				flags = part
			elif self._is_mode(part):
				mode = part

		elif len(split) == 2:
			part0 = split[0]
			part1 = split[1]

			if self._is_app(part0):
				app = part0
				if self._is_flags(part1):
					flags = part1
				elif self._is_mode(part1):
					mode = part1
			elif self._is_flags(part0):
				flags = part0
				if self._is_mode(part1):
					mode = part1
			elif self._is_mode(part0):
				mode = part0
				if self._is_flags(part1):
					flags = part1

		elif len(split) >= 3:
			part0 = split[0]
			part1 = split[1]
			part2 = split[2]

			if self._is_app(part0):
				app = part0
				if self._is_flags(part1):
					flags = part1
					if self._is_mode(part2):
						mode = part2
				elif self._is_mode(part1):
					mode = part1
					if self._is_flags(part2):
						flags = part2
			elif self._is_flags(part0):
				flags = part0
				if self._is_mode(part1):
					mode = part1
			elif self._is_mode(part0):
				mode = part0
				if self._is_flags(part1):
					flags = part1

		return app, flags, int(mode)

	def _get_tab(self):
		line = parse(self.line)
		data = line.rest(1)
		if ' ' not in data:
			all_apps = self.fm.apps.all()
			if all_apps:
				return (app for app in all_apps if app.startswith(data))

		return None

	def _is_app(self, arg):
		return self.fm.apps.has(arg) or \
			(not self._is_flags(arg) and arg in get_executables())

	def _is_flags(self, arg):
		return all(x in ALLOWED_FLAGS for x in arg)

	def _is_mode(self, arg):
		return all(x in '0123456789' for x in arg)


class find(Command):
	"""
	:find <string>

	The find command will attempt to find a partial, case insensitive
	match in the filenames of the current directory and execute the
	file automatically.
	"""

	count = 0
	tab = Command._tab_directory_content

	def execute(self):
		if self.count == 1:
			self.fm.move(right=1)
			self.fm.block_input(0.5)
		else:
			self.fm.cd(parse(self.line).rest(1))

	def quick(self):
		self.count = 0
		line = parse(self.line)
		cwd = self.fm.env.cwd
		try:
			arg = line.rest(1)
		except IndexError:
			return False

		if arg == '.':
			return False
		if arg == '..':
			return True

		deq = deque(cwd.files)
		deq.rotate(-cwd.pointer)
		i = 0
		case_insensitive = arg.lower() == arg
		for fsobj in deq:
			if case_insensitive:
				filename = fsobj.basename_lower
			else:
				filename = fsobj.basename
			if arg in filename:
				self.count += 1
				if self.count == 1:
					cwd.move(to=(cwd.pointer + i) % len(cwd.files))
					self.fm.env.cf = cwd.pointed_obj
			if self.count > 1:
				return False
			i += 1

		return self.count == 1


class set_(Command):
	"""
	:set <option name>=<python expression>

	Gives an option a new value.
	"""
	name = 'set'  # don't override the builtin set class
	def execute(self):
		line = parse(self.line)
		name = line.chunk(1)
		name, value, _ = line.parse_setting_line()
		if name and value:
			from re import compile as regexp
			try:
				value = eval(value)
			except:
				pass
			self.fm.settings[name] = value

	def tab(self):
		line = parse(self.line)
		name, value, name_done = line.parse_setting_line()
		settings = self.fm.settings
		if not name:
			return (line + setting for setting in settings)
		if not value and not name_done:
			return (line + setting for setting in settings \
					if setting.startswith(name))
		if not value:
			return line + repr(settings[name])
		if bool in settings.types_of(name):
			if 'true'.startswith(value.lower()):
				return line + 'True'
			if 'false'.startswith(value.lower()):
				return line + 'False'


class quit(Command):
	"""
	:quit

	Closes the current tab.  If there is only one tab, quit the program.
	"""

	def execute(self):
		if len(self.fm.tabs) <= 1:
			self.fm.exit()
		self.fm.tab_close()


class quitall(Command):
	"""
	:quitall

	Quits the program immediately.
	"""

	def execute(self):
		self.fm.exit()


class quit_bang(quitall):
	"""
	:quit!

	Quits the program immediately.
	"""
	name = 'quit!'
	allow_abbrev = False


class terminal(Command):
	"""
	:terminal

	Spawns an "x-terminal-emulator" starting in the current directory.
	"""
	def execute(self):
		self.fm.run('x-terminal-emulator', flags='d')


class delete(Command):
	"""
	:delete

	Tries to delete the selection.

