about summary refs log tree commit diff stats
path: root/html/mu_instructions.html
blob: 8f21aa086387f7ec57550eaaabaab8525fcbdd58 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>Mu's instructions and their table-driven translation</title>
<meta name="Generator" content="Vim/8.1">
<meta name="plugin-version" content="vim8.1_v1">
<meta name="syntax" content="none">
<meta name="settings" content="use_css,no_foldcolumn,expand_tabs,prevent_copy=">
<meta name="colorscheme" content="minimal-light">
<style type="text/css">
<!--
pre { font-family: monospace; color: #000000; background-color: #c6c6c6; }
body { font-family: monospace; color: #000000; background-color: #c6c6c6; }
* { font-size: 1em; }
.muComment { color: #005faf; }
.SpecialChar { color: #d70000; }
.Constant { color: #008787; }
.PreProc { color: #c000c0; }
-->
</style>
</head>
<body>
<pre id='vimCodeElement'>
<span class="muComment">## Mu's instructions and their table-driven translation</span>

See <a href="http://akkartik.name/akkartik-convivial-20200607.pdf">http://akkartik.name/akkartik-convivial-20200607.pdf</a> for the complete
story. In brief: Mu is a statement-oriented language. Blocks consist of flat
lists of instructions. Instructions can have inputs after the operation, and
outputs to the left of a '<span class="SpecialChar">&lt;-</span>'. Inputs and outputs must be variables. They can't
include nested expressions. Variables can be literals ('n'), or live in a
register ('var/reg') or in memory ('var') at some 'stack-offset' from the 'ebp'
register. Outputs must be registers. To modify a variable in memory, pass it in
by reference as an input. (Inputs are more precisely called 'inouts'.)
Conversely, registers that are just read from must not be passed as inputs.

The following chart shows all the instruction forms supported by Mu, along with
the SubX instruction they're translated to.

var/<span class="Constant">eax</span> <span class="SpecialChar">&lt;-</span> increment              =&gt; <span class="Constant">&quot;40/increment-eax&quot;</span>
var/<span class="Constant">ecx</span> <span class="SpecialChar">&lt;-</span> increment              =&gt; <span class="Constant">&quot;41/increment-ecx&quot;</span>
var/<span class="Constant">edx</span> <span class="SpecialChar">&lt;-</span> increment              =&gt; <span class="Constant">&quot;42/increment-edx&quot;</span>
var/<span class="Constant">ebx</span> <span class="SpecialChar">&lt;-</span> increment              =&gt; <span class="Constant">&quot;43/increment-ebx&quot;</span>
var/<span class="Constant">esi</span> <span class="SpecialChar">&lt;-</span> increment              =&gt; <span class="Constant">&quot;46/increment-esi&quot;</span>
var/<span class="Constant">edi</span> <span class="SpecialChar">&lt;-</span> increment              =&gt; <span class="Constant">&quot;47/increment-edi&quot;</span>
increment var                     =&gt; <span class="Constant">&quot;ff 0/subop/increment *(ebp+&quot;</span> var.stack-offset <span class="Constant">&quot;)&quot;</span>
increment *var/reg                =&gt; <span class="Constant">&quot;ff 0/subop/increment *&quot;</span> reg

var/<span class="Constant">eax</span> <span class="SpecialChar">&lt;-</span> decrement              =&gt; <span class="Constant">&quot;48/decrement-eax&quot;</span>
var/<span class="Constant">ecx</span> <span class="SpecialChar">&lt;-</span> decrement              =&gt; <span class="Constant">&quot;49/decrement-ecx&quot;</span>
var/<span class="Constant">edx</span> <span class="SpecialChar">&lt;-</span> decrement              =&gt; <span class="Constant">&quot;4a/decrement-edx&quot;</span>
var/<span class="Constant">ebx</span> <span class="SpecialChar">&lt;-</span> decrement              =&gt; <span class="Constant">&quot;4b/decrement-ebx&quot;</span>
var/<span class="Constant">esi</span> <span class="SpecialChar">&lt;-</span> decrement              =&gt; <span class="Constant">&quot;4e/decrement-esi&quot;</span>
var/<span class="Constant">edi</span> <span class="SpecialChar">&lt;-</span> decrement              =&gt; <span class="Constant">&quot;4f/decrement-edi&quot;</span>
decrement var                     =&gt; <span class="Constant">&quot;ff 1/subop/decrement *(ebp+&quot;</span> var.stack-offset <span class="Constant">&quot;)&quot;</span>
decrement *var/reg                =&gt; <span class="Constant">&quot;ff 1/subop/decrement *&quot;</span> reg

