about summary refs log tree commit diff stats
path: root/html/066stream.mu.html
diff options
context:
space:
mode:
authorKartik K. Agaram <vc@akkartik.com>2015-10-04 21:29:58 -0700
committerKartik K. Agaram <vc@akkartik.com>2015-10-04 21:29:58 -0700
commit513bfed876610f1dd117bee9934d1b4438d9685d (patch)
tree8e88e35fb3e05fd9e8fa2ac62e152e01c4070c29 /html/066stream.mu.html
parent926e1b049b818840b26fcff8395305307afabceb (diff)
downloadmu-513bfed876610f1dd117bee9934d1b4438d9685d.tar.gz
2239
Diffstat (limited to 'html/066stream.mu.html')
0 files changed, 0 insertions, 0 deletions
ref='#n105'>105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
# Mandelbrot set using fixed-point numbers.
#
# Install:
#   $ git clone https://github.com/akkartik/mu
#   $ cd mu
# Build on Linux:
#   $ ./translate apps/mandelbrot-fixed.mu
# Build on other platforms (slow):
#   $ ./translate_emulated apps/mandelbrot-fixed.mu
# Run:
#   $ qemu-system-i386 code.img

fn main screen: (addr screen), keyboard: (addr keyboard), data-disk: (addr disk) {
  # Initially the viewport is centered at 0, 0 in the scene.
  var scene-cx-f: int
  var scene-cy-f: int
  # Initially the viewport shows a section of the scene 4 units wide.
  var scene-width-f: int
  copy-to scene-width-f, 0x400/4
  {
    mandelbrot screen scene-cx-f, scene-cy-f, scene-width-f
    # move at an angle slowly towards the edge
    var adj-f/eax: int <- multiply-fixed scene-width-f, 0x12/0.07
    subtract-from scene-cx-f, adj-f
    add-to scene-cy-f, adj-f
    # slowly shrink the scene width to zoom in
    var tmp-f/eax: int <- multiply-fixed scene-width-f, 0x80/0.5
    copy-to scene-width-f, tmp-f
    loop
  }
}

# Since they still look like int types, we'll append a '-f' suffix to variable
# names to designate fixed-point numbers.

fn int-to-fixed in: int -> _/eax: int {
  var result-f/eax: int <- copy in
  result-f <- shift-left 8/fixed-precision
  {
    break-if-not-overflow
    abort "int-to-fixed: overflow"
  }
  return result-f
}

fn fixed-to-int in-f: int -> _/eax: int {
  var result/eax: int <- copy in-f
  result <- shift-right-signed 8/fixed-precision
  return result
}

# The process of throwing bits away always adjusts a number towards -infinity.
fn test-fixed-conversion {
  # 0
  var f/eax: int <- int-to-fixed 0
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, 0, "F - test-fixed-conversion - 0"
  # 1
  var f/eax: int <- int-to-fixed 1
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, 1, "F - test-fixed-conversion - 1"
  # -1
  var f/eax: int <- int-to-fixed -1
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, -1, "F - test-fixed-conversion - -1"
  # 0.5 = 1/2
  var f/eax: int <- int-to-fixed 1
  f <- shift-right-signed 1
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, 0, "F - test-fixed-conversion - 0.5"
  # -0.5 = -1/2
  var f/eax: int <- int-to-fixed -1
  f <- shift-right-signed 1
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, -1, "F - test-fixed-conversion - -0.5"
  # 1.5 = 3/2
  var f/eax: int <- int-to-fixed 3
  f <- shift-right-signed 1
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, 1, "F - test-fixed-conversion - 1.5"
  # -1.5 = -3/2
  var f/eax: int <- int-to-fixed -3
  f <- shift-right-signed 1
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, -2, "F - test-fixed-conversion - -1.5"
  # 1.25 = 5/4
  var f/eax: int <- int-to-fixed 5
  f <- shift-right-signed 2
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, 1, "F - test-fixed-conversion - 1.25"
  # -1.25 = -5/4
  var f/eax: int <- int-to-fixed -5
  f <- shift-right-signed 2
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, -2, "F - test-fixed-conversion - -1.25"
}

# special routines for multiplying and dividing fixed-point numbers

fn multiply-fixed a-f: int, b-f: int -> _/eax: int {
  var result/eax: int <- copy a-f
  result <- multiply b-f
  {
    break-if-not-overflow
    abort "multiply-fixed: overflow"
  }
  result <- shift-right-signed 8/fixed-precision
  return result
}

fn divide-fixed a-f: int, b-f: int -> _/eax: int {
  var result-f/eax: int <- copy a-f
  result-f <- shift-left 8/fixed-precision
  {
    break-if-not-overflow
    abort "divide-fixed: overflow"
  }
  var dummy-remainder/edx: int <- copy 0
  result-f, dummy-remainder <- integer-divide result-f, b-f
  return result-f
}

