about summary refs log tree commit diff stats
path: root/ex12.mu
blob: fe97daa938299a806f7b2b75e9fb5bee08b9906f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Checking the timer.
#
# To build a disk image:
#   ./translate ex12.mu            # emits code.img
# To run:
#   qemu-system-i386 code.img
# Or:
#   bochs -f bochsrc               # bochsrc loads code.img
#
# Expected output: text with slowly updating colors

fn main screen: (addr screen), keyboard: (addr keyboard), data-disk: (addr disk) {
  var fg/ecx: int <- copy 0
  var prev-timer-counter/edx: int <- copy 0
  {
    var dummy/eax: int <- draw-text-rightward screen, "hello from baremetal Mu!", 0x10/x, 0x400/xmax, 0x10/y, fg, 0/bg
    # wait for timer to bump
    {
      var curr-timer-counter/eax: int <- timer-counter
      compare curr-timer-counter, prev-timer-counter
      loop-if-=
      prev-timer-counter <- copy curr-timer-counter
    }
    # switch color
    fg <- increment
    loop
  }
}
f='#n428'>428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
//: instructions that (immediately) contain an argument to act with

:(before "End Initialize Op Names")
put_new(Name, "05", "add imm32 to EAX (add)");

:(before "End Single-Byte Opcodes")
case 0x05: {  // add imm32 to EAX
  int32_t signed_arg2 = next32();
  trace(Callstack_depth+1, "run") << "add imm32 0x" << HEXWORD << signed_arg2 << " to EAX" << end();
  int32_t signed_result = Reg[EAX].i + signed_arg2;
  SF = (signed_result < 0);
  ZF = (signed_result == 0);
  int64_t signed_full_result = static_cast<int64_t>(Reg[EAX].i) + signed_arg2;
  OF = (signed_result != signed_full_result);
  // set CF
  uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
  uint32_t unsigned_result = Reg[EAX].u + unsigned_arg2;
  uint64_t unsigned_full_result = static_cast<uint64_t>(Reg[EAX].u) + unsigned_arg2;
  CF = (unsigned_result != unsigned_full_result);
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  Reg[EAX].i = signed_result;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end();
  break;
}

:(code)
void test_add_imm32_to_EAX_signed_overflow() {
  Reg[EAX].i = 0x7fffffff;  // largest positive signed integer
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  05                                 01 00 00 00 \n" // add 1 to EAX
  );
  CHECK_TRACE_CONTENTS(
      "run: add imm32 0x00000001 to EAX\n"
      "run: SF=1; ZF=0; CF=0; OF=1\n"
      "run: storing 0x80000000\n"
  );
}

void test_add_imm32_to_EAX_unsigned_overflow() {
  Reg[EAX].u = 0xffffffff;  // largest unsigned number
  Reg[EBX].u = 1;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  05                                 01 00 00 00 \n" // add 1 to EAX
  );
  CHECK_TRACE_CONTENTS(
      "run: add imm32 0x00000001 to EAX\n"
      "run: SF=0; ZF=1; CF=1; OF=0\n"
      "run: storing 0x00000000\n"
  );
}

void test_add_imm32_to_EAX_unsigned_and_signed_overflow() {
  Reg[EAX].u = 0x80000000;  // smallest negative signed integer
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  05                                 00 00 00 80 \n" // add 0x80000000 to EAX
  );
  CHECK_TRACE_CONTENTS(
      "run: add imm32 0x80000000 to EAX\n"
      "run: SF=0; ZF=1; CF=1; OF=1\n"
      "run: storing 0x00000000\n"
  );
}

//:

:(before "End Initialize Op Names")
put_new(Name, "81", "combine rm32 with imm32 based on subop (add/sub/and/or/xor/cmp)");

:(code)
void test_add_imm32_to_r32() {
  Reg[EBX].i = 1;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     c3                          0a 0b 0c 0d\n"  // add 0x0d0c0b0a to EBX
      // ModR/M in binary: 11 (direct mode) 000 (subop add) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: r/m32 is EBX\n"
      "run: imm32 is 0x0d0c0b0a\n"
      "run: subop add\n"
      "run: storing 0x0d0c0b0b\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x81: {  // combine r/m32 with imm32
  trace(Callstack_depth+1, "run") << "combine r/m32 with imm32" << end();
  const uint8_t modrm = next();
  int32_t* signed_arg1 = effective_address(modrm);
  const int32_t signed_arg2 = next32();
  trace(Callstack_depth+1, "run") << "imm32 is 0x" << HEXWORD << signed_arg2 << end();
  const uint8_t subop = (modrm>>3)&0x7;  // middle 3 'reg opcode' bits
  switch (subop) {
  case 0: {
    trace(Callstack_depth+1, "run") << "subop add" << end();
    int32_t signed_result = *signed_arg1 + signed_arg2;
    SF = (signed_result < 0);
    ZF = (signed_result == 0);
    int64_t signed_full_result = static_cast<int64_t>(*signed_arg1) + signed_arg2;
    OF = (signed_result != signed_full_result);
    // set CF
    uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1);
    uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
    uint32_t unsigned_result = unsigned_arg1 + unsigned_arg2;
    uint64_t unsigned_full_result = static_cast<uint64_t>(unsigned_arg1) + unsigned_arg2;
    CF = (unsigned_result != unsigned_full_result);
    trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
    *signed_arg1 = signed_result;
    trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
    break;
  }
  // End Op 81 Subops
  default:
    cerr << "unrecognized subop for opcode 81: " << NUM(subop) << '\n';
    exit(1);
  }
  break;
}