var/reg <span class="SpecialChar">&lt;-</span> add var2/reg2          =&gt; <span class="Constant">&quot;01/add-to %&quot;</span> reg <span class="Constant">&quot; &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> add var2               =&gt; <span class="Constant">&quot;03/add *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> add *var2/reg2         =&gt; <span class="Constant">&quot;03/add *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
add-to var1, var2/reg             =&gt; <span class="Constant">&quot;01/add-to *(ebp+&quot;</span> var1.stack-offset <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
add-to *var1/reg1, var2/reg2      =&gt; <span class="Constant">&quot;01/add-to *&quot;</span> reg1 <span class="Constant">&quot; &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
var/<span class="Constant">eax</span> <span class="SpecialChar">&lt;-</span> add n                  =&gt; <span class="Constant">&quot;05/add-to-eax &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> add n                  =&gt; <span class="Constant">&quot;81 0/subop/add %&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
add-to var, n                     =&gt; <span class="Constant">&quot;81 0/subop/add *(ebp+&quot;</span> var.stack-offset <span class="Constant">&quot;) &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
add-to *var/reg, n                =&gt; <span class="Constant">&quot;81 0/subop/add *&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>

var/reg <span class="SpecialChar">&lt;-</span> subtract var2/reg2     =&gt; <span class="Constant">&quot;29/subtract-from %&quot;</span> reg <span class="Constant">&quot; &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> subtract var2          =&gt; <span class="Constant">&quot;2b/subtract *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> subtract *var2/reg2    =&gt; <span class="Constant">&quot;2b/subtract *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> reg1 <span class="Constant">&quot;/r32&quot;</span>
subtract-from var1, var2/reg2     =&gt; <span class="Constant">&quot;29/subtract-from *(ebp+&quot;</span> var1.stack-offset <span class="Constant">&quot;) &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
subtract-from *var1/reg1, var2/reg2 =&gt; <span class="Constant">&quot;29/subtract-from *&quot;</span> reg1 <span class="Constant">&quot; &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
var/<span class="Constant">eax</span> <span class="SpecialChar">&lt;-</span> subtract n             =&gt; <span class="Constant">&quot;2d/subtract-from-eax &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> subtract n             =&gt; <span class="Constant">&quot;81 5/subop/subtract %&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
subtract-from var, n              =&gt; <span class="Constant">&quot;81 5/subop/subtract *(ebp+&quot;</span> var.stack-offset <span class="Constant">&quot;) &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
subtract-from *var/reg, n         =&gt; <span class="Constant">&quot;81 5/subop/subtract *&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>

var/reg <span class="SpecialChar">&lt;-</span> and var2/reg2          =&gt; <span class="Constant">&quot;21/and-with %&quot;</span> reg <span class="Constant">&quot; &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> and var2               =&gt; <span class="Constant">&quot;23/and *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot; &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> and *var2/reg2         =&gt; <span class="Constant">&quot;23/and *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
and-with var1, var2/reg           =&gt; <span class="Constant">&quot;21/and-with *(ebp+&quot;</span> var1.stack-offset <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
and-with *var1/reg1, var2/reg2    =&gt; <span class="Constant">&quot;21/and-with *&quot;</span> reg1 <span class="Constant">&quot; &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
var/<span class="Constant">eax</span> <span class="SpecialChar">&lt;-</span> and n                  =&gt; <span class="Constant">&quot;25/and-with-eax &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> and n                  =&gt; <span class="Constant">&quot;81 4/subop/and %&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
and-with var, n                   =&gt; <span class="Constant">&quot;81 4/subop/and *(ebp+&quot;</span> var.stack-offset <span class="Constant">&quot;) &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
and-with *var/reg, n              =&gt; <span class="Constant">&quot;81 4/subop/and *&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>

