about summary refs log tree commit diff stats
path: root/clean
blob: 3b629daa5d2fc5bf9cab749cd430e56726a58226 (plain) (blame)
1
2
3
4
5
6
7
8
9
#!/bin/sh
set -e

set -v
rm -rf mu.cc core.mu mu_bin* *_list .build
test $# -gt 0 && exit 0  # convenience: 'clean top-level' to leave subsidiary tools alone
rm -rf enumerate/enumerate tangle/tangle tangle/*_list cleave/cleave
rm -rf termbox/*.o termbox/libtermbox.a
rm -rf *.dSYM */*.dSYM
5 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
/* Several examples in Picat */
/**** begin file exs.pi ****/
import cp, planner.   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% PREDICATES AND FUNCTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Here are several versions for computing Fibonacci numbers 
% A predicate
fibp(0,F) => F = 1.
fibp(1,F) => F = 1.
fibp(N,F),N>1 => fibp(N-1,F1), fibp(N-2,F2), F = F1+F2.

% A function
fibf(0)=F => F = 1.
fibf(1)=F => F = 1.
fibf(N)=F, N>1 => F = fibf(N-1)+fibf(N-2).

% A function with function facts
fibfa(0) = 1.
fibfa(1) = 1.
fibfa(N) = fibfa(N-1)+fibfa(N-2).

% Using if-then-else
fibi(N) = F => 
    if N == 0 then
        F = 1
    elseif N == 1 then
        F = 1
    else
        F =  fibg(N-1)+fibg(N-2)
    end.

% Using Prolog-style if-then-else
fibg(N) = F => 
    (N == 0 -> 
        F = 1
    ;N == 1 ->
        F = 1
    ; 
        F = fibg(N-1)+fibg(N-2)
    ).

% Using a conditional expression
fibc(N) = cond((N == 0; N == 1), 1, fibc(N-1)+fibc(N-2)).

% A tabled function
table
fibt(0) = 1.
fibt(1) = 1.
fibt(N) = fibt(N-1)+fibt(N-2).

% A nondeterministic predicate with a backtrackable rule
my_member(Y,[X|_]) ?=> Y = X.
my_member(Y,[_|L]) => my_member(Y,L).

my_between(From,To,X), From == To => X = From.
my_between(From,To,X),From < To => X = From; my_between(From+1,To,X).

my_select(Y,[X|L],LR) ?=> Y = X, LR = L.
my_select(Y,[X|L],LR) => LR = [X|LRR], my_select(Y,L,LRR).

my_permutation([],P) => P = [].
my_permutation(L,P) => 
    P = [X|PR],                    
    my_select(X,L,LR),
    my_permutation(LR,PR).

% predicate facts
index(+,-) (-,+)
edge(1,2).
edge(1,3).
edge(2,3).
edge(3,2).

% several sort algorithms
merge_sort([]) = [].
merge_sort([X]) = [X].
merge_sort(L) = SL => split(L,L1,L2), SL = merge(merge_sort(L1),merge_sort(L2)).

split([X,Y|Zs],L1,L2) => L1 = [X|LL1], L2 = [Y|LL2], split(Zs,LL1,LL2).
split(Zs,L1,L2) => L1 = Zs,L2 = [].

merge([],Ys) = Ys.
merge(Xs,[]) = Xs.
merge([X|Xs],Ys@[Y|_]) = [X|Zs], X < Y => Zs = merge(Xs,Ys).  % Ys@[Y|_] is an as-pattern
merge(Xs,[Y|Ys]) = [Y|Zs] => Zs = merge(Xs,Ys).

insert_sort([]) = [].
insert_sort([H|T]) = insert(H,insert_sort(T)).

private
insert(X,[]) = [X].
insert(X,Ys@[Y|_]) = Zs, X =< Y => Zs = [X|Ys].
insert(X,[Y|Ys]) = [Y|insert(X,Ys)].

% two versions that return the minumum and maximum of a list
% a predicate
min_max_p([H|T],Min,Max) => min_max_p_aux(T,H,Min,H,Max).

% A private function is not visiable outside
private
min_max_p_aux([],CMin,Min,CMax,Max) => CMin = Min,CMax = Max.
min_max_p_aux([H|T],CMin,Min,CMax,Max) => min_max_p_aux(T,min(CMin,H),Min,max(CMax,H),Max).

% a function that returns the minimum and maximum of a list as a pair 
min_max([H|T]) = min_max_aux(T,H,H).

private
min_max_aux([],CMin,CMax) = (CMin,CMax).
min_max_aux([H|T],CMin,CMax) = min_max_aux(T,min(CMin,H),max(CMax,H)).

% return the sum of a list
sum_list(L) = Sum =>
    sum_list_aux(L,0,Sum).