	"Selection" is defined as all the "marked files" (by default, you
	can mark files with space or v). If there are no marked files,
	use the "current file" (where the cursor is)

	When attempting to delete non-empty directories or multiple
	marked files, it will require a confirmation: The last word in
	the line has to start with a 'y'.  This may look like:
	:delete yes
	:delete seriously? yeah!
	"""

	allow_abbrev = False

	def execute(self):
		line = parse(self.line)
		lastword = line.chunk(-1)

		if lastword.startswith('y'):
			# user confirmed deletion!
			return self.fm.delete()
		elif self.line.startswith(DELETE_WARNING):
			# user did not confirm deletion
			return

		cwd = self.fm.env.cwd
		cf = self.fm.env.cf

		if cwd.marked_items or (cf.is_directory and not cf.is_link \
				and len(os.listdir(cf.path)) > 0):
			# better ask for a confirmation, when attempting to
			# delete multiple files or a non-empty directory.
			return self.fm.open_console(DELETE_WARNING)

		# no need for a confirmation, just delete
		self.fm.delete()


class mark(Command):
	"""
	:mark <regexp>

	Mark all files matching a regular expression.
	"""
	do_mark = True

	def execute(self):
		import re
		cwd = self.fm.env.cwd
		line = parse(self.line)
		input = line.rest(1)
		searchflags = re.UNICODE
		if input.lower() == input: # "smartcase"
			searchflags |= re.IGNORECASE 
		pattern = re.compile(input, searchflags)
		for fileobj in cwd.files:
			if pattern.search(fileobj.basename):
				cwd.mark_item(fileobj, val=self.do_mark)
		self.fm.ui.status.need_redraw = True
		self.fm.ui.need_redraw = True


class console(Command):
	"""
	:console <command>

	Open the console with the given command.
	"""
	def execute(self):
		position = None
		if self.arg(1)[0:2] == '-p':
			try:
				position = int(self.arg(1)[2:])
				self.shift()
			except:
				pass
		self.fm.open_console(self.rest(1), position=position)


class console_bang(Command):
	"""
	:console! <command>

	Execute the given command in the console.
	"""
	def execute(self):
		self.fm.execute_console(self.rest(1))


class load_copy_buffer(Command):
	"""
	:load_copy_buffer

	Load the copy buffer from confdir/copy_buffer
	"""
	copy_buffer_filename = 'copy_buffer'
	def execute(self):
		from ranger.fsobject import File
		from os.path import exists
		try:
			fname = self.fm.confpath(self.copy_buffer_filename)
			f = open(fname, 'r')
		except:
			return self.fm.notify("Cannot open %s" % \
					(fname or self.copy_buffer_filename), bad=True)
		self.fm.env.copy = set(File(g) \
			for g in f.read().split("\n") if exists(g))
		f.close()
		self.fm.ui.redraw_main_column()


class save_copy_buffer(Command):
	"""
	:save_copy_buffer

	Save the copy buffer to confdir/copy_buffer
	"""
	copy_buffer_filename = 'copy_buffer'
	def execute(self):
		fname = None
		try:
			fname = self.fm.confpath(self.copy_buffer_filename)
			f = open(fname, 'w')
		except:
			return self.fm.notify("Cannot open %s" % \
					(fname or self.copy_buffer_filename), bad=True)
		f.write("\n".join(f.path for f in self.fm.env.copy))
		f.close()


class unmark(mark):
	"""
	:unmark <regexp>

	Unmark all files matching a regular expression.
	"""
	do_mark = False


class mkdir(Command):
	"""
	:mkdir <dirname>

	Creates a directory with the name <dirname>.
	"""

	def execute(self):
		from os.path import join, expanduser, lexists
		from os import mkdir

		line = parse(self.line)
		dirname = join(self.fm.env.cwd.path, expanduser(line.rest(1)))
		if not lexists(dirname):
			mkdir(dirname)
		else:
			self.fm.notify("file/directory exists!", bad=True)


class touch(Command):
	"""
	:touch <fname>

	Creates a file with the name <fname>.
	"""

	def execute(self):
		from os.path import join, expanduser, lexists
		from os import mkdir

		line = parse(self.line)
		fname = join(self.fm.env.cwd.path, expanduser(line.rest(1)))
		if not lexists(fname):
			open(fname, 'a').close()
		else:
			self.fm.notify("file/directory exists!", bad=True)


class edit(Command):
	"""
	:edit <filename>

	Opens the specified file in vim
	"""

	def execute(self):
		line = parse(self.line)
		if not line.chunk(1):
			self.fm.edit_file(self.fm.env.cf.path)
		else:
			self.fm.edit_file(line.rest(1))

	def tab(self):
		return self._tab_directory_content()


class eval_(Command):
	"""
	:eval [-q] <python code>

	Evaluates the python code.
	`fm' is a reference to the FM instance.
	To display text, use the function `p'.

	Examples:
	:eval fm
	:eval len(fm.env.directories)
	:eval p("Hello World!")
	"""
	name = 'eval'

	def execute(self):
		if self.arg(1) == '-q':
			code = self.rest(2)
			quiet = True
		else:
			code = self.rest(1)
			quiet = False
		import ranger
		fm = self.fm
		cmd = self.fm.execute_console
		p = fm.notify
		try:
			try:
				result = eval(code)
			except SyntaxError:
				exec(code)
			else:
				if result and not quiet:
					p(result)
		except Exception as err:
			p(err)


class rename(Command):
	"""
	:rename <newname>

	Changes the name of the currently highlighted file to <newname>
	"""

	def execute(self):
		from ranger.fsobject import File
		from os import access
		from os.path import join

		line = parse(self.line)
		new_name = line.rest(1)

		if not new_name:
			return self.fm.notify('Syntax: rename <newname>', bad=True)

		if new_name == self.fm.env.cf.basename:
			return

		if access(new_name, os.F_OK):
			return self.fm.notify("Can't rename: file already exists!", bad=True)

		self.fm.rename(self.fm.env.cf, new_name)
		f = File(new_name)
		self.fm.env.cwd.pointed_obj = f
		self.fm.env.cf = f

	def tab(self):
		return self._tab_directory_content()


class chmod(Command):
	"""
	:chmod <octal number>

	Sets the permissions of the selection to the octal number.

