1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
|
# Code for the first few disk sectors that all programs in this directory need:
# - load sectors past the first (using BIOS primitives) since only the first is available by default
# - if this fails, print 'D' at top-left of screen and halt
# - initialize a minimal graphics mode
# - switch to 32-bit mode (giving up access to BIOS primitives)
# - set up a handler for keyboard events
# - jump to start of program
#
# To convert to a disk image, first prepare a realistically sized disk image:
# dd if=/dev/zero of=disk.img count=20160 # 512-byte sectors, so 10MB
# Create initial sectors from this file:
# ./bootstrap run apps/hex < baremetal/boot.hex > boot.bin
# Translate other sectors into a file called a.img
# Load all sectors into the disk image:
# cat boot.bin a.img > disk.bin
# dd if=disk.bin of=disk.img conv=notrunc
# To run:
# qemu-system-i386 disk.img
# Or:
# bochs -f baremetal/boot.bochsrc # boot.bochsrc loads disk.img
#
# Since we start out in 16-bit mode, we need instructions SubX doesn't
# support.
# This file contains just lowercase hex bytes and comments. Programming it
# requires liberal use of:
# - comments documenting expected offsets
# - size checks on the emitted file (currently: 6144 bytes)
# - xxd to spot-check contents of specific offsets in the generated output
#
# Programs using this initialization:
# - can't use any syscalls
# - can't print text to video memory (past these boot sectors)
# - must only print raw pixels (256 colors) to video memory (resolution 1024x768)
# - must start executing immediately after this file (see outline below)
#
# Don't panic! This file doesn't contain any loops or function calls. 80% of
# it is data. One pass through less than 1KB of code (there's lots of
# padding), and then we jump into a better notation. The rest of the stack
# (really only in a couple of slightly higher-level places) needs to know just
# a few magic constants:
# Video memory: start is stored at 0x8128
# Keyboard buffer: starts at 0x8028
#
# No mouse support. _That_ would require panicking.
# Outline of this file with offsets and the addresses they map to at run-time:
# -- 16-bit mode code
# offset 0 (address 7c00): boot code
# -- 16-bit mode data
# e0 (address 7c80) global descriptor table
# f8 (address 7ca0) <== gdt_descriptor
# -- 32-bit mode code
# offset 100 (address 7d00): boot code
# 1fe (address 7dfe) boot sector marker (2 bytes)
# offset 200 (address 7e00): interrupt handler code
# -- 32-bit mode data
# offset 400 (address 8000): handler data
# 410 (address 8010): keyboard handler data
# 428 (address 8028) <== keyboard buffer
# offset 500 (address 8100): video mode data (256 bytes)
# 528 (address 8128) <== start of video RAM stored here
# offset 600 (address 8200): interrupt descriptor table (1KB)
# offset a00 (address 8600): keyboard mappings (1.5KB)
# offset 1000 (address 8c00): bitmap font (2KB)
# offset 1800 (address 9400): entrypoint for applications (don't forget to adjust survey_baremetal if this changes)
# Other details of the current memory map:
# code: 4 tracks of disk to [0x00007c00, 0x00027400)
# stack grows down from 0x00070000
# see below
# heap: [0x01000000, 0x02000000)
# see baremetal/120allocate.subx
# Consult https://wiki.osdev.org/Memory_Map_(x86) before modifying any of this.
