blob: 738545eed6513662217985405bc791c5d1ab4270 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
//: Phase 3: Start running a loaded and transformed recipe.
//:
//: So far we've seen recipes as lists of instructions, and instructions point
//: at other recipes. To kick things off mu needs to know how to run certain
//: 'primitive' recipes. That will then give the ability to run recipes
//: containing these primitives.
//:
//: This layer defines a skeleton with just two primitive recipes: IDLE which
//: does nothing, and COPY, which can copy numbers from one memory location to
//: another. Later layers will add more primitives.
:(scenario copy_literal)
recipe main [
1:integer <- copy 23:literal
]
+run: instruction main/0
+run: ingredient 0 is 23
+mem: storing 23 in location 1
:(scenario copy)
recipe main [
1:integer <- copy 23:literal
2:integer <- copy 1:integer
]
+run: instruction main/1
+run: ingredient 0 is 1
+mem: location 1 is 23
+mem: storing 23 in location 2
:(before "End Types")
// Book-keeping while running a recipe.
//: Later layers will change this.
struct routine {
recipe_number running_recipe;
size_t running_step_index;
routine(recipe_number r) :running_recipe(r), running_step_index(0) {}
bool completed() const;
};
:(before "End Globals")
routine* Current_routine = NULL;
:(code)
void run(recipe_number r) {
routine rr(r);
Current_routine = &rr;
run_current_routine();
}
void run_current_routine()
{ // curly on a separate line, because later layers will modify header
while (!Current_routine->completed()) // later layers will modify condition
{
// Running One Instruction.
size_t& pc = current_step_index();
if (current_instruction().is_label) { ++current_step_index(); continue; }
trace("run") << "instruction " << current_recipe_name() << '/' << current_step_index();
//? cout << "operation " << current_instruction().operation << '\n'; //? 3
switch (current_instruction().operation) {
// Primitive Recipe Implementations
case COPY: {
trace("run") << "ingredient 0 is " << current_instruction().ingredients[0].name;
vector<int> data = read_memory(current_instruction().ingredients[0]);
write_memory(current_instruction().products[0], data);
break;
}
// End Primitive Recipe Implementations
default: {
cout << "not a primitive op: " << current_instruction().operation << '\n';
}
}
++pc;
}
Current_routine = NULL;
}
//: Some helpers.
//: We'll need to override these later as we change the definition of routine.
//: Important that they return referrences into the routine.
inline size_t& current_step_index() {
return Current_routine->running_step_index;
}
inline const string& current_recipe_name() {
return Recipe[Current_routine->running_recipe].name;
}
inline vector<instruction>& steps() {
return Recipe[Current_routine->running_recipe].steps;
}
inline const instruction& current_instruction() {
return Recipe[Current_routine->running_recipe].steps[Current_routine->running_step_index];
}
inline bool routine::completed() const {
return running_step_index >= Recipe[running_recipe].steps.size();
}
:(before "End Commandline Parsing")
if (argc > 1) {
for (int i = 1; i < argc; ++i) {
load_permanently(argv[i]);
}
}
:(before "End Main")
if (!Run_tests) {
setup();
Trace_stream = new trace_stream;
//? Trace_stream->dump_layer = "all"; //? 2
transform_all();
recipe_number r = Recipe_number[string("main")];
//? Trace_stream->dump_layer = "all"; //? 1
if (r) run(r);
dump_memory();
}
:(code)
void load_permanently(string filename) {
ifstream fin(filename.c_str());
if (!fin) {
raise << "no such file " << filename << '\n';
return;
}
fin >> std::noskipws;
load(fin);
transform_all();
fin.close();
// freeze everything so it doesn't get cleared by tests
recently_added_recipes.clear();
recently_added_types.clear();
}
//:: On startup, load everything in core.mu
:(before "End Load Recipes")
load_permanently("core.mu");
:(code)
// helper for tests
void run(string form) {
vector<recipe_number> tmp = load(form);
transform_all();
run(tmp.front());
}
//:: Reading from memory, writing to memory.
vector<int> read_memory(reagent x) {
//? cout << "read_memory: " << x.to_string() << '\n'; //? 1
vector<int> result;
if (isa_literal(x)) {
result.push_back(x.value);
return result;
}
int base = x.value;
size_t size = size_of(x);
for (size_t offset = 0; offset < size; ++offset) {
int val = Memory[base+offset];
trace("mem") << "location " << base+offset << " is " << val;
result.push_back(val);
}
return result;
}
void write_memory(reagent x, vector<int> data) {
if (is_dummy(x)) return;
int base = x.value;
if (size_of(x) != data.size())
raise << "size mismatch in storing to " << x.to_string() << '\n';
for (size_t offset = 0; offset < data.size(); ++offset) {
trace("mem") << "storing " << data[offset] << " in location " << base+offset;
Memory[base+offset] = data[offset];
}
}
:(code)
size_t size_of(const reagent& r) {
return size_of(r.types);
}
size_t size_of(const vector<type_number>& types) {
// End size_of(types) Cases
return 1;
}
bool is_dummy(const reagent& x) {
return x.name == "_";
}
bool isa_literal(const reagent& r) {
return r.types.size() == 1 && r.types[0] == 0;
}
:(scenario run_label)
recipe main [
+foo
1:integer <- copy 23:literal
2:integer <- copy 1:integer
]
+run: instruction main/1
+run: instruction main/2
-run: instruction main/0
:(scenario run_dummy)
recipe main [
_ <- copy 0:literal
]
+run: instruction main/0
|