:(code)
void test_add_imm32_to_r32_signed_overflow() {
  Reg[EBX].i = 0x7fffffff;  // largest positive signed integer
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     c3                          01 00 00 00\n"  // add 1 to EBX
      // ModR/M in binary: 11 (direct mode) 000 (subop add) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: r/m32 is EBX\n"
      "run: imm32 is 0x00000001\n"
      "run: subop add\n"
      "run: SF=1; ZF=0; CF=0; OF=1\n"
      "run: storing 0x80000000\n"
  );
}

void test_add_imm32_to_r32_unsigned_overflow() {
  Reg[EBX].u = 0xffffffff;  // largest unsigned number
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     c3                          01 00 00 00\n"  // add 1 to EBX
      // ModR/M in binary: 11 (direct mode) 011 (subop add) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: r/m32 is EBX\n"
      "run: imm32 is 0x00000001\n"
      "run: subop add\n"
      "run: SF=0; ZF=1; CF=1; OF=0\n"
      "run: storing 0x00000000\n"
  );
}

void test_add_imm32_to_r32_unsigned_and_signed_overflow() {
  Reg[EBX].u = 0x80000000;  // smallest negative signed integer
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     c3                          00 00 00 80\n"  // add 0x80000000 to EBX
      // ModR/M in binary: 11 (direct mode) 011 (subop add) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: r/m32 is EBX\n"
      "run: imm32 is 0x80000000\n"
      "run: subop add\n"
      "run: SF=0; ZF=1; CF=1; OF=1\n"
      "run: storing 0x00000000\n"
  );
}

//:

:(code)
void test_add_imm32_to_mem_at_r32() {
  Reg[EBX].i = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     03                          0a 0b 0c 0d \n"  // add 0x0d0c0b0a to *EBX
      // ModR/M in binary: 00 (indirect mode) 000 (subop add) 011 (dest EBX)
      "== data 0x2000\n"
      "01 00 00 00\n"  // 0x00000001
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: effective address is 0x00002000 (EBX)\n"
      "run: imm32 is 0x0d0c0b0a\n"
      "run: subop add\n"
      "run: storing 0x0d0c0b0b\n"
  );
}

//:: subtract

:(before "End Initialize Op Names")
put_new(Name, "2d", "subtract imm32 from EAX (sub)");

:(code)
void test_subtract_imm32_from_EAX() {
  Reg[EAX].i = 0x0d0c0baa;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  2d                                 0a 0b 0c 0d \n"  // subtract 0x0d0c0b0a from EAX
  );
  CHECK_TRACE_CONTENTS(
      "run: subtract imm32 0x0d0c0b0a from EAX\n"
      "run: storing 0x000000a0\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x2d: {  // subtract imm32 from EAX
  const int32_t signed_arg2 = next32();
  trace(Callstack_depth+1, "run") << "subtract imm32 0x" << HEXWORD << signed_arg2 << " from EAX" << end();
  int32_t signed_result = Reg[EAX].i - signed_arg2;
  SF = (signed_result < 0);
  ZF = (signed_result == 0);
  int64_t signed_full_result = static_cast<int64_t>(Reg[EAX].i) - signed_arg2;
  OF = (signed_result != signed_full_result);
  // set CF
  uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
  uint32_t unsigned_result = Reg[EAX].u - unsigned_arg2;
  uint64_t unsigned_full_result = static_cast<uint64_t>(Reg[EAX].u) - unsigned_arg2;
  CF = (unsigned_result != unsigned_full_result);
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  Reg[EAX].i = signed_result;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end();
  break;
}

:(code)
void test_subtract_imm32_from_EAX_signed_overflow() {
  Reg[EAX].i = 0x80000000;  // smallest negative signed integer
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  2d                                 ff ff ff 7f \n"  // subtract largest positive signed integer from EAX
  );
  CHECK_TRACE_CONTENTS(
      "run: subtract imm32 0x7fffffff from EAX\n"
      "run: SF=0; ZF=0; CF=0; OF=1\n"
      "run: storing 0x00000001\n"
  );
}

void test_subtract_imm32_from_EAX_unsigned_overflow() {
  Reg[EAX].i = 0;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  2d                                 01 00 00 00 \n"  // subtract 1 from EAX
  );
  CHECK_TRACE_CONTENTS(
      "run: subtract imm32 0x00000001 from EAX\n"
      "run: SF=1; ZF=0; CF=1; OF=0\n"
      "run: storing 0xffffffff\n"
  );
}

void test_subtract_imm32_from_EAX_signed_and_unsigned_overflow() {
  Reg[EAX].i = 0;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  2d                                 00 00 00 80 \n"  // subtract smallest negative signed integer from EAX
  );
  CHECK_TRACE_CONTENTS(
      "run: subtract imm32 0x80000000 from EAX\n"
      "run: SF=1; ZF=0; CF=1; OF=1\n"
      "run: storing 0x80000000\n"
  );
}