## 16-bit entry point
# Upon reset, the IBM PC:
# - loads the first sector (512 bytes)
# from some bootable image (see the boot sector marker at the end of this file)
# to the address range [0x7c00, 0x7e00)
# - starts executing code at address 0x7c00
# offset 00 (address 0x7c00):
# disable interrupts for this initialization
fa # cli
# initialize segment registers
# this isn't always needed, but the recommendation is to not make assumptions
b8 00 00 # ax <- 0
8e d8 # ds <- ax
8e c0 # es <- ax
8e e0 # fs <- ax
8e e8 # gs <- ax
# initialize stack to 0x00070000
# We don't read or write the stack before we get to 32-bit mode, but BIOS
# calls do. We need to move the stack in case BIOS initializes it to some
# low address that we want to write code into.
b8 00 70 # ax <- 0x7000
8e d0 # ss <- ax
bc 00 00 # sp <- 0x0000
# undo the A20 hack: https://en.wikipedia.org/wiki/A20_line
# this is from https://github.com/mit-pdos/xv6-public/blob/master/bootasm.S
# seta20.1:
e4 64 # al <- port 0x64
a8 02 # set zf if bit 1 (second-least significant) is not set
75 fa # if zf not set, goto seta20.1 (-6)
b0 d1 # al <- 0xd1
e6 64 # port 0x64 <- al
# seta20.2:
e4 64 # al <- port 0x64
a8 02 # set zf if bit 1 (second-least significant) is not set
75 fa # if zf not set, goto seta20.2 (-6)
b0 df # al <- 0xdf
e6 64 # port 0x64 <- al
# load remaining sectors from first two tracks of disk into addresses [0x7e00, 0x17800)
b4 02 # ah <- 2 # read sectors from disk
# dl comes conveniently initialized at boot time with the index of the device being booted
b5 00 # ch <- 0 # cylinder 0
b6 00 # dh <- 0 # track 0
b1 02 # cl <- 2 # second sector, 1-based
b0 7d # al <- 125 # number of sectors to read = 2*63 - 1
# address to write sectors to = es:bx = 0x7e00, contiguous with boot segment
bb 00 00 # bx <- 0
8e c3 # es <- bx
bb 00 7e # bx <- 0x7e00 [label]
cd 13 # int 13h, BIOS disk service
0f 82 a3 00 # jump-if-carry disk_error [label]
# load two more tracks of disk into addresses [0x17800, 0x27400)
b4 02 # ah <- 2 # read sectors from disk
# dl comes conveniently initialized at boot time with the index of the device being booted
b5 00 # ch <- 0 # cylinder 0
b6 02 # dh <- 2 # track 0
b1 01 # cl <- 1 # first sector, 1-based
b0 7e # al <- 126 # number of sectors to read = 2*63
# address to write sectors to = es:bx = 0x17800
bb 80 17 # bx <- 0x1780 [label]
8e c3 # es <- bx
bb 00 00 # bx <- 0
cd 13 # int 13h, BIOS disk service
0f 82 9b 00 # jump-if-carry disk_error [label]
# reset es
bb 00 00 # bx <- 0
8e c3 # es <- bx
# adjust video mode
b4 4f # ah <- 4f (VBE)
b0 02 # al <- 02 (set video mode)
bb 05 41 # bx <- 0x0105 (graphics 1024x768x256
