about summary refs log tree commit diff stats
path: root/archive/2.vm/034address.cc
blob: bafde7b4ec0e077aa1a1d785b26e63d13c57e26f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
//: Addresses help us spend less time copying data around.

//: So far we've been operating on primitives like numbers and characters, and
//: we've started combining these primitives together into larger logical
//: units (containers or arrays) that may contain many different primitives at
//: once. Containers and arrays can grow quite large in complex programs, and
//: we'd like some way to efficiently share them between recipes without
//: constantly having to make copies. Right now 'next-ingredient' and 'return'
//: copy data across recipe boundaries. To avoid copying large quantities of
//: data around, we'll use *addresses*. An address is a bookmark to some
//: arbitrary quantity of data (the *payload*). It's a primitive, so it's as
//: efficient to copy as a number. To read or modify the payload 'pointed to'
//: by an address, we'll perform a *lookup*.
//:
//: The notion of 'lookup' isn't an instruction like 'add' or 'subtract'.
//: Instead it's an operation that can be performed when reading any of the
//: ingredients of an instruction, and when writing to any of the products. To
//: write to the payload of an ingredient rather than its value, simply add
//: the /lookup property to it. Modern computers provide efficient support for
//: addresses and lookups, making this a realistic feature.
//:
//: To create addresses and allocate memory exclusively for their use, use
//: 'new'. Memory is a finite resource so if the computer can't satisfy your
//: request, 'new' may return a 0 (null) address.
//:
//: Computers these days have lots of memory so in practice we can often
//: assume we'll never run out. If you start running out however, say in a
//: long-running program, you'll need to switch mental gears and start
//: husbanding our memory more carefully. The most important tool to avoid
//: wasting memory is to 'abandon' an address when you don't need it anymore.
//: That frees up the memory allocated to it to be reused in future calls to
//: 'new'.

//: Since memory can be reused multiple times, it can happen that you have a
//: stale copy to an address that has since been abandoned and reused. Using
//: the stale address is almost never safe, but it can be very hard to track
//: down such copies because any errors caused by them may occur even millions
//: of instructions after the copy or abandon instruction. To help track down
//: such issues, Mu tracks an 'alloc id' for each allocation it makes. The
//: first call to 'new' has an alloc id of 1, the second gets 2, and so on.
//: The alloc id is never reused.
:(before "End Globals")
long long Next_alloc_id = 0;
:(before "End Reset")
Next_alloc_id = 0;

//: The 'new' instruction records alloc ids both in the memory being allocated
//: and *also* in the address. The 'abandon' instruction clears alloc ids in
//: both places as well. Tracking alloc ids in this manner allows us to raise
//: errors about stale addresses much earlier: 'lookup' operations always
//: compare alloc ids between the address and its payload.

//: todo: give 'new' a custodian ingredient. Following malloc/free is a temporary hack.

:(code)
void test_new() {
  run(
      // call 'new' two times with identical types without modifying the
      // results; you should get back different results
      "def main [\n"
      "  10:&:num <- new num:type\n"
      "  12:&:num <- new num:type\n"
      "  20:bool <- equal 10:&:num, 12:&:num\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "mem: storing 1000 in location 11\n"
      "mem: storing 0 in location 20\n"
  );
}

void test_new_array() {
  run(
      // call 'new' with a second ingredient to allocate an array of some type
      // rather than a single copy
      "def main [\n"
      "  10:&:@:num <- new num:type, 5\n"
      "  12:&:num <- new num:type\n"
      "  20:num/alloc2, 21:num/alloc1 <- deaddress 10:&:@:num, 12:&:num\n"
      "  30:num <- subtract 21:num/alloc2, 20:num/alloc1\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "run: {10: (\"address\" \"array\" \"number\")} <- new {num: \"type\"}, {5: \"literal\"}\n"
      "mem: array length is 5\n"
      // skip alloc id in allocation
      "mem: storing 1000 in location 11\n"
      // don't forget the extra locations for alloc id and array length
      "mem: storing 7 in location 30\n"
  );
}

void test_dilated_reagent_with_new() {
  run(
      "def main [\n"
      "  10:&:&:num <- new {(& num): type}\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "new: size of '(& num)' is 2\n"
  );
}

//: 'new' takes a weird 'type' as its first ingredient; don't error on it
:(before "End Mu Types Initialization")
put(Type_ordinal, "type", 0);
:(code)
bool is_mu_type_literal(const reagent& r) {
  return is_literal(r) && r.type && r.type->name == "type";
}