//:

void test_subtract_imm32_from_mem_at_r32() {
  Reg[EBX].i = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     2b                          01 00 00 00 \n"  // subtract 1 from *EBX
      // ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX)
      "== data 0x2000\n"
      "0a 00 00 00\n"  // 0x0000000a
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: effective address is 0x00002000 (EBX)\n"
      "run: imm32 is 0x00000001\n"
      "run: subop subtract\n"
      "run: storing 0x00000009\n"
  );
}

:(before "End Op 81 Subops")
case 5: {
  trace(Callstack_depth+1, "run") << "subop subtract" << end();
  int32_t signed_result = *signed_arg1 - signed_arg2;
  SF = (signed_result < 0);
  ZF = (signed_result == 0);
  int64_t signed_full_result = static_cast<int64_t>(*signed_arg1) - signed_arg2;
  OF = (signed_result != signed_full_result);
  // set CF
  uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1);
  uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
  uint32_t unsigned_result = unsigned_arg1 - unsigned_arg2;
  uint64_t unsigned_full_result = static_cast<uint64_t>(unsigned_arg1) - unsigned_arg2;
  CF = (unsigned_result != unsigned_full_result);
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  *signed_arg1 = signed_result;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
  break;
}

:(code)
void test_subtract_imm32_from_mem_at_r32_signed_overflow() {
  Reg[EBX].i = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     2b                          ff ff ff 7f \n"  // subtract largest positive signed integer from *EBX
      // ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX)
      "== data 0x2000\n"
      "00 00 00 80\n"  // smallest negative signed integer
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: effective address is 0x00002000 (EBX)\n"
      "run: effective address contains 0x80000000\n"
      "run: imm32 is 0x7fffffff\n"
      "run: subop subtract\n"
      "run: SF=0; ZF=0; CF=0; OF=1\n"
      "run: storing 0x00000001\n"
  );
}

void test_subtract_imm32_from_mem_at_r32_unsigned_overflow() {
  Reg[EBX].i = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     2b                          01 00 00 00 \n"  // subtract 1 from *EBX
      // ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX)
      "== data 0x2000\n"
      "00 00 00 00\n"  // 0
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: effective address is 0x00002000 (EBX)\n"
      "run: effective address contains 0x00000000\n"
      "run: imm32 is 0x00000001\n"
      "run: subop subtract\n"
      "run: SF=1; ZF=0; CF=1; OF=0\n"
      "run: storing 0xffffffff\n"
  );
}

void test_subtract_imm32_from_mem_at_r32_signed_and_unsigned_overflow() {
  Reg[EBX].i = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     2b                          00 00 00 80 \n"  // subtract smallest negative signed integer from *EBX
      // ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX)
      "== data 0x2000\n"
      "00 00 00 00\n"  // 0
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: effective address is 0x00002000 (EBX)\n"
      "run: effective address contains 0x00000000\n"
      "run: imm32 is 0x80000000\n"
      "run: subop subtract\n"
      "run: SF=1; ZF=0; CF=1; OF=1\n"
      "run: storing 0x80000000\n"
  );
}

//:

void test_subtract_imm32_from_r32() {
  Reg[EBX].i = 10;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     eb                          01 00 00 00 \n"  // subtract 1 from EBX
      // ModR/M in binary: 11 (direct mode) 101 (subop subtract) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: r/m32 is EBX\n"
      "run: imm32 is 0x00000001\n"
      "run: subop subtract\n"
      "run: storing 0x00000009\n"
  );
}

//:: shift left

:(before "End Initialize Op Names")
put_new(Name, "c1", "shift rm32 by imm8 bits depending on subop (sal/sar/shl/shr)");

:(code)
void test_shift_left_r32_with_imm8() {
  Reg[EBX].i = 13;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  c1     e3                          01          \n"  // shift EBX left by 1 bit
      // ModR/M in binary: 11 (direct mode) 100 (subop shift left) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: shift left by CL bits\n"
      "run: storing 0x0000001a\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0xc1: {
  const uint8_t modrm = next();
  trace(Callstack_depth+1, "run") << "operate on r/m32" << end();
  int32_t* arg1 = effective_address(modrm);
  const uint8_t subop = (modrm>>3)&0x7;  // middle 3 'reg opcode' bits
  switch (subop) {
  case 4: {  // shift left r/m32 by CL
    trace(Callstack_depth+1, "run") << "subop: shift left by CL bits" << end();
    uint8_t count = next() & 0x1f;
    // OF is only defined if count is 1
    if (count == 1) {
      bool msb = (*arg1 & 0x80000000) >> 1;
      bool pnsb = (*arg1 & 0x40000000);
      OF = (msb != pnsb);
    }
    *arg1 = (*arg1 << count);
    ZF = (*arg1 == 0);
    SF = (*arg1 < 0);
    // CF undefined
    trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
    trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
    break;
  }
  // End Op c1 Subops
  default:
    cerr << "unrecognized subop for opcode c1: " << NUM(subop) << '\n';
    exit(1);
  }
  break;
}