# 0x4000 bit = configure linear frame buffer in Bochs emulator; hopefully this doesn't hurt anything when running natively)
# fallback mode: 0x0101 (640x480x256)
cd 10 # int 10h, Vesa BIOS extensions
# load information for the (hopefully) current video mode
# mostly just for the address to the linear frame buffer
b4 4f # ah <- 4f (VBE)
b0 01 # al <- 01 (get video mode info)
b9 07 01 # cx <- 0x0107 (mode we requested)
bf 00 81 # di <- 0x8100 (video mode info) [label]
cd 10
# switch to 32-bit mode
0f 01 16 # lgdt 00/mod/indirect 010/subop 110/rm/use-disp16
f8 7c # *gdt_descriptor [label]
0f 20 c0 # eax <- cr0
66 83 c8 01 # eax <- or 0x1
0f 22 c0 # cr0 <- eax
ea 00 7d 08 00 # far jump to initialize_32bit_mode after setting cs to the record at offset 8 in the gdt (gdt_code) [label]
# padding
# 76:
00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# cf:
# disk_error:
# print 'D' to top-left of screen to indicate disk error
# *0xb8000 <- 0x0f44
# bx <- 0xb800
bb 00 b8
# ds <- bx
8e db # 11b/mod 011b/reg/ds 011b/rm/bx
# al <- 'D'
b0 44
# ah <- 0x0f # white on black
b4 0f
# bx <- 0
bb 00 00
# *ds:bx <- ax
89 07 # 00b/mod/indirect 000b/reg/ax 111b/rm/bx
e9 fd ff # loop forever
## GDT: 3 records of 8 bytes each
# e0:
# gdt_start:
# gdt_null: mandatory null descriptor
00 00 00 00 00 00 00 00
# gdt_code: (offset 8 from gdt_start)
ff ff # limit[0:16]
00 00 00 # base[0:24]
9a # 1/present 00/privilege 1/descriptor type = 1001b
# 1/code 0/conforming 1/readable 0/accessed = 1010b
cf # 1/granularity 1/32-bit 0/64-bit-segment 0/AVL = 1100b
# limit[16:20] = 1111b
00 # base[24:32]
# gdt_data: (offset 16 from gdt_start)
ff ff # limit[0:16]
00 00 00 # base[0:24]
92 # 1/present 00/privilege 1/descriptor type = 1001b
# 0/data 0/conforming 1/readable 0/accessed = 0010b
cf # same as gdt_code
00 # base[24:32]
# gdt_end:
# f8:
# gdt_descriptor:
17 00 # final index of gdt = gdt_end - gdt_start - 1
e0 7c 00 00 # start = gdt_start [label]
# padding
# fe:
00 00
## 32-bit code from this point (still some instructions not in SubX)
# offset 100 (address 0x7d00):
# initialize_32bit_mode:
66 b8 10 00 # ax <- offset 16 from gdt_start
8e d8 # ds <- ax
8e d0 # ss <- ax
8e c0 # es <- ax
8e e0 # fs <- ax
8e e8 # gs <- ax
# 10e:
bc 00 00 07 00 # esp <- 0x00070000
# 113:
# load interrupt handlers
0f 01 1d # lidt 00/mod/indirect 011/subop 101/rm32/use-disp32
00 80 00 00 # *idt_descriptor [label]
# For now, not bothering reprogramming the IRQ to not conflict with software
# exceptions.
# https://wiki.osdev.org/index.php?title=8259_PIC&oldid=24650#Protected_Mode
#
# Interrupt 1 (keyboard) conflicts with debugger faults. We don't use a
# debugger.
# Reference:
# https://wiki.osdev.org/Exceptions
# 11a:
# enable keyboard IRQ (1)
b0 fd # al <- 0xfd # disable mask for IRQ1
e6 21 # port 0x21 <- al
# 11e:
fb # enable interrupts
db e3 # initialize FPU
# eax <- cr4
0f 20 # copy cr4 to rm32
e0 # 11/mod/direct 100/r32/CR4 000/rm32/eax
# eax <- or bit 9
0f ba
e8 # 11/mod/direct 101/subop/bit-test-and-set 000/rm32/eax
09 # imm8
# cr4 <- eax
0f 22 # copy rm32 to cr4