:(before "End Primitive Recipe Declarations")
NEW,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "new", NEW);
:(before "End Primitive Recipe Checks")
case NEW: {
  const recipe& caller = get(Recipe, r);
  if (inst.ingredients.empty() || SIZE(inst.ingredients) > 2) {
    raise << maybe(caller.name) << "'new' requires one or two ingredients, but got '" << to_original_string(inst) << "'\n" << end();
    break;
  }
  // End NEW Check Special-cases
  const reagent& type = inst.ingredients.at(0);
  if (!is_mu_type_literal(type)) {
    raise << maybe(caller.name) << "first ingredient of 'new' should be a type, but got '" << type.original_string << "'\n" << end();
    break;
  }
  if (SIZE(inst.ingredients) > 1 && !is_mu_number(inst.ingredients.at(1))) {
    raise << maybe(caller.name) << "second ingredient of 'new' should be a number (array length), but got '" << type.original_string << "'\n" << end();
    break;
  }
  if (inst.products.empty()) {
    raise << maybe(caller.name) << "result of 'new' should never be ignored\n" << end();
    break;
  }
  if (!product_of_new_is_valid(inst)) {
    raise << maybe(caller.name) << "product of 'new' has incorrect type: '" << to_original_string(inst) << "'\n" << end();
    break;
  }
  break;
}

:(code)
bool product_of_new_is_valid(const instruction& inst) {
  reagent/*copy*/ product = inst.products.at(0);
  // Update NEW product in Check
  if (!product.type || product.type->atom || product.type->left->value != Address_type_ordinal)
    return false;
  drop_from_type(product, "address");
  if (SIZE(inst.ingredients) > 1) {
    // array allocation
    if (!product.type || product.type->atom || product.type->left->value != Array_type_ordinal)
      return false;
    drop_from_type(product, "array");
  }
  reagent/*local*/ expected_product(new_type_tree(inst.ingredients.at(0).name));
  return types_strictly_match(product, expected_product);
}

void drop_from_type(reagent& r, string expected_type) {
  assert(!r.type->atom);
  if (r.type->left->name != expected_type) {
    raise << "can't drop2 " << expected_type << " from '" << to_string(r) << "'\n" << end();
    return;
  }
  // r.type = r.type->right
  type_tree* tmp = r.type;
  r.type = tmp->right;
  tmp->right = NULL;
  delete tmp;
  // if (!r.type->right) r.type = r.type->left
  assert(!r.type->atom);
  if (r.type->right) return;
  tmp = r.type;
  r.type = tmp->left;
  tmp->left = NULL;
  delete tmp;
}

void test_new_returns_incorrect_type() {
  Hide_errors = true;
  run(
      "def main [\n"
      "  1:bool <- new num:type\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: main: product of 'new' has incorrect type: '1:bool <- new num:type'\n"
  );
}

void test_new_discerns_singleton_list_from_atom_container() {
  Hide_errors = true;
  run(
      "def main [\n"
      "  1:&:num <- new {(num): type}\n"  // should be '{num: type}'
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: main: product of 'new' has incorrect type: '1:&:num <- new {(num): type}'\n"
  );
}

void test_new_with_type_abbreviation() {
  run(
      "def main [\n"
      "  1:&:num <- new num:type\n"
      "]\n"
  );
  CHECK_TRACE_COUNT("error", 0);
}

void test_new_with_type_abbreviation_inside_compound() {
  run(
      "def main [\n"
      "  {1: (address address number), raw: ()} <- new {(& num): type}\n"
      "]\n"
  );
  CHECK_TRACE_COUNT("error", 0);
}

void test_equal_result_of_new_with_null() {
  run(
      "def main [\n"
      "  1:&:num <- new num:type\n"
      "  10:bool <- equal 1:&:num, null\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "mem: storing 0 in location 10\n"
  );
}

//: To implement 'new', a Mu transform turns all 'new' instructions into
//: 'allocate' instructions that precompute the amount of memory they want to
//: allocate.

//: Ensure that we never call 'allocate' directly, and that there's no 'new'
//: instructions left after the transforms have run.
:(before "End Primitive Recipe Checks")
case ALLOCATE: {
  raise << "never call 'allocate' directly'; always use 'new'\n" << end();
  break;
}
:(before "End Primitive Recipe Implementations")
case NEW: {
  raise << "no implementation for 'new'; why wasn't it translated to 'allocate'? Please save a copy of your program and send it to Kartik.\n" << end();
  break;
}

:(after "Transform.push_back(check_instruction)")  // check_instruction will guard against direct 'allocate' instructions below
Transform.push_back(transform_new_to_allocate);  // idempotent