//:: shift right arithmetic

:(code)
void test_shift_right_arithmetic_r32_with_imm8() {
  Reg[EBX].i = 26;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  c1     fb                          01          \n"  // shift EBX right by 1 bit
      // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: shift right by CL bits, while preserving sign\n"
      "run: storing 0x0000000d\n"
  );
}

:(before "End Op c1 Subops")
case 7: {  // shift right r/m32 by CL, preserving sign
  trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while preserving sign" << end();
  uint8_t count = next() & 0x1f;
  int32_t result = (*arg1 >> count);
  ZF = (*arg1 == 0);
  SF = (*arg1 < 0);
  // OF is only defined if count is 1
  if (count == 1) OF = false;
  // CF
  CF = ((*arg1 >> (count-1)) & 0x1);
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  *arg1 = result;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
  break;
}

:(code)
void test_shift_right_arithmetic_odd_r32_with_imm8() {
  Reg[EBX].i = 27;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  c1     fb                          01          \n"  // shift EBX right by 1 bit
      // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: shift right by CL bits, while preserving sign\n"
      // result: 13
      "run: storing 0x0000000d\n"
  );
}

:(code)
void test_shift_right_arithmetic_negative_r32_with_imm8() {
  Reg[EBX].i = 0xfffffffd;  // -3
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  c1     fb                          01          \n"  // shift EBX right by 1 bit, while preserving sign
      // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: shift right by CL bits, while preserving sign\n"
      // result: -2
      "run: storing 0xfffffffe\n"
  );
}

//:: shift right logical

:(code)
void test_shift_right_logical_r32_with_imm8() {
  Reg[EBX].i = 26;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  c1     eb                          01          \n"  // shift EBX right by 1 bit, while padding zeroes
      // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: shift right by CL bits, while padding zeroes\n"
      "run: storing 0x0000000d\n"
  );
}

:(before "End Op c1 Subops")
case 5: {  // shift right r/m32 by CL, preserving sign
  trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while padding zeroes" << end();
  uint8_t count = next() & 0x1f;
  // OF is only defined if count is 1
  if (count == 1) {
    bool msb = (*arg1 & 0x80000000) >> 1;
    bool pnsb = (*arg1 & 0x40000000);
    OF = (msb != pnsb);
  }
  uint32_t* uarg1 = reinterpret_cast<uint32_t*>(arg1);
  *uarg1 = (*uarg1 >> count);
  ZF = (*uarg1 == 0);
  // result is always positive by definition
  SF = false;
  // CF undefined
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
  break;
}

:(code)
void test_shift_right_logical_odd_r32_with_imm8() {
  Reg[EBX].i = 27;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  c1     eb                          01          \n"  // shift EBX right by 1 bit, while padding zeroes
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: shift right by CL bits, while padding zeroes\n"
      // result: 13
      "run: storing 0x0000000d\n"
  );
}

:(code)
void test_shift_right_logical_negative_r32_with_imm8() {
  Reg[EBX].i = 0xfffffffd;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  c1     eb                          01          \n"  // shift EBX right by 1 bit, while padding zeroes
      // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: operate on r/m32\n"
      "run: r/m32 is EBX\n"
      "run: subop: shift right by CL bits, while padding zeroes\n"
      "run: storing 0x7ffffffe\n"
  );
}

//:: and

:(before "End Initialize Op Names")
put_new(Name, "25", "EAX = bitwise AND of imm32 with EAX (and)");

:(code)
void test_and_EAX_with_imm32() {
  Reg[EAX].i = 0xff;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  25                                 0a 0b 0c 0d \n"  // and 0x0d0c0b0a with EAX
  );
  CHECK_TRACE_CONTENTS(
      "run: and imm32 0x0d0c0b0a with EAX\n"
      "run: storing 0x0000000a\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x25: {  // and imm32 with EAX
  // bitwise ops technically operate on unsigned numbers, but it makes no
  // difference
  const int32_t signed_arg2 = next32();
  trace(Callstack_depth+1, "run") << "and imm32 0x" << HEXWORD << signed_arg2 << " with EAX" << end();
  Reg[EAX].i &= signed_arg2;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end();
  SF = (Reg[EAX].i >> 31);
  ZF = (Reg[EAX].i == 0);
  CF = false;
  OF = false;
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

//:

:(code)
void test_and_imm32_with_mem_at_r32() {
  Reg[EBX].i = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     23                          0a 0b 0c 0d \n"  // and 0x0d0c0b0a with *EBX
      // ModR/M in binary: 00 (indirect mode) 100 (subop and) 011 (dest EBX)
      "== data 0x2000\n"
      "ff 00 00 00\n"  // 0x000000ff
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: effective address is 0x00002000 (EBX)\n"
      "run: imm32 is 0x0d0c0b0a\n"
      "run: subop and\n"
      "run: storing 0x0000000a\n"
  );
}