e0 # 11/mod/direct 100/r32/CR4 000/rm32/eax
e9 d0 16 00 00 # jump to 0x9400 [label]
# padding
# 130:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00
# 1fe:
# final 2 bytes of boot sector
55 aa
## sector 2 onwards loaded by load_disk, not automatically on boot
# offset 200 (address 0x7e00):
# null interrupt handler:
cf # iret
# padding
# 201:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# 210:
# keyboard interrupt handler:
# prologue
fa # disable interrupts
60 # push all registers to stack
# acknowledge interrupt
b0 20 # al <- 0x20
e6 20 # port 0x20 <- al
31 c0 # eax <- xor eax; 11/direct 000/r32/eax 000/rm32/eax
# check output buffer of 8042 keyboard controller (https://web.archive.org/web/20040604041507/http://panda.cs.ndsu.nodak.edu/~achapwes/PICmicro/keyboard/atkeyboard.html)
e4 64 # al <- port 0x64
a8 01 # set zf if bit 0 (least significant) is not set
74 bb # jump to epilogue if 0 bit is not set [label]
# 21e:
# - if keyboard buffer is full, return
31 c9 # ecx <- xor ecx; 11/direct 001/r32/ecx 001/rm32/ecx
# var index/ecx: byte
8a # copy m8 at r32 to r8
0d # 00/mod/indirect 001/r8/cl 101/rm32/use-disp32
28 80 00 00 # disp32 [label]
# al = *(keyboard buffer + index)
8a # copy m8 at r32 to r8
81 # 10/mod/*+disp32 000/r8/al 001/rm32/ecx
30 80 00 00 # disp32 [label]
# if (al != 0) return
3c 00 # compare al, 0
75 a9 # jump to epilogue if != [label]
# 230:
# - read keycode
e4 60 # al <- port 0x60
# - key released
# if (al == 0xaa) shift = false # left shift is being lifted
3c aa # compare al, 0xaa
75 0a # jump to $1 if != [label]
# *shift = 0
c7 # copy imm32 to rm32
05 # 00/mod/indirect 000/subop/copy 101/rm32/use-disp32
10 80 00 00 # disp32 [label]
00 00 00 00 # imm32
# 240:
# $1:
# if (al == 0xb6) shift = false # right shift is being lifted
3c b6 # compare al, 0xb6
75 0a # jump to $2 if != [label]
# *shift = 0
c7 # copy imm32 to rm32
05 # 00/mod/indirect 000/subop/copy 101/rm32/use-disp32
10 80 00 00 # disp32 [label]
00 00 00 00 # imm32
# 24e:
# $2:
# if (al == 0x9d) ctrl = false # ctrl is being lifted
3c 9d # compare al, 0x9d
75 0a # jump to $3 if != [label]
# *ctrl = 0
c7 # copy imm32 to rm32
05 # 00/mod/indirect 000/subop/copy 101/rm32/use-disp32
14 80 00 00 # disp32 [label]
00 00 00 00 # imm32
# 25c:
# $3:
# if (al & 0x80) a key is being lifted; return
50 # push eax
24 80 # al <- and 0x80
3c 00 # compare al, 0
58 # pop to eax (without touching flags)
75 75 # jump to epilogue if != [label]
# 264:
# - key pressed
# if (al == 0x2a) shift = true, return # left shift pressed
3c 2a # compare al, 0x2a
75 0c # jump to $4 if != [label]
# *shift = 1
c7 # copy imm32 to rm32
05 # 00/mod/indirect 000/subop/copy 101/rm32/use-disp32
10 80 00 00 # disp32 [label]
01 00 00 00 # imm32
eb 65 # jump to epilogue [label]
# 274:
# $4:
# if (al == 0x36) shift = true, return # right shift pressed
3c 36 # compare al, 0x36
75 0c # jump to $5 if != [label]
# *shift = 1
c7 # copy imm32 to rm32
05 # 00/mod/indirect 000/subop/copy 101/rm32/use-disp32
10 80 00 00 # disp32 [label]
