1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
//: Arrays contain a variable number of elements of the same type.
:(scenario copy_array)
# Arrays can be copied around with a single instruction just like integers,
# no matter how large they are.
recipe main [
1:integer <- copy 3:literal
2:integer <- copy 14:literal
3:integer <- copy 15:literal
4:integer <- copy 16:literal
5:array:integer <- copy 1:array:integer
]
+run: instruction main/4
+run: ingredient 0 is 1
+mem: location 1 is 3
+mem: location 2 is 14
+mem: location 3 is 15
+mem: location 4 is 16
+mem: storing 3 in location 5
+mem: storing 14 in location 6
+mem: storing 15 in location 7
+mem: storing 16 in location 8
//: disable the size mismatch check since the destination array need not be initialized
:(replace "if (size_of(x) != data.size())" following "void write_memory(reagent x, vector<int> data)")
if (x.types[0] != Type_number["array"] && size_of(x) != data.size())
:(after "size_t size_of(const reagent& r)")
static const int ARRAY = Type_number["array"];
if (r.types[0] == ARRAY) {
assert(r.types.size() > 1);
// skip the 'array' type to get at the element type
return 1 + Memory[r.value]*size_of(array_element(r.types));
}
//: To access elements of an array, use 'index'
:(scenario "index")
recipe main [
1:integer <- copy 3:literal
2:integer <- copy 14:literal
3:integer <- copy 15:literal
4:integer <- copy 16:literal
5:integer <- index 1:array:integer, 0:literal
]
+run: instruction main/4
+run: address to copy is 2
+run: its type is 1
+mem: location 2 is 14
+run: product 0 is 14
+mem: storing 14 in location 5
:(scenario "index_direct_offset")
recipe main [
1:integer <- copy 3:literal
2:integer <- copy 14:literal
3:integer <- copy 15:literal
4:integer <- copy 16:literal
5:integer <- copy 0:literal
6:integer <- index 1:array:integer, 5:integer
]
+run: instruction main/5
+run: address to copy is 2
+run: its type is 1
+mem: location 2 is 14
+run: product 0 is 14
+mem: storing 14 in location 6
:(before "End Primitive Recipe Declarations")
INDEX,
:(before "End Primitive Recipe Numbers")
Recipe_number["index"] = INDEX;
:(before "End Primitive Recipe Implementations")
case INDEX: {
static const int ARRAY = Type_number["array"];
//? if (Trace_stream) Trace_stream->dump_layer = "run"; //? 1
trace("run") << "ingredient 0 is " << instructions[pc].ingredients[0].to_string();
reagent base = canonize(instructions[pc].ingredients[0]);
//? trace("run") << "ingredient 0 after canonize: " << instructions[pc].ingredients[0].to_string(); //? 1
int base_address = base.value;
assert(base.types[0] == ARRAY);
trace("run") << "ingredient 1 is " << instructions[pc].ingredients[1].to_string();
reagent offset = canonize(instructions[pc].ingredients[1]);
vector<int> offset_val(read_memory(offset));
vector<type_number> element_type = array_element(base.types);
int src = base_address + 1 + offset_val[0]*size_of(element_type);
trace("run") << "address to copy is " << src;
trace("run") << "its type is " << element_type[0];
reagent tmp;
tmp.set_value(src);
copy(element_type.begin(), element_type.end(), inserter(tmp.types, tmp.types.begin()));
tmp.properties.push_back(pair<string, vector<string> >("raw", vector<string>()));
//? cout << "AAA: " << tmp.to_string() << '\n'; //? 2
vector<int> result(read_memory(tmp));
trace("run") << "product 0 is " << result[0];
write_memory(instructions[pc].products[0], result);
//? if (Trace_stream) Trace_stream->dump_layer = ""; //? 1
break;
}
:(code)
vector<type_number> array_element(const vector<type_number>& types) {
return vector<type_number>(++types.begin(), types.end());
}
:(scenario "index_address")
recipe main [
1:integer <- copy 3:literal
2:integer <- copy 14:literal
3:integer <- copy 15:literal
4:integer <- copy 16:literal
5:integer <- index-address 1:array:integer, 0:literal
]
+run: instruction main/4
+run: address to copy is 2
+mem: storing 2 in location 5
//: To write to elements of containers, you need their address.
:(scenario "index_indirect")
recipe main [
1:integer <- copy 3:literal
2:integer <- copy 14:literal
3:integer <- copy 15:literal
4:integer <- copy 16:literal
5:address:array:integer <- copy 1:literal
6:integer <- index 5:address:array:integer/deref, 1:literal
]
+run: instruction main/5
+mem: storing 15 in location 6
// vim:ft=cpp
:(before "End Primitive Recipe Declarations")
INDEX_ADDRESS,
:(before "End Primitive Recipe Numbers")
Recipe_number["index-address"] = INDEX_ADDRESS;
:(before "End Primitive Recipe Implementations")
case INDEX_ADDRESS: {
static const int ARRAY = Type_number["array"];
trace("run") << "ingredient 0 is " << instructions[pc].ingredients[0].name;
reagent base = canonize(instructions[pc].ingredients[0]);
int base_address = base.value;
assert(base.types[0] == ARRAY);
trace("run") << "ingredient 1 is " << instructions[pc].ingredients[1].to_string();
reagent offset = canonize(instructions[pc].ingredients[1]);
vector<int> offset_val(read_memory(offset));
vector<type_number> element_type = array_element(base.types);
int src = base_address + 1 + offset_val[0]*size_of(element_type);
trace("run") << "address to copy is " << src;
vector<int> result;
result.push_back(src);
trace("run") << "product 0 is " << result[0];
write_memory(instructions[pc].products[0], result);
break;
}
|