:(before "End Op 81 Subops")
case 4: {
  trace(Callstack_depth+1, "run") << "subop and" << end();
  // bitwise ops technically operate on unsigned numbers, but it makes no
  // difference
  *signed_arg1 &= signed_arg2;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
  SF = (*signed_arg1 >> 31);
  ZF = (*signed_arg1 == 0);
  CF = false;
  OF = false;
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

//:

:(code)
void test_and_imm32_with_r32() {
  Reg[EBX].i = 0xff;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     e3                          0a 0b 0c 0d \n"  // and 0x0d0c0b0a with EBX
      // ModR/M in binary: 11 (direct mode) 100 (subop and) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: r/m32 is EBX\n"
      "run: imm32 is 0x0d0c0b0a\n"
      "run: subop and\n"
      "run: storing 0x0000000a\n"
  );
}

//:: or

:(before "End Initialize Op Names")
put_new(Name, "0d", "EAX = bitwise OR of imm32 with EAX (or)");

:(code)
void test_or_EAX_with_imm32() {
  Reg[EAX].i = 0xd0c0b0a0;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  0d                                 0a 0b 0c 0d \n"  // or 0x0d0c0b0a with EAX
  );
  CHECK_TRACE_CONTENTS(
      "run: or imm32 0x0d0c0b0a with EAX\n"
      "run: storing 0xddccbbaa\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x0d: {  // or imm32 with EAX
  // bitwise ops technically operate on unsigned numbers, but it makes no
  // difference
  const int32_t signed_arg2 = next32();
  trace(Callstack_depth+1, "run") << "or imm32 0x" << HEXWORD << signed_arg2 << " with EAX" << end();
  Reg[EAX].i |= signed_arg2;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end();
  SF = (Reg[EAX].i >> 31);
  ZF = (Reg[EAX].i == 0);
  CF = false;
  OF = false;
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

//:

:(code)
void test_or_imm32_with_mem_at_r32() {
  Reg[EBX].i = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     0b                          0a 0b 0c 0d \n"  // or 0x0d0c0b0a with *EBX
      // ModR/M in binary: 00 (indirect mode) 001 (subop or) 011 (dest EBX)
      "== data 0x2000\n"
      "a0 b0 c0 d0\n"  // 0xd0c0b0a0
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: effective address is 0x00002000 (EBX)\n"
      "run: imm32 is 0x0d0c0b0a\n"
      "run: subop or\n"
      "run: storing 0xddccbbaa\n"
  );
}

:(before "End Op 81 Subops")
case 1: {
  trace(Callstack_depth+1, "run") << "subop or" << end();
  // bitwise ops technically operate on unsigned numbers, but it makes no
  // difference
  *signed_arg1 |= signed_arg2;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
  SF = (*signed_arg1 >> 31);
  ZF = (*signed_arg1 == 0);
  CF = false;
  OF = false;
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

:(code)
void test_or_imm32_with_r32() {
  Reg[EBX].i = 0xd0c0b0a0;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     cb                          0a 0b 0c 0d \n"  // or 0x0d0c0b0a with EBX
      // ModR/M in binary: 11 (direct mode) 001 (subop or) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: r/m32 is EBX\n"
      "run: imm32 is 0x0d0c0b0a\n"
      "run: subop or\n"
      "run: storing 0xddccbbaa\n"
  );
}

//:: xor

:(before "End Initialize Op Names")
put_new(Name, "35", "EAX = bitwise XOR of imm32 with EAX (xor)");

:(code)
void test_xor_EAX_with_imm32() {
  Reg[EAX].i = 0xddccb0a0;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  35                                 0a 0b 0c 0d \n"  // xor 0x0d0c0b0a with EAX
  );
  CHECK_TRACE_CONTENTS(
      "run: xor imm32 0x0d0c0b0a with EAX\n"
      "run: storing 0xd0c0bbaa\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x35: {  // xor imm32 with EAX
  // bitwise ops technically operate on unsigned numbers, but it makes no
  // difference
  const int32_t signed_arg2 = next32();
  trace(Callstack_depth+1, "run") << "xor imm32 0x" << HEXWORD << signed_arg2 << " with EAX" << end();
  Reg[EAX].i ^= signed_arg2;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end();
  SF = (Reg[EAX].i >> 31);
  ZF = (Reg[EAX].i == 0);
  CF = false;
  OF = false;
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

//:

:(code)
void test_xor_imm32_with_mem_at_r32() {
  Reg[EBX].i = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     33                          0a 0b 0c 0d \n"  // xor 0x0d0c0b0a with *EBX
      // ModR/M in binary: 00 (indirect mode) 110 (subop xor) 011 (dest EBX)
      "== data 0x2000\n"
      "a0 b0 c0 d0\n"  // 0xd0c0b0a0
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: effective address is 0x00002000 (EBX)\n"
      "run: imm32 is 0x0d0c0b0a\n"
      "run: subop xor\n"
      "run: storing 0xddccbbaa\n"
  );
}