01 00 00 00 # imm32
eb 55 # jump to epilogue [label]
# 284:
# $5:
# if (al == 0x1d) ctrl = true, return
3c 1d # compare al, 0x36
75 0c # jump to $6 if != [label]
# *shift = 1
c7 # copy imm32 to rm32
05 # 00/mod/indirect 000/subop/copy 101/rm32/use-disp32
14 80 00 00 # disp32 [label]
01 00 00 00 # imm32
eb 45 # jump to epilogue [label]
# 294:
# $6:
# - convert key to character
# if (shift) use keyboard shift map
81 # operate on rm32 and imm32
3d # 00/mod/indirect 111/subop/compare 101/rm32/use-disp32
10 80 00 00 # disp32 = shift [label]
00 00 00 00 # imm32
74 08 # jump to $7 if = [label]
# al <- *(keyboard shift map + eax)
8a # copy m8 at rm32 to r8
80 # 10/mod/*+disp32 000/r8/al 000/rm32/eax
00 87 00 00 # disp32 [label]
eb 1a # jump to $8 [label]
# 2a8:
# $7:
# if (ctrl) use keyboard ctrl map
81 # operate on rm32 and imm32
3d # 00/mod/indirect 111/subop/compare 101/rm32/use-disp32
14 80 00 00 # disp32 = ctrl [label]
00 00 00 00 # imm32
74 08 # jump to $8 if = [label]
# al <- *(keyboard ctrl map + eax)
8a # copy m8 at rm32 to r8
80 # 10/mod/*+disp32 000/r8/al 000/rm32/eax
00 88 00 00 # disp32 [label]
eb 06 # jump to $9 [label]
# 2bc:
# $8:
# otherwise use keyboard normal map
# al <- *(keyboard normal map + eax)
8a # copy m8 at rm32 to r8
80 # 10/mod/*+disp32 000/r8/al 000/rm32/eax
00 86 00 00 # disp32 [label]
# 2c2:
# $9:
# - if there's no character mapping, return
3c 00 # compare al, 0
74 13 # jump to epilogue if = [label]
# 2c6:
# - store al in keyboard buffer
88 # copy r8 to m8 at r32
81 # 10/mod/*+disp32 000/r8/al 001/rm32/ecx
30 80 00 00 # disp32 [label]
# increment index
fe # increment byte
05 # 00/mod/indirect 000/subop/increment 101/rm32/use-disp32
28 80 00 00 # disp32 [label]
# clear top nibble of index (keyboard buffer is circular)
80 # and byte
25 # 00/mod/indirect 100/subop/and 101/rm32/use-disp32
28 80 00 00 # disp32 [label]
0f # imm8
# 2d9:
# epilogue
61 # pop all registers
fb # enable interrupts
cf # iret
# padding
# 2dc:
00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# 300:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# offset 400 (address 0x8000): interrupt handler data
# idt_descriptor:
ff 03 # idt_end - idt_start - 1
00 82 00 00 # start = idt_start [label]
# padding
# 406:
00 00 00 00 00 00 00 00 00 00
# 410:
# var shift: boolean
00 00 00 00
# 414:
# var ctrl: boolean
00 00 00 00
# padding
# 418:
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
# 428:
# var keyboard circular buffer
# write index: nibble
# still take up 4 bytes so SubX can handle it
00 00 00 00
# 42c:
# read index: nibble
# still take up 4 bytes so SubX can handle it
00 00 00 00
# 430:
# circular buffer: byte[16]
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# padding
# 440:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# offset 500 (address 0x8100):
# video mode info {{{
00 00 # attributes
00 # winA
00 # winB
# 04
00 00 # granularity
00 00 # winsize
# 08
00 00 # segmentA
00 00 # segmentB
# 0c
00 00 00 00 # realFctPtr (who knows)