var/reg <span class="SpecialChar">&lt;-</span> or var2/reg2           =&gt; <span class="Constant">&quot;09/or-with %&quot;</span> reg <span class="Constant">&quot; &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> or var2                =&gt; <span class="Constant">&quot;0b/or *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> or *var2/reg2          =&gt; <span class="Constant">&quot;0b/or *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
or-with var1, var2/reg2           =&gt; <span class="Constant">&quot;09/or-with *(ebp+&quot;</span> var1.stack-offset <span class="Constant">&quot; &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
or-with *var1/reg1, var2/reg2     =&gt; <span class="Constant">&quot;09/or-with *&quot;</span> reg1 <span class="Constant">&quot; &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
var/<span class="Constant">eax</span> <span class="SpecialChar">&lt;-</span> or n                   =&gt; <span class="Constant">&quot;0d/or-with-eax &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> or n                   =&gt; <span class="Constant">&quot;81 1/subop/or %&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
or-with var, n                    =&gt; <span class="Constant">&quot;81 1/subop/or *(ebp+&quot;</span> var.stack-offset <span class="Constant">&quot;) &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
or-with *var/reg, n               =&gt; <span class="Constant">&quot;81 1/subop/or *&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>

var/reg <span class="SpecialChar">&lt;-</span> xor var2/reg2          =&gt; <span class="Constant">&quot;31/xor-with %&quot;</span> reg <span class="Constant">&quot; &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> xor var2               =&gt; <span class="Constant">&quot;33/xor *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> xor *var2/reg2         =&gt; <span class="Constant">&quot;33/xor *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
xor-with var1, var2/reg           =&gt; <span class="Constant">&quot;31/xor-with *(ebp+&quot;</span> var1.stack-offset <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
xor-with *var1/reg1, var2/reg2    =&gt; <span class="Constant">&quot;31/xor-with *&quot;</span> reg1 <span class="Constant">&quot; &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
var/<span class="Constant">eax</span> <span class="SpecialChar">&lt;-</span> xor n                  =&gt; <span class="Constant">&quot;35/xor-with-eax &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> xor n                  =&gt; <span class="Constant">&quot;81 6/subop/xor %&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
xor-with var, n                   =&gt; <span class="Constant">&quot;81 6/subop/xor *(ebp+&quot;</span> var.stack-offset <span class="Constant">&quot;) &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
xor-with *var/reg, n              =&gt; <span class="Constant">&quot;81 6/subop/xor *&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>

var/reg <span class="SpecialChar">&lt;-</span> negate                 =&gt; <span class="Constant">&quot;f7 3/subop/negate %&quot;</span> reg
negate var                        =&gt; <span class="Constant">&quot;f7 3/subop/negate *(ebp+&quot;</span> var.stack-offset <span class="Constant">&quot;)&quot;</span>
negate *var/reg                   =&gt; <span class="Constant">&quot;f7 3/subop/negate *&quot;</span> reg

var/reg <span class="SpecialChar">&lt;-</span> shift-left n           =&gt; <span class="Constant">&quot;c1/shift 4/subop/left %&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> shift-right n          =&gt; <span class="Constant">&quot;c1/shift 5/subop/right %&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> shift-right-signed n   =&gt; <span class="Constant">&quot;c1/shift 7/subop/right-signed %&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
shift-left var, n                 =&gt; <span class="Constant">&quot;c1/shift 4/subop/left *(ebp+&quot;</span> var.stack-offset <span class="Constant">&quot;) &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
shift-left *var/reg, n            =&gt; <span class="Constant">&quot;c1/shift 4/subop/left *&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
shift-right var, n                =&gt; <span class="Constant">&quot;c1/shift 5/subop/right *(ebp+&quot;</span> var.stack-offset <span class="Constant">&quot;) &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
shift-right *var/reg, n           =&gt; <span class="Constant">&quot;c1/shift 5/subop/right *&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
shift-right-signed var, n         =&gt; <span class="Constant">&quot;c1/shift 7/subop/right-signed *(ebp+&quot;</span> var.stack-offset <span class="Constant">&quot;) &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
shift-right-signed *var/reg, n    =&gt; <span class="Constant">&quot;c1/shift 7/subop/right-signed *&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>