	The octal number is between 0 and 777. The digits specify the
	permissions for the user, the group and others.

	A 1 permits execution, a 2 permits writing, a 4 permits reading.
	Add those numbers to combine them. So a 7 permits everything.
	"""

	def execute(self):
		line = parse(self.line)
		mode = line.rest(1)

		try:
			mode = int(mode, 8)
			if mode < 0 or mode > 0o777:
				raise ValueError
		except ValueError:
			self.fm.notify("Need an octal number between 0 and 777!", bad=True)
			return

		for file in self.fm.env.get_selection():
			try:
				os.chmod(file.path, mode)
			except Exception as ex:
				self.fm.notify(ex)

		try:
			# reloading directory.  maybe its better to reload the selected
			# files only.
			self.fm.env.cwd.load_content()
		except:
			pass


class bulkrename(Command):
	"""
	:bulkrename

	This command opens a list of selected files in an external editor.
	After you edit and save the file, it will generate a shell script
	which does bulk renaming according to the changes you did in the file.

	This shell script is opened in an editor for you to review.
	After you close it, it will be executed.
	"""
	def execute(self):
		import sys
		import tempfile
		from ranger.fsobject.file import File
		from ranger.ext.shell_escape import shell_escape as esc
		py3 = sys.version > "3"

		# Create and edit the file list
		filenames = [f.basename for f in self.fm.env.get_selection()]
		listfile = tempfile.NamedTemporaryFile()

		if py3:
			listfile.write("\n".join(filenames).encode("utf-8"))
		else:
			listfile.write("\n".join(filenames))
		listfile.flush()
		self.fm.execute_file([File(listfile.name)], app='editor')
		listfile.seek(0)
		if py3:
			new_filenames = listfile.read().decode("utf-8").split("\n")
		else:
			new_filenames = listfile.read().split("\n")
		listfile.close()
		if all(a == b for a, b in zip(filenames, new_filenames)):
			self.fm.notify("No renaming to be done!")
			return

		# Generate and execute script
		cmdfile = tempfile.NamedTemporaryFile()
		cmdfile.write(b"# This file will be executed when you close the editor.\n")
		cmdfile.write(b"# Please double-check everything, clear the file to abort.\n")
		if py3:
			cmdfile.write("\n".join("mv -vi " + esc(old) + " " + esc(new) \
					for old, new in zip(filenames, new_filenames) if old != new).encode("utf-8"))
		else:
			cmdfile.write("\n".join("mv -vi " + esc(old) + " " + esc(new) \
					for old, new in zip(filenames, new_filenames) if old != new))
		cmdfile.flush()
		self.fm.run(['vim', cmdfile.name])
		self.fm.run(['/bin/sh', cmdfile.name], flags='w')
		cmdfile.close()


class help_(Command):
	"""
	:help
	
	Display ranger's manual page.
	"""
	name = 'help'
	def execute(self):
		self.fm.display_help()


class map_(Command):
	"""
	:map <keysequence> <command>
	Maps a command to a keysequence in the "browser" context.

	Example:
	map j move down
	map J move down 10
	"""
	name = 'map'
	context = 'browser'
	resolve_macros = False

	def execute(self):
		self.fm.env.keymaps.bind(self.context, self.arg(1), self.rest(2))


class cmap(map_):
	""":cmap <keysequence> <command>
	Maps a command to a keysequence in the "console" context.

	Example:
	cmap <ESC> console_close
	cmap <C-x> console_type test
	"""
	context = 'console'


class tmap(map_):
	""":tmap <keysequence> <command>
	Maps a command to a keysequence in the "taskview" context.
	"""
	context = 'taskview'


class pmap(map_):
	""":pmap <keysequence> <command>
	Maps a command to a keysequence in the "pager" context.
	"""
	context = 'pager'


class filter(Command):
	"""
	:filter <string>

	Displays only the files which contain <string> in their basename.
	"""

	def execute(self):
		line = parse(self.line)
		self.fm.set_filter(line.rest(1))
		self.fm.reload_cwd()


class grep(Command):
	"""
	:grep <string>

	Looks for a string in all marked files or directories
	"""

	def execute(self):
		line = parse(self.line)
		if line.rest(1):
			action = ['grep', '--color=always', '--line-number']
			action.extend(['-e', line.rest(1), '-r'])
			action.extend(f.path for f in self.fm.env.get_selection())
			self.fm.execute_command(action, flags='p')