# 10
00 00 # pitch
00 00 # Xres
# 14
00 00 # Yres
00 00 # Wchar Ychar
# 18
00 # planes
00 # bpp
00 # banks
00 # memory_model
# 1c
00 # bank_size
00 # image_pages
00 # reserved
# 1f
00 00 # red_mask red_position
00 00 # green_mask green_position
00 00 # blue_mask blue_position
00 00 # rsv_mask rsv_position
00 # directcolor_attributes
# 28
00 00 00 00 # physbase <== linear frame buffer
# 2c
# reserved for video mode info
00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# }}}
# offset 600 (address 0x8200):
# interrupt descriptor table {{{
# 128 entries * 8 bytes each = 1024 bytes (0x400)
# idt_start:
# entry 0
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
# By default, BIOS maps IRQ0-7 to interrupt vectors 8-15.
# https://wiki.osdev.org/index.php?title=Interrupts&oldid=25102#Default_PC_Interrupt_Vector_Assignment
# entry 8: clock
00 7e # target[0:16] = null interrupt handler [label]
08 00 # segment selector (gdt_code)
00 # unused
8e # 1/p 00/dpl 0 1110/type/32-bit-interrupt-gate
00 00 # target[16:32]
# entry 9: keyboard
10 7e # target[0:16] = keyboard interrupt handler [label]
08 00 # segment selector (gdt_code)
00 # unused
8e # 1/p 00/dpl 0 1110/type/32-bit-interrupt-gate
00 00 # target[16:32]
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
# 500:
# entry 0x20
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
# 600:
# entry 0x40
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
# 700:
# entry 0x60
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
# entry 0x70
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
# idt_end:
# }}}
## the rest of this file has data
# offset a00 (address 0x8600):
# translating keys to ASCII {{{
# keyboard normal map:
00
# es
1b
# |<--- digits -------------->| - = backspace
31 32 33 34 35 36 37 38 39 30 2d 3d 08
# 0f
# tab q w e r t y u i o p [ ]
09 71 77 65 72 74 79 75 69 6f 70 5b 5d
# 1c
# enter (newline)
0a 00
# 1e
# a s d f g h j k l ; ' ` \
61 73 64 66 67 68 6a 6b 6c 3b 27 60 00 5c
# ^ left shift
# 2c
# z x c v b n m , . / *
7a 78 63 76 62 6e 6d 2c 2e 2f 00 2a
# ^ right shift
# 38
# space
00 20
# 3a
00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# numeric keypad would start here, but isn't implemented
00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# offset b00:
# keyboard shift map:
00
# es
1b
# ! @ # $ % ^ & * ( ) _ + backspace
21 40 23 24 25 53 26 2a 28 29 5f 2b 08
# 0f
# tab Q W E R T Y U I O P { }
09 51 57 45 52 54 59 55 49 5f 50 7b 7d
# 1c
# enter (newline)
0a 00
# 1e
# A S D F G H J K L : " ~ |
41 53 44 46 47 48 4a 4b 4c 3a 22 7e 00 7c
# 2c
# Z X C V B N M < > ? *
5a 58 43 56 42 4e 4d 3c 3e 3f 00 2a
# 38
# space
00 20
# 3a
00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# numeric keypad would start here, but isn't implemented
00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# c00:
# keyboard ctrl map:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# 10
# ^q ^w ^e ^r ^t ^y ^u tb ^o ^p
11 17 05 12 14 19 15 09 1f 10 00 00
# 1c
# carriage-return
0d 00
# 1e
# ^a ^s ^d ^f ^g ^h ^j ^j ^l ^\
01 13 04 06 07 08 0a 0b 0c 00 00 00 00 1c
# 2c
# ^z ^x ^c ^v ^b ^n ^m ^/
1a 18 03 16 02 0e 0d 00 00 1f 00 00
# 38
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# padding (there might be more keyboard tables)
# d00:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# e00:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# f00:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# }}}
# offset 1000 (address 0x8c00)
# Bitmaps for some ASCII characters (soon Unicode) {{{
# Part of GNU Unifont
# 8px wide, 16px tall
# Based on http://unifoundry.com/pub/unifont/unifont-13.0.05/font-builds/unifont-13.0.05.hex.gz
# See https://en.wikipedia.org/wiki/GNU_Unifont#The_.hex_font_format
# Website: http://unifoundry.com/unifont/index.html
# License: http://unifoundry.com/LICENSE.txt (GPL v2)
# Each line below is a bitmap for a single character.
# Each byte is a bitmap for a single row of 8 pixels.
# some unprintable ASCII chars
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# 0x20 = space
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# !