:(before "End Op 81 Subops")
case 6: {
  trace(Callstack_depth+1, "run") << "subop xor" << end();
  // bitwise ops technically operate on unsigned numbers, but it makes no
  // difference
  *signed_arg1 ^= signed_arg2;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
  SF = (*signed_arg1 >> 31);
  ZF = (*signed_arg1 == 0);
  CF = false;
  OF = false;
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

:(code)
void test_xor_imm32_with_r32() {
  Reg[EBX].i = 0xd0c0b0a0;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     f3                          0a 0b 0c 0d \n"  // xor 0x0d0c0b0a with EBX
      // ModR/M in binary: 11 (direct mode) 110 (subop xor) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: r/m32 is EBX\n"
      "run: imm32 is 0x0d0c0b0a\n"
      "run: subop xor\n"
      "run: storing 0xddccbbaa\n"
  );
}

//:: compare (cmp)

:(before "End Initialize Op Names")
put_new(Name, "3d", "compare: set SF if EAX < imm32 (cmp)");

:(code)
void test_compare_EAX_with_imm32_greater() {
  Reg[EAX].i = 0x0d0c0b0a;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  3d                                 07 0b 0c 0d \n"  // compare EAX with 0x0d0c0b07
  );
  CHECK_TRACE_CONTENTS(
      "run: compare EAX with imm32 0x0d0c0b07\n"
      "run: SF=0; ZF=0; CF=0; OF=0\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x3d: {  // compare EAX with imm32
  const int32_t signed_arg1 = Reg[EAX].i;
  const int32_t signed_arg2 = next32();
  trace(Callstack_depth+1, "run") << "compare EAX with imm32 0x" << HEXWORD << signed_arg2 << end();
  const int32_t signed_difference = signed_arg1 - signed_arg2;
  SF = (signed_difference < 0);
  ZF = (signed_difference == 0);
  const int64_t full_signed_difference = static_cast<int64_t>(signed_arg1) - signed_arg2;
  OF = (signed_difference != full_signed_difference);
  const uint32_t unsigned_arg1 = static_cast<uint32_t>(signed_arg1);
  const uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
  const uint32_t unsigned_difference = unsigned_arg1 - unsigned_arg2;
  const uint64_t full_unsigned_difference = static_cast<uint64_t>(unsigned_arg1) - unsigned_arg2;
  CF = (unsigned_difference != full_unsigned_difference);
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

:(code)
void test_compare_EAX_with_imm32_lesser_unsigned_and_signed() {
  Reg[EAX].i = 0x0a0b0c07;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  3d                                 0d 0c 0b 0a \n"  // compare EAX with imm32
  );
  CHECK_TRACE_CONTENTS(
      "run: compare EAX with imm32 0x0a0b0c0d\n"
      "run: SF=1; ZF=0; CF=1; OF=0\n"
  );
}

void test_compare_EAX_with_imm32_lesser_unsigned_and_signed_due_to_overflow() {
  Reg[EAX].i = 0x7fffffff;  // largest positive signed integer
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  3d                                 00 00 00 80\n"  // compare EAX with smallest negative signed integer
  );
  CHECK_TRACE_CONTENTS(
      "run: compare EAX with imm32 0x80000000\n"
      "run: SF=1; ZF=0; CF=1; OF=1\n"
  );
}

void test_compare_EAX_with_imm32_lesser_signed() {
  Reg[EAX].i = 0xffffffff;  // -1
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  3d                                 01 00 00 00\n"  // compare EAX with 1
  );
  CHECK_TRACE_CONTENTS(
      "run: compare EAX with imm32 0x00000001\n"
      "run: SF=1; ZF=0; CF=0; OF=0\n"
  );
}

void test_compare_EAX_with_imm32_lesser_unsigned() {
  Reg[EAX].i = 0x00000001;  // 1
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  3d                                 ff ff ff ff\n"  // compare EAX with -1
  );
  CHECK_TRACE_CONTENTS(
      "run: compare EAX with imm32 0xffffffff\n"
      "run: SF=0; ZF=0; CF=1; OF=0\n"
  );
}

void test_compare_EAX_with_imm32_equal() {
  Reg[EAX].i = 0x0d0c0b0a;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  3d                                 0a 0b 0c 0d \n"  // compare 0x0d0c0b0a with EAX
  );
  CHECK_TRACE_CONTENTS(
      "run: compare EAX with imm32 0x0d0c0b0a\n"
      "run: SF=0; ZF=1; CF=0; OF=0\n"
  );
}

//:

void test_compare_imm32_with_r32_greater() {
  Reg[EBX].i = 0x0d0c0b0a;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     fb                          07 0b 0c 0d \n"  // compare 0x0d0c0b07 with EBX
      // ModR/M in binary: 11 (direct mode) 111 (subop compare) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: r/m32 is EBX\n"
      "run: imm32 is 0x0d0c0b07\n"
      "run: SF=0; ZF=0; CF=0; OF=0\n"
  );
}