% a private predicate is never exported
private
sum_list_aux([],Acc,Sum) => Sum = Acc.
sum_list_aux([X|L],Acc,Sum) => sum_list_aux(L,Acc+X,Sum).

% two lists that are structually equal, e.g., struct_equal(X,[a]) fails
struct_equal(A,B),atomic(A) => A == B.
struct_equal([H1|T1],[H2|T2]) =>
  struct_equal(H1,H2),
  struct_equal(T1,T2).

is_sorted([]) => true.
is_sorted([_]) => true.
is_sorted([X|L@[Y|_]]) =>X @<= Y, is_sorted(L).

% An empty tree is represented by {}, and a non-empty binary tree is 
% represented by its root, which takes form {Val,Left,Right}.

is_btree({}) => true.
is_btree({_Val,Left,Right}) =>
    is_btree(Left),
    is_btree(Right).

inorder({}) = [].
inorder({Val,Left,Right}) = inorder(Left) ++ [Val] ++ inorder(Right).

% binary search tree
is_bstree({}) => true.
is_bstree(BT@{Val,Left,Right}) =>
    is_bstree(Left,min_bstree(BT),Val),
    is_bstree(Right,Val,max_bstree(BT)).

is_bstree({},_,_) => true.
is_bstree({Val,Left,Right},Min,Max) => 
    Val @>= Min,  Val @=< Max,
    is_bstree(Left,Min,Val),
    is_bstree(Right,Val,Max).

min_bstree({Elm,{},_Right}) = Elm.
min_bstree({_Elm,Left,_Right}) = min_bstree(Left).

max_bstree({Elm,_Left,{}}) = Elm.
max_bstree({_Elm,_Left,Right}) = max_bstree(Right).

lookup_bstree({Elm,_,_},Elm) => true.
lookup_bstree({Val,Left,_},Elm), Elm < Val => 
    lookup_bstree(Left,Elm).
lookup_bstree({_,_,Right},Elm) =>
    lookup_bstree(Right,Elm).

tree_inst1 = {6, {5, {4, {}, {}}, 
                     {7, {}, {}}}, 
                 {8, {3, {}, {}}, 
                     {9, {}, {}}}}.

tree_inst2 = {7, {5, {4, {}, {}}, 
                     {6, {}, {}}}, 
                 {8, {8, {}, {}}, 
                     {9, {}, {}}}}.

test_btree =>
    Tree1 = tree_inst1(),
    println(inorder(Tree1)),
    println(cond(is_bstree(Tree1),"a binary search tree","not a binary search tree")),
    Tree2 = tree_inst2(),
    println(inorder(Tree2)),
    println(cond(is_bstree(Tree2),"a binary search tree","not a binary search tree")).

% An example that uses data constructors
% A term in the form of $f(X) is a data constructor 
divide_main => 
   Exp= $((((((((x/x)/x)/x)/x)/x)/x)/x)/x)/x,
   d(Exp,x,D),
   writeln(D).

d(U+V,X,D) => 
    D = $DU+DV,
    d(U,X,DU),
    d(V,X,DV).
d(U-V,X,D) =>
    D = $DU-DV,
    d(U,X,DU),
    d(V,X,DV).
d(U*V,X,D) =>
    D = $DU*V+U*DV,
    d(U,X,DU),
    d(V,X,DV).
d(U/V,X,D) =>
    D = $(DU*V-U*DV)/(^(V,2)),
    d(U,X,DU),
    d(V,X,DV).
d(^(U,N),X,D) =>
    D = $DU*N*(^(U,N1)),
    integer(N),
    N1 = N-1,
    d(U,X,DU).
d(-U,X,D) =>
    D = $-DU,
    d(U,X,DU).
d(exp(U),X,D) =>
    D = $exp(U)*DU,
    d(U,X,DU).
d(log(U),X,D) =>
    D = $DU/U,
    d(U,X,DU).
d(X,X,D) => D=1.
d(_,_,D) => D=0.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% LOOPS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% another version for summing up a list 
sum_list_imp(L) = Sum =>
    S = 0,
    foreach (X in L)
       S := S+X
    end,
    Sum = S.

% using a loop to find the minimum and maximum of a list
min_max_ip([H|T], Min, Max) =>
    LMin = H,
    LMax = H,
    foreach (E in T)
        LMin := min(LMin, E),
        LMax := max(LMax, E)
    end,
    Min = LMin,
    Max = LMax.

% draw the Pascal triangle
pascal =>
    print("enter an integer:"),
    N = read_int(),
    foreach(I in 0..N)
        Num := 1,
        foreach(K in 1..I+1) 
            printf("%d ",Num),
            Num := Num*(I-K+1) div K
        end,
        nl
    end.