:(code)
void transform_new_to_allocate(const recipe_ordinal r) {
  trace(101, "transform") << "--- convert 'new' to 'allocate' for recipe " << get(Recipe, r).name << end();
  for (int i = 0;  i < SIZE(get(Recipe, r).steps);  ++i) {
    instruction& inst = get(Recipe, r).steps.at(i);
    // Convert 'new' To 'allocate'
    if (inst.name == "new") {
      if (inst.ingredients.empty()) return;  // error raised elsewhere
      inst.operation = ALLOCATE;
      type_tree* type = new_type_tree(inst.ingredients.at(0).name);
      inst.ingredients.at(0).set_value(size_of(type));
      trace(102, "new") << "size of '" << inst.ingredients.at(0).name << "' is " << inst.ingredients.at(0).value << end();
      delete type;
    }
  }
}

//: implement 'allocate' based on size

:(before "End Globals")
extern const int Reserved_for_tests = 1000;
int Memory_allocated_until = Reserved_for_tests;
int Initial_memory_per_routine = 100000;
:(before "End Reset")
Memory_allocated_until = Reserved_for_tests;
Initial_memory_per_routine = 100000;
:(before "End routine Fields")
int alloc, alloc_max;
:(before "End routine Constructor")
alloc = Memory_allocated_until;
Memory_allocated_until += Initial_memory_per_routine;
alloc_max = Memory_allocated_until;
trace(Callstack_depth+1, "new") << "routine allocated memory from " << alloc << " to " << alloc_max << end();

:(before "End Primitive Recipe Declarations")
ALLOCATE,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "allocate", ALLOCATE);
:(before "End Primitive Recipe Implementations")
case ALLOCATE: {
  // compute the space we need
  int size = ingredients.at(0).at(0);
  int alloc_id = Next_alloc_id;
  Next_alloc_id++;
  if (SIZE(ingredients) > 1) {
    // array allocation
    trace(Callstack_depth+1, "mem") << "array length is " << ingredients.at(1).at(0) << end();
    size = /*space for length*/1 + size*ingredients.at(1).at(0);
  }
  int result = allocate(size);
  // initialize alloc-id in payload
  trace(Callstack_depth+1, "mem") << "storing alloc-id " << alloc_id << " in location " << result << end();
  put(Memory, result, alloc_id);
  if (SIZE(current_instruction().ingredients) > 1) {
    // initialize array length
    trace(Callstack_depth+1, "mem") << "storing array length " << ingredients.at(1).at(0) << " in location " << result+/*skip alloc id*/1 << end();
    put(Memory, result+/*skip alloc id*/1, ingredients.at(1).at(0));
  }
  products.resize(1);
  products.at(0).push_back(alloc_id);
  products.at(0).push_back(result);
  break;
}
:(code)
int allocate(int size) {
  // include space for alloc id
  ++size;
  trace(Callstack_depth+1, "mem") << "allocating size " << size << end();
//?   Total_alloc += size;
//?   ++Num_alloc;
  // Allocate Special-cases
  // compute the region of memory to return
  // really crappy at the moment
  ensure_space(size);
  const int result = Current_routine->alloc;
  trace(Callstack_depth+1, "mem") << "new alloc: " << result << end();
  // initialize allocated space
  for (int address = result;  address < result+size;  ++address) {
    trace(Callstack_depth+1, "mem") << "storing 0 in location " << address << end();
    put(Memory, address, 0);
  }
  Current_routine->alloc += size;
  // no support yet for reclaiming memory between routines
  assert(Current_routine->alloc <= Current_routine->alloc_max);
  return result;
}

//: statistics for debugging
//? :(before "End Globals")
//? int Total_alloc = 0;
//? int Num_alloc = 0;
//? int Total_free = 0;
//? int Num_free = 0;
//? :(before "End Reset")
//? if (!Memory.empty()) {
//?   cerr << Total_alloc << "/" << Num_alloc
//?        << " vs " << Total_free << "/" << Num_free << '\n';
//?   cerr << SIZE(Memory) << '\n';
//? }
//? Total_alloc = Num_alloc = Total_free = Num_free = 0;