:(before "End Op 81 Subops")
case 7: {
  trace(Callstack_depth+1, "run") << "subop compare" << end();
  const int32_t tmp1 = *signed_arg1 - signed_arg2;
  SF = (tmp1 < 0);
  ZF = (tmp1 == 0);
  const int64_t tmp2 = static_cast<int64_t>(*signed_arg1) - signed_arg2;
  OF = (tmp1 != tmp2);
  const uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1);
  const uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
  const uint32_t tmp3 = unsigned_arg1 - unsigned_arg2;
  const uint64_t tmp4 = static_cast<uint64_t>(unsigned_arg1) - unsigned_arg2;
  CF = (tmp3 != tmp4);
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  break;
}

:(code)
void test_compare_rm32_with_imm32_lesser_unsigned_and_signed() {
  Reg[EAX].i = 0x0a0b0c07;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     f8                          0d 0c 0b 0a \n"  // compare EAX with imm32
      // ModR/M in binary: 11 (direct mode) 111 (subop compare) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: r/m32 is EAX\n"
      "run: imm32 is 0x0a0b0c0d\n"
      "run: subop compare\n"
      "run: SF=1; ZF=0; CF=1; OF=0\n"
  );
}

void test_compare_rm32_with_imm32_lesser_unsigned_and_signed_due_to_overflow() {
  Reg[EAX].i = 0x7fffffff;  // largest positive signed integer
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     f8                          00 00 00 80\n"  // compare EAX with smallest negative signed integer
      // ModR/M in binary: 11 (direct mode) 111 (subop compare) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: r/m32 is EAX\n"
      "run: imm32 is 0x80000000\n"
      "run: subop compare\n"
      "run: SF=1; ZF=0; CF=1; OF=1\n"
  );
}

void test_compare_rm32_with_imm32_lesser_signed() {
  Reg[EAX].i = 0xffffffff;  // -1
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     f8                          01 00 00 00\n"  // compare EAX with 1
      // ModR/M in binary: 11 (direct mode) 111 (subop compare) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: r/m32 is EAX\n"
      "run: imm32 is 0x00000001\n"
      "run: subop compare\n"
      "run: SF=1; ZF=0; CF=0; OF=0\n"
  );
}

void test_compare_rm32_with_imm32_lesser_unsigned() {
  Reg[EAX].i = 0x00000001;  // 1
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     f8                          ff ff ff ff\n"  // compare EAX with -1
      // ModR/M in binary: 11 (direct mode) 111 (subop compare) 000 (dest EAX)
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: r/m32 is EAX\n"
      "run: imm32 is 0xffffffff\n"
      "run: subop compare\n"
      "run: SF=0; ZF=0; CF=1; OF=0\n"
  );
}

:(code)
void test_compare_imm32_with_r32_equal() {
  Reg[EBX].i = 0x0d0c0b0a;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     fb                          0a 0b 0c 0d \n"  // compare 0x0d0c0b0a with EBX
      // ModR/M in binary: 11 (direct mode) 111 (subop compare) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: r/m32 is EBX\n"
      "run: imm32 is 0x0d0c0b0a\n"
      "run: SF=0; ZF=1; CF=0; OF=0\n"
  );
}

:(code)
void test_compare_imm32_with_mem_at_r32_greater() {
  Reg[EBX].i = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     3b                          07 0b 0c 0d \n"  // compare 0x0d0c0b07 with *EBX
      // ModR/M in binary: 00 (indirect mode) 111 (subop compare) 011 (dest EBX)
      "== data 0x2000\n"
      "0a 0b 0c 0d\n"  // 0x0d0c0b0a
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: effective address is 0x00002000 (EBX)\n"
      "run: imm32 is 0x0d0c0b07\n"
      "run: SF=0; ZF=0; CF=0; OF=0\n"
  );
}

:(code)
void test_compare_imm32_with_mem_at_r32_lesser() {
  Reg[EAX].i = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     38                          0a 0b 0c 0d \n"  // compare 0x0d0c0b0a with *EAX
      // ModR/M in binary: 00 (indirect mode) 111 (subop compare) 000 (dest EAX)
      "== data 0x2000\n"
      "07 0b 0c 0d\n"  // 0x0d0c0b07
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: effective address is 0x00002000 (EAX)\n"
      "run: imm32 is 0x0d0c0b0a\n"
      "run: SF=1; ZF=0; CF=1; OF=0\n"
  );
}

:(code)
void test_compare_imm32_with_mem_at_r32_equal() {
  Reg[EBX].i = 0x0d0c0b0a;
  Reg[EBX].i = 0x2000;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  81     3b                          0a 0b 0c 0d \n"  // compare 0x0d0c0b0a with *EBX
      // ModR/M in binary: 00 (indirect mode) 111 (subop compare) 011 (dest EBX)
      "== data 0x2000\n"
      "0a 0b 0c 0d\n"  // 0x0d0c0b0a
  );
  CHECK_TRACE_CONTENTS(
      "run: combine r/m32 with imm32\n"
      "run: effective address is 0x00002000 (EBX)\n"
      "run: imm32 is 0x0d0c0b0a\n"
      "run: SF=0; ZF=1; CF=0; OF=0\n"
  );
}

//:: copy (mov)