00 00 00 00 08 08 08 08 08 08 08 00 08 08 00 00
# "
00 00 22 22 22 22 00 00 00 00 00 00 00 00 00 00
# 0x23 = '#'
00 00 00 00 12 12 12 7e 24 24 7e 48 48 48 00 00
# $
00 00 00 00 08 3e 49 48 38 0e 09 49 3e 08 00 00
# %
00 00 00 00 31 4a 4a 34 08 08 16 29 29 46 00 00
# &
00 00 00 00 1c 22 22 14 18 29 45 42 46 39 00 00
# '
00 00 08 08 08 08 00 00 00 00 00 00 00 00 00 00
# (
00 00 00 04 08 08 10 10 10 10 10 10 08 08 04 00
# )
00 00 00 20 10 10 08 08 08 08 08 08 10 10 20 00
# *
00 00 00 00 00 00 08 49 2a 1c 2a 49 08 00 00 00
# +
00 00 00 00 00 00 08 08 08 7f 08 08 08 00 00 00
# ,
00 00 00 00 00 00 00 00 00 00 00 00 18 08 08 10
# -
00 00 00 00 00 00 00 00 00 3c 00 00 00 00 00 00
# .
00 00 00 00 00 00 00 00 00 00 00 00 18 18 00 00
# /
00 00 00 00 02 02 04 08 08 10 10 20 40 40 00 00
# 0x30 = '0'
00 00 00 00 18 24 42 46 4a 52 62 42 24 18 00 00
# 1
00 00 00 00 08 18 28 08 08 08 08 08 08 3e 00 00
# 2
00 00 00 00 3c 42 42 02 0c 10 20 40 40 7e 00 00
# 3
00 00 00 00 3c 42 42 02 1c 02 02 42 42 3c 00 00
# 4
00 00 00 00 04 0c 14 24 44 44 7e 04 04 04 00 00
# 5
00 00 00 00 7e 40 40 40 7c 02 02 02 42 3c 00 00
# 6
00 00 00 00 1c 20 40 40 7c 42 42 42 42 3c 00 00
# 7
00 00 00 00 7e 02 02 04 04 04 08 08 08 08 00 00
# 8
00 00 00 00 3c 42 42 42 3c 42 42 42 42 3c 00 00
# 9
00 00 00 00 3c 42 42 42 3e 02 02 02 04 38 00 00
# :
00 00 00 00 00 00 18 18 00 00 00 18 18 00 00 00
# ;
00 00 00 00 00 00 18 18 00 00 00 18 08 08 10 00
# <
00 00 00 00 00 02 04 08 10 20 10 08 04 02 00 00
# =
00 00 00 00 00 00 00 7e 00 00 00 7e 00 00 00 00
# >
00 00 00 00 00 40 20 10 08 04 08 10 20 40 00 00
# ?
00 00 00 00 3c 42 42 02 04 08 08 00 08 08 00 00
# 0x40 = @
00 00 00 00 1c 22 4a 56 52 52 52 4e 20 1e 00 00
# A
00 00 00 00 18 24 24 42 42 7e 42 42 42 42 00 00
# B
00 00 00 00 7c 42 42 42 7c 42 42 42 42 7c 00 00
# C
00 00 00 00 3c 42 42 40 40 40 40 42 42 3c 00 00
# D
00 00 00 00 78 44 42 42 42 42 42 42 44 78 00 00
# E
00 00 00 00 7e 40 40 40 7c 40 40 40 40 7e 00 00
# F
00 00 00 00 7e 40 40 40 7c 40 40 40 40 40 00 00
# G
00 00 00 00 3c 42 42 40 40 4e 42 42 46 3a 00 00
# H
00 00 00 00 42 42 42 42 7e 42 42 42 42 42 00 00
# I
00 00 00 00 3e 08 08 08 08 08 08 08 08 3e 00 00
# J
00 00 00 00 1f 04 04 04 04 04 04 44 44 38 00 00
# K
00 00 00 00 42 44 48 50 60 60 50 48 44 42 00 00
# L
00 00 00 00 40 40 40 40 40 40 40 40 40 7e 00 00
# M
00 00 00 00 42 42 66 66 5a 5a 42 42 42 42 00 00
# N
00 00 00 00 42 62 62 52 52 4a 4a 46 46 42 00 00
# O
00 00 00 00 3c 42 42 42 42 42 42 42 42 3c 00 00
# 0x50 = P
00 00 00 00 7c 42 42 42 7c 40 40 40 40 40 00 00