:(code)
void ensure_space(int size) {
  if (size > Initial_memory_per_routine) {
    cerr << "can't allocate " << size << " locations, that's too much compared to " << Initial_memory_per_routine << ".\n";
    exit(1);
  }
  if (Current_routine->alloc + size > Current_routine->alloc_max) {
    // waste the remaining space and create a new chunk
    Current_routine->alloc = Memory_allocated_until;
    Memory_allocated_until += Initial_memory_per_routine;
    Current_routine->alloc_max = Memory_allocated_until;
    trace(Callstack_depth+1, "new") << "routine allocated memory from " << Current_routine->alloc << " to " << Current_routine->alloc_max << end();
  }
}

void test_new_initializes() {
  Memory_allocated_until = 10;
  put(Memory, Memory_allocated_until, 1);
  run(
      "def main [\n"
      "  1:&:num <- new num:type\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "mem: storing 0 in location 10\n"
      "mem: storing 0 in location 11\n"
      "mem: storing 10 in location 2\n"
  );
}

void test_new_initializes_alloc_id() {
  Memory_allocated_until = 10;
  put(Memory, Memory_allocated_until, 1);
  Next_alloc_id = 23;
  run(
      "def main [\n"
      "  1:&:num <- new num:type\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      // initialize memory
      "mem: storing 0 in location 10\n"
      "mem: storing 0 in location 11\n"
      // alloc-id in payload
      "mem: storing alloc-id 23 in location 10\n"
      // alloc-id in address
      "mem: storing 23 in location 1\n"
  );
}

void test_new_size() {
  run(
      "def main [\n"
      "  10:&:num <- new num:type\n"
      "  12:&:num <- new num:type\n"
      "  20:num/alloc1, 21:num/alloc2 <- deaddress 10:&:num, 12:&:num\n"
      "  30:num <- subtract 21:num/alloc2, 20:num/alloc1\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      // size of number + alloc id
      "mem: storing 2 in location 30\n"
  );
}

void test_new_array_size() {
  run(
      "def main [\n"
      "  10:&:@:num <- new num:type, 5\n"
      "  12:&:num <- new num:type\n"
      "  20:num/alloc1, 21:num/alloc2 <- deaddress 10:&:num, 12:&:num\n"
      "  30:num <- subtract 21:num/alloc2, 20:num/alloc1\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      // 5 locations for array contents + array length + alloc id
      "mem: storing 7 in location 30\n"
  );
}

void test_new_empty_array() {
  run(
      "def main [\n"
      "  10:&:@:num <- new num:type, 0\n"
      "  12:&:num <- new num:type\n"
      "  20:num/alloc1, 21:num/alloc2 <- deaddress 10:&:@:num, 12:&:num\n"
      "  30:num <- subtract 21:num/alloc2, 20:num/alloc1\n"
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "run: {10: (\"address\" \"array\" \"number\")} <- new {num: \"type\"}, {0: \"literal\"}\n"
      "mem: array length is 0\n"
      // one location for array length and one for alloc id
      "mem: storing 2 in location 30\n"
  );
}

//: If a routine runs out of its initial allocation, it should allocate more.
void test_new_overflow() {
  Initial_memory_per_routine = 3;  // barely enough room for point allocation below
  run(
      "def main [\n"
      "  10:&:num <- new num:type\n"
      "  12:&:point <- new point:type\n"  // not enough room in initial page
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "new: routine allocated memory from 1000 to 1003\n"
      "new: routine allocated memory from 1003 to 1006\n"
  );
}

void test_new_without_ingredient() {
  Hide_errors = true;
  run(
      "def main [\n"
      "  1:&:num <- new\n"  // missing ingredient
      "]\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: main: 'new' requires one or two ingredients, but got '1:&:num <- new'\n"
  );
}

//: a little helper: convert address to number

:(before "End Primitive Recipe Declarations")
DEADDRESS,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "deaddress", DEADDRESS);
:(before "End Primitive Recipe Checks")
case DEADDRESS: {
  // primary goal of these checks is to forbid address arithmetic
  for (int i = 0;  i < SIZE(inst.ingredients);  ++i) {
    if (!is_mu_address(inst.ingredients.at(i))) {
      raise << maybe(get(Recipe, r).name) << "'deaddress' requires address ingredients, but got '" << inst.ingredients.at(i).original_string << "'\n" << end();
      goto finish_checking_instruction;
    }
  }
  if (SIZE(inst.products) > SIZE(inst.ingredients)) {
    raise << maybe(get(Recipe, r).name) << "too many products in '" << to_original_string(inst) << "'\n" << end();
    break;
  }
  for (int i = 0;  i < SIZE(inst.products);  ++i) {
    if (!is_real_mu_number(inst.products.at(i))) {
      raise << maybe(get(Recipe, r).name) << "'deaddress' requires number products, but got '" << inst.products.at(i).original_string << "'\n" << end();
      goto finish_checking_instruction;
    }
  }
  break;
}
:(before "End Primitive Recipe Implementations")
case DEADDRESS: {
  products.resize(SIZE(ingredients));
  for (int i = 0;  i < SIZE(ingredients);  ++i) {
    products.at(i).push_back(ingredients.at(i).at(/*skip alloc id*/1));
  }
  break;
}