% another solution
pascal2 =>
    print("enter an integer:"),
    N = read_int(),
    Row = [1], 
    foreach(_I in 1..N)
        writeln(Row),
        Row := next_row(Row)
    end.

private
next_row(Row)=Res =>
    NewRow = [1], Prev = 1,
    foreach (K in tail(Row))
        NewRow := [Prev+K|NewRow],
        Prev := K
    end,
    Res = [1|NewRow].

/* another definition, not so efficient because Row[I] takes O(I) time
private
next_row(Row) = [1] ++ [Row[I]+Row[I+1] : I in 1..Row.length-1] ++ [1].
*/

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% LIST COMPREHENSION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% a list comprehension inside another list comprehension
% Picat> L=list_of_lists(5)
% L = [[1],[1,2] [1,2,3],[1,2,3,4],[1,2,3,4,5]]
list_of_lists(N) = [[Y : Y in 1..X] : X in 1..N].   

% another definition
another_list_of_lists(N) = [1..X : X in 1..N].   

qsort([]) = [].
qsort([H|T]) = qsort([E : E in T, E =< H])++[H]++qsort([E : E in T, E>H]).

power_set([]) = [[]].
power_set([H|T]) = P1++P2 =>
    P1 = power_set(T),
    P2 = [[H|S] : S in P1].

% generate permutations
perm([]) = [[]].
perm(Lst) = [[E|P] : E in Lst, P in perm(Lst.delete(E))].

%another definition
perm1([]) = [[]].
perm1([H|T]) = [insert(P,I,H) : P in Ps, I in 1..P.length+1] => Ps = perm1(T).

% A*B=C
matrix_multi(A,B) = C =>
    C = new_array(A.length,B[1].length),
    foreach(I in 1..A.length, J in 1..B[1].length)
        C[I,J] = sum([A[I,K]*B[K,J] : K in 1..A[1].length])
    end.

% Sieve of Eratosthenes
my_primes(N) = L =>
    A = new_array(N),
    foreach(I in 2..floor(sqrt(N)))
        if (var(A[I])) then
            foreach(J in I**2..I..N)
                A[J] = 0
            end
         end
     end,
     L = [I : I in 2..N, var(A[I])].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% TABLING
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% mode-directed tabling
% finding shortest paths on a graph given by the relation edge/3.
table(+,+,-,min) 
sp(X,Y,Path,W) ?=>
    Path=[(X,Y)],
    edge(X,Y,W).
sp(X,Y,Path,W) =>
    Path = [(X,Z)|PathR],
    edge(X,Z,W1),
    sp(Z,Y,PathR,W2),
    W = W1+W2.

index(+,-,-) (+,+,-)
edge(1,2,1).
edge(1,3,2).
edge(2,3,3).
edge(3,2,4).

% binomial coefficient
bc(_N,0) = 1.
bc(N,N) = 1.
bc(N,1) = N.
bc(N,K) = bc(N-1,K-1) + bc(N-1,K).

% computing the minimal editing distance of two given lists
table(+,+,min)
edit([],[],D) => D=0.
edit([X|Xs],[X|Ys],D) =>   % copy
    edit(Xs,Ys,D).
edit(Xs,[_Y|Ys],D) ?=>      % insert
    edit(Xs,Ys,D1),
    D = D1+1.
edit([_X|Xs],Ys,D) =>       % delete
    edit(Xs,Ys,D1),
    D = D1+1.

% the Farmer's problem (use planner)
farmer =>
    S0 = [s,s,s,s],
    plan(S0,Plan),
    println(Plan).

final([n,n,n,n]) => true.

action([F,F,G,C],S1,Action,ActionCost) ?=>
    Action = farmer_wolf,
    ActionCost = 1,        
    opposite(F,F1),
    S1 = [F1,F1,G,C],
    not unsafe(S1).
action([F,W,F,C],S1,Action,ActionCost) ?=>
    Action = farmer_goat,
    ActionCost = 1,        
    opposite(F,F1),
    S1 = [F1,W,F1,C],
    not unsafe(S1).
action([F,W,G,F],S1,Action,ActionCost) ?=>
    Action = farmer_cabbage,
    ActionCost = 1,        
    opposite(F,F1),
    S1 = [F1,W,G,F1],
    not unsafe(S1).
action([F,W,G,C],S1,Action,ActionCost) =>
    Action = farmer_alone,
    ActionCost = 1,        
    opposite(F,F1),
    S1 = [F1,W,G,C],
    not unsafe(S1).

index (+,-) (-,+)
opposite(n,s).
opposite(s,n).

unsafe([F,W,G,_C]),W == G,F !== W => true.
unsafe([F,_W,G,C]),G == C,F !== G => true.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% CONSTRAINT PROGRAMS (using cp)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SEND+MORE=MONEY
sendmory => 
    Vars = [S,E,N,D,M,O,R,Y],    % generate variables
    Vars :: 0..9,
    all_different(Vars),       % generate constraints
    S #!= 0,
    M #!= 0,
    1000*S+100*E+10*N+D+1000*M+100*O+10*R+E 
    #= 10000*M+1000*O+100*N+10*E+Y,
    solve(Vars),               %  search
    writeln(Vars).