# Q
00 00 00 00 3c 42 42 42 42 42 42 5a 66 3c 03 00
# R
00 00 00 00 7c 42 42 42 7c 48 44 44 42 42 00 00
# S
00 00 00 00 3c 42 42 40 30 0c 02 42 42 3c 00 00
# T
00 00 00 00 7f 08 08 08 08 08 08 08 08 08 00 00
# U
00 00 00 00 42 42 42 42 42 42 42 42 42 3c 00 00
# V
00 00 00 00 41 41 41 22 22 22 14 14 08 08 00 00
# W
00 00 00 00 42 42 42 42 5a 5a 66 66 42 42 00 00
# X
00 00 00 00 42 42 24 24 18 18 24 24 42 42 00 00
# Y
00 00 00 00 41 41 22 22 14 08 08 08 08 08 00 00
# Z
00 00 00 00 7e 02 02 04 08 10 20 40 40 7e 00 00
# [
00 00 00 0e 08 08 08 08 08 08 08 08 08 08 0e 00
# \
00 00 00 00 40 40 20 10 10 08 08 04 02 02 00 00
# ]
00 00 00 70 10 10 10 10 10 10 10 10 10 10 70 00
# ^
00 00 18 24 42 00 00 00 00 00 00 00 00 00 00 00
# _
00 00 00 00 00 00 00 00 00 00 00 00 00 00 7f 00
# 0x60 = backtick
00 20 10 08 00 00 00 00 00 00 00 00 00 00 00 00
# a
00 00 00 00 00 00 3c 42 02 3e 42 42 46 3a 00 00
# b
00 00 00 40 40 40 5c 62 42 42 42 42 62 5c 00 00
# c
00 00 00 00 00 00 3c 42 40 40 40 40 42 3c 00 00
# d
00 00 00 02 02 02 3a 46 42 42 42 42 46 3a 00 00
# e
00 00 00 00 00 00 3c 42 42 7e 40 40 42 3c 00 00
# f
00 00 00 0c 10 10 10 7c 10 10 10 10 10 10 00 00
# g
00 00 00 00 00 02 3a 44 44 44 38 20 3c 42 42 3c
# h
00 00 00 40 40 40 5c 62 42 42 42 42 42 42 00 00
# i
00 00 00 08 08 00 18 08 08 08 08 08 08 3e 00 00
# j
00 00 00 04 04 00 0c 04 04 04 04 04 04 04 48 30
# k
00 00 00 40 40 40 44 48 50 60 50 48 44 42 00 00
# l
00 00 00 18 08 08 08 08 08 08 08 08 08 3e 00 00
# m
00 00 00 00 00 00 76 49 49 49 49 49 49 49 00 00
# n
00 00 00 00 00 00 5c 62 42 42 42 42 42 42 00 00
# o
00 00 00 00 00 00 3c 42 42 42 42 42 42 3c 00 00
# 0x70 = p
00 00 00 00 00 00 5c 62 42 42 42 42 62 5c 40 40
# q
00 00 00 00 00 00 3a 46 42 42 42 42 46 3a 02 02
# r
00 00 00 00 00 00 5c 62 42 40 40 40 40 40 00 00
# s
00 00 00 00 00 00 3c 42 40 30 0c 02 42 3c 00 00
# t
00 00 00 00 10 10 10 7c 10 10 10 10 10 0c 00 00
# u
00 00 00 00 00 00 42 42 42 42 42 42 46 3a 00 00
# v
00 00 00 00 00 00 42 42 42 24 24 24 18 18 00 00
# w
00 00 00 00 00 00 41 49 49 49 49 49 49 36 00 00
# x
00 00 00 00 00 00 42 42 24 18 18 24 42 42 00 00
# y
00 00 00 00 00 00 42 42 42 42 42 26 1a 02 02 3c
# z
00 00 00 00 00 00 7e 02 04 08 10 20 40 7e 00 00
# {
00 00 00 0c 10 10 08 08 10 20 10 08 08 10 10 0c
# |
00 00 08 08 08 08 08 08 08 08 08 08 08 08 08 08
# }
00 00 00 30 08 08 10 10 08 04 08 10 10 08 08 30
# ~
00 00 00 31 49 46 00 00 00 00 00 00 00 00 00 00
# 0x7f = del (unused)
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
# }}}
# offset 1800 (address 0x9400)
# vim:ft=subx
|