:(before "End Initialize Op Names")
// b8 defined earlier to copy imm32 to EAX
put_new(Name, "b9", "copy imm32 to ECX (mov)");
put_new(Name, "ba", "copy imm32 to EDX (mov)");
put_new(Name, "bb", "copy imm32 to EBX (mov)");
put_new(Name, "bc", "copy imm32 to ESP (mov)");
put_new(Name, "bd", "copy imm32 to EBP (mov)");
put_new(Name, "be", "copy imm32 to ESI (mov)");
put_new(Name, "bf", "copy imm32 to EDI (mov)");

:(code)
void test_copy_imm32_to_r32() {
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  bb                                 0a 0b 0c 0d \n"  // copy 0x0d0c0b0a to EBX
  );
  CHECK_TRACE_CONTENTS(
      "run: copy imm32 0x0d0c0b0a to EBX\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0xb9:
case 0xba:
case 0xbb:
case 0xbc:
case 0xbd:
case 0xbe:
case 0xbf: {  // copy imm32 to r32
  const uint8_t rdest = op & 0x7;
  const int32_t src = next32();
  trace(Callstack_depth+1, "run") << "copy imm32 0x" << HEXWORD << src << " to " << rname(rdest) << end();
  Reg[rdest].i = src;
  break;
}

//:

:(before "End Initialize Op Names")
put_new(Name, "c7", "copy imm32 to rm32 with subop 0 (mov)");

:(code)
void test_copy_imm32_to_mem_at_r32() {
  Reg[EBX].i = 0x60;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  c7     03                          0a 0b 0c 0d \n"  // copy 0x0d0c0b0a to *EBX
      // ModR/M in binary: 00 (indirect mode) 000 (subop) 011 (dest EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: copy imm32 to r/m32\n"
      "run: effective address is 0x00000060 (EBX)\n"
      "run: imm32 is 0x0d0c0b0a\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0xc7: {  // copy imm32 to r32
  const uint8_t modrm = next();
  trace(Callstack_depth+1, "run") << "copy imm32 to r/m32" << end();
  const uint8_t subop = (modrm>>3)&0x7;  // middle 3 'reg opcode' bits
  if (subop != 0) {
    cerr << "unrecognized subop for opcode c7: " << NUM(subop) << " (only 0/copy currently implemented)\n";
    exit(1);
  }
  int32_t* dest = effective_address(modrm);
  const int32_t src = next32();
  trace(Callstack_depth+1, "run") << "imm32 is 0x" << HEXWORD << src << end();
  *dest = src;  // Write multiple elements of vector<uint8_t> at once. Assumes sizeof(int) == 4 on the host as well.
  break;
}

//:: push

:(before "End Initialize Op Names")
put_new(Name, "68", "push imm32 to stack (push)");

:(code)
void test_push_imm32() {
  Mem.push_back(vma(0xbd000000));  // manually allocate memory
  Reg[ESP].u = 0xbd000014;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  68                                 af 00 00 00 \n"  // push *EAX to stack
  );
  CHECK_TRACE_CONTENTS(
      "run: push imm32 0x000000af\n"
      "run: ESP is now 0xbd000010\n"
      "run: contents at ESP: 0x000000af\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x68: {
  const uint32_t val = static_cast<uint32_t>(next32());
  trace(Callstack_depth+1, "run") << "push imm32 0x" << HEXWORD << val << end();
//?   cerr << "push: " << val << " => " << Reg[ESP].u << '\n';
  push(val);
  trace(Callstack_depth+1, "run") << "ESP is now 0x" << HEXWORD << Reg[ESP].u << end();
  trace(Callstack_depth+1, "run") << "contents at ESP: 0x" << HEXWORD << read_mem_u32(Reg[ESP].u) << end();
  break;
}

//:: multiply

:(before "End Initialize Op Names")
put_new(Name, "69", "multiply rm32 by imm32 and store result in r32");

:(code)
void test_multiply_imm32() {
  Reg[EAX].i = 2;
  Reg[EBX].i = 3;
  run(
      "== code 0x1\n"
      // op     ModR/M  SIB   displacement  immediate
      "  69     c3                          04 00 00 00 \n"  // EAX = EBX * 4
      // ModR/M in binary: 11 (direct) 000 (dest EAX) 011 (src EBX)
  );
  CHECK_TRACE_CONTENTS(
      "run: multiply r/m32 by 0x00000004 and store result in EAX\n"
      "run: r/m32 is EBX\n"
      "run: storing 0x0000000c\n"
  );
}

:(before "End Single-Byte Opcodes")
case 0x69: {
  const uint8_t modrm = next();
  const uint8_t rdest = (modrm>>3)&0x7;
  const int32_t val = next32();
  trace(Callstack_depth+1, "run") << "multiply r/m32 by 0x" << HEXWORD << val << " and store result in " << rname(rdest) << end();
  const int32_t* signed_arg1 = effective_address(modrm);
  int32_t result = *signed_arg1 * val;
  int64_t full_result = static_cast<int64_t>(*signed_arg1) * val;
  OF = (result != full_result);
  CF = OF;
  trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
  Reg[rdest].i = result;
  trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[rdest].i << end();
  break;
}