% N-queens
queens(N) =>
    Qs = new_array(N),
    Qs :: 1..N,
    foreach (I in 1..N-1, J in I+1..N)
        Qs[I] #!= Qs[J],
        abs(Qs[I]-Qs[J]) #!= J-I
    end,
    solve([ff],Qs),
    writeln(Qs).

% another program for N-queens
queens2(N, Q) =>
    Q = new_list(N),
    Q :: 1..N,
    Q2 = [$Q[I]+I : I in 1..N],
    Q3 = [$Q[I]-I : I in 1..N],
    all_different(Q),
    all_different(Q2),
    all_different(Q3),       
    solve([ff],Q).

% graph coloring (reuse edge/2 defined above)
color(NV,NC) =>
    A = new_array(NV),
    A :: 1..NC,
    foreach(I in 1..NV-1, J in I+1..NV)
        if edge(I,J);edge(J,I) then
             A[I] #!= A[J]
        end
    end,
    solve(A),
    writeln(A).

% a 0-1 integer model for graph coloring
bcolor(NV,NC) =>
    A = new_array(NV,NC),
    A :: [0,1],
    foreach(I in 1..NV)
        sum([A[I,K] : K in 1..NC]) #= 1
    end,
    foreach(I in 1..NV-1, J in I+1..NV)
        if edge(I,J);edge(J,I) then
             foreach(K in 1..NC)
                 #~ A[I,K] #\/ #~ A[J,K]
             end
        end
    end,
    solve(A),
    writeln(A).


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% I/O
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Read a list of integers, stopping when 0 is read
read_array_main =>
    A = new_array(100),
    Len = read_array(A),
    foreach (I in 1..Len)
        writeln(A[I])
    end.

read_array(A) = Len =>
    Count = 0,
    E = read_int(),         % read from stdin
    while (E != 0) 
        Count := Count+1,
        A[Count] = E,
        E := read_int()
    end,
    Len = Count.

% copy a text file line-by-line
copy(IName,OName) =>
    IStream = open(IName),
    OStream = open(OName,write),
    Line = IStream.read_line(),
    while (Line != end_of_file)
        OStream.printf("%s%n",Line),
        Line := IStream.read_line()
    end,
    close(IStream),
    close(OStream).

% Picat> output_students([$student("john","cs",3),$student("mary","math",4.0)])
%      john         cs  3.00
%      mary       math  4.00
output_students(Students) =>
    foreach($student(Name,Major,GPA) in Students)
        printf("%10s %10s %5.2f%n",Name,Major,to_real(GPA))
    end.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% HIGHER-ORDER (not recommended because of poor performance)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Picat> my_map(-,[1,2,3]) = L
% L = [-1,-2,-3]
% Picat> my_map(+,[1,2,3],[4,5,6]) = L
% L = [5,6,7]
% Picat> my_fold(+,0,[1,2,3]) = S
% S = 6

my_map(_F,[]) = [].
my_map(F,[X|Xs]) = [apply(F,X)|my_map(F,Xs)].

my_map(_F,[],[]) = [].
my_map(F,[X|Xs],[Y|Ys]) = [apply(F,X,Y)|my_map(F,Xs,Ys)].

my_fold(_F,Acc,[]) = Acc.
my_fold(F,Acc,[H|T]) = my_fold(F, apply(F,H,Acc),T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% ACTION RULES
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
test_ar =>
    watch_event(X), 
    watch_dom(X),
    watch_dom_any(X),
    watch_ins(X),
    watch_bound(X),
    X.post_event(event),
    X.post_event_dom(dom),
    X.post_event_ins(),
    X.post_event_bound(),
    X.post_event_any(any).

watch_event(X), 
    {event(X,T)}
=> 
    writeln($event(T)).

watch_dom(X),
    {dom(X,T)}
=>
    writeln($dom(T)).

watch_dom_any(X),
    {dom_any(X,T)}
=>
    writeln($dom_any(T)).

watch_ins(X),
    {ins(X)}
=>
    writeln($ins(X)).

watch_bound(X),
    {bound(X)}
=>
    writeln($bound(X)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% EXCEPTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

catch_divided_by_zero =>
   catch(write(myd(4,0)),E, $handle(E)).

myd(X,Y)=X/Y.

handle(E) =>
    writeln(E),
    throw(E).  % just re-throw it

/**** end file exs.pi ****/