var/<span class="Constant">eax</span> <span class="SpecialChar">&lt;-</span> copy n                 =&gt; <span class="Constant">&quot;b8/copy-to-eax &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
var/<span class="Constant">ecx</span> <span class="SpecialChar">&lt;-</span> copy n                 =&gt; <span class="Constant">&quot;b9/copy-to-ecx &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
var/<span class="Constant">edx</span> <span class="SpecialChar">&lt;-</span> copy n                 =&gt; <span class="Constant">&quot;ba/copy-to-edx &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
var/<span class="Constant">ebx</span> <span class="SpecialChar">&lt;-</span> copy n                 =&gt; <span class="Constant">&quot;bb/copy-to-ebx &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
var/<span class="Constant">esi</span> <span class="SpecialChar">&lt;-</span> copy n                 =&gt; <span class="Constant">&quot;be/copy-to-esi &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
var/<span class="Constant">edi</span> <span class="SpecialChar">&lt;-</span> copy n                 =&gt; <span class="Constant">&quot;bf/copy-to-edi &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> copy var2/reg2         =&gt; <span class="Constant">&quot;89/&lt;- %&quot;</span> reg <span class="Constant">&quot; &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
copy-to var1, var2/reg            =&gt; <span class="Constant">&quot;89/&lt;- *(ebp+&quot;</span> var1.stack-offset <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
copy-to *var1/reg1, var2/reg2     =&gt; <span class="Constant">&quot;89/&lt;- *&quot;</span> reg1 <span class="Constant">&quot; &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> copy var2              =&gt; <span class="Constant">&quot;8b/-&gt; *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> copy *var2/reg2        =&gt; <span class="Constant">&quot;8b/-&gt; *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> copy n                 =&gt; <span class="Constant">&quot;c7 0/subop/copy %&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
copy-to var, n                    =&gt; <span class="Constant">&quot;c7 0/subop/copy *(ebp+&quot;</span> var.stack-offset <span class="Constant">&quot;) &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
copy-to *var/reg, n               =&gt; <span class="Constant">&quot;c7 0/subop/copy *&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>

var/reg <span class="SpecialChar">&lt;-</span> copy-byte var2/reg2    =&gt; <span class="Constant">&quot;8a/byte-&gt; %&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> copy-byte *var2/reg2   =&gt; <span class="Constant">&quot;8a/byte-&gt; *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
copy-byte-to *var1/reg1, var2/reg2  =&gt; <span class="Constant">&quot;88/byte&lt;- *&quot;</span> reg1 <span class="Constant">&quot; &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>

compare var1, var2/reg2           =&gt; <span class="Constant">&quot;39/compare *(ebp+&quot;</span> var1.stack-offset <span class="Constant">&quot;) &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
compare *var1/reg1, var2/reg2     =&gt; <span class="Constant">&quot;39/compare *&quot;</span> reg1 <span class="Constant">&quot; &quot;</span> reg2 <span class="Constant">&quot;/r32&quot;</span>
compare var1/reg1, var2           =&gt; <span class="Constant">&quot;3b/compare&lt;- *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> reg1 <span class="Constant">&quot;/r32&quot;</span>
compare var/reg, *var2/reg2       =&gt; <span class="Constant">&quot;3b/compare&lt;- *&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
compare var/<span class="Constant">eax</span>, n                =&gt; <span class="Constant">&quot;3d/compare-eax-with &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
compare var/reg, n                =&gt; <span class="Constant">&quot;81 7/subop/compare %&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
compare var, n                    =&gt; <span class="Constant">&quot;81 7/subop/compare *(ebp+&quot;</span> var.stack-offset <span class="Constant">&quot;) &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>
compare *var/reg, n               =&gt; <span class="Constant">&quot;81 7/subop/compare *&quot;</span> reg <span class="Constant">&quot; &quot;</span> n <span class="Constant">&quot;/imm32&quot;</span>

var/reg <span class="SpecialChar">&lt;-</span> multiply var2          =&gt; <span class="Constant">&quot;0f af/multiply *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> multiply *var2/reg2    =&gt; <span class="Constant">&quot;0f af/multiply *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>

<span class="PreProc">break</span>                             =&gt; <span class="Constant">&quot;e9/jump break/disp32&quot;</span>
<span class="PreProc">break</span> label                       =&gt; <span class="Constant">&quot;e9/jump &quot;</span> label <span class="Constant">&quot;:break/disp32&quot;</span>
<span class="PreProc">loop</span>                              =&gt; <span class="Constant">&quot;e9/jump loop/disp32&quot;</span>
<span class="PreProc">loop</span> label                        =&gt; <span class="Constant">&quot;e9/jump &quot;</span> label <span class="Constant">&quot;:loop/disp32&quot;</span>

<span class="PreProc">break-if-