# multiplying or dividing by an integer can use existing instructions.

# adding and subtracting two fixed-point numbers can use existing instructions.

fn mandelbrot screen: (addr screen), scene-cx-f: int, scene-cy-f: int, scene-width-f: int {
  var a/eax: int <- copy 0
  var b/ecx: int <- copy 0
  a, b <- screen-size screen
  var width/esi: int <- copy a
  width <- shift-left 3/log2-font-width
  var height/edi: int <- copy b
  height <- shift-left 4/log2-font-height
  var y/ecx: int <- copy 0
  {
    compare y, height
    break-if->=
    var imaginary-f/ebx: int <- viewport-to-imaginary-f y, width, height, scene-cy-f, scene-width-f
    var x/eax: int <- copy 0
    {
      compare x, width
      break-if->=
      var real-f/edx: int <- viewport-to-real-f x, width, scene-cx-f, scene-width-f
      var iterations/esi: int <- mandelbrot-iterations-for-point real-f, imaginary-f, 0x400/max
      iterations <- shift-right 3
      var color/edx: int <- copy 0
      {
        var dummy/eax: int <- copy 0
        dummy, color <- integer-divide iterations, 0x18/24/size-of-cycle-0
        color <- add 0x20/cycle-0
      }
      pixel screen, x, y, color
      x <- increment
      loop
    }
    y <- increment
    loop
  }
}

fn mandelbrot-iterations-for-point real-f: int, imaginary-f: int, max: int -> _/esi: int {
  var x-f/esi: int <- copy 0
  var y-f/edi: int <- copy 0
  var iterations/ecx: int <- copy 0
  {
    var done?/eax: boolean <- mandelbrot-done? x-f, y-f
    compare done?, 0/false
    break-if-!=
    compare iterations, max
    break-if->=
    var x2-f/edx: int <- mandelbrot-x x-f, y-f, real-f
    var y2-f/ebx: int <- mandelbrot-y x-f, y-f, imaginary-f
    x-f <- copy x2-f
    y-f <- copy y2-f
    iterations <- increment
    loop
  }
  return iterations
}

fn mandelbrot-done? x-f: int, y-f: int -> _/eax: boolean {
  # x*x + y*y > 4
  var tmp-f/eax: int <- multiply-fixed x-f, x-f
  var result-f/ecx: int <- copy tmp-f
  tmp-f <- multiply-fixed y-f, y-f
  result-f <- add tmp-f
  compare result-f, 0x400/4
  {
    break-if->
    return 0/false
  }
  return 1/true
}

fn mandelbrot-x x-f: int, y-f: int, real-f: int -> _/edx: int {
  # x*x - y*y + real
  var tmp-f/eax: int <- multiply-fixed x-f, x-f
  var result-f/ecx: int <- copy tmp-f
  tmp-f <- multiply-fixed y-f, y-f
  result-f <- subtract tmp-f
  result-f <- add real-f
  return result-f
}

fn mandelbrot-y x-f: int, y-f: int, imaginary-f: int -> _/ebx: int {
  # 2*x*y + imaginary
  var result-f/eax: int <- copy x-f
  result-f <- shift-left 1/log2
  result-f <- multiply-fixed result-f, y-f
  result-f <- add imaginary-f
  return result-f
}

# Scale (x, y) pixel coordinates to a complex plane where the viewport width
# ranges from -2 to +2. Viewport height just follows the viewport's aspect
# ratio.

fn viewport-to-real-f x: int, width: int, scene-cx-f: int, scene-width-f: int -> _/edx: int {
  # 0 in the viewport       goes to scene-cx - scene-width/2 
  # width in the viewport   goes to scene-cx + scene-width/2
  # Therefore:
  # x in the viewport       goes to (scene-cx - scene-width/2) + x*scene-width/width
  # At most two numbers being multiplied before a divide, so no risk of overflow.
  var result-f/eax: int <- int-to-fixed x
  result-f <- multiply-fixed result-f, scene-width-f
  var width-f/ecx: int <- copy width
  width-f <- shift-left 8/fixed-precision
  result-f <- divide-fixed result-f, width-f
  result-f <- add scene-cx-f
  var half-scene-width-f/ecx: int <- copy scene-width-f
  half-scene-width-f <- shift-right 1
  result-f <- subtract half-scene-width-f
  return result-f
}

fn viewport-to-imaginary-f y: int, width: int, height: int, scene-cy-f: int, scene-width-f: int -> _/ebx: int {
  # 0 in the viewport       goes to scene-cy - scene-width/2*height/width
  # height in the viewport  goes to scene-cy + scene-width/2*height/width
  # Therefore:
  # y in the viewport       goes to (scene-cy - scene-width/2*height/width) + y*scene-width/width
  #  scene-cy - scene-width/width * (height/2 + y)
  # At most two numbers being multiplied before a divide, so no risk of overflow.
  var result-f/eax: int <- int-to-fixed y
  result-f <- multiply-fixed result-f, scene-width-f
  var width-f/ecx: int <- copy width
  width-f <- shift-left 8/fixed-precision
  result-f <- divide-fixed result-f, width-f
  result-f <- add scene-cy-f
  var second-term-f/edx: int <- copy 0
  {
    var _second-term-f/eax: int <- copy scene-width-f
    _second-term-f <- shift-right 1
    var height-f/ebx: int <- copy height
    height-f <- shift-left 8/fixed-precision
    _second-term-f <- multiply-fixed _second-term-f, height-f
    _second-term-f <- divide-fixed _second-term-f, width-f
    second-term-f <- copy _second-term-f
  }
  result-f <- subtract second-term-f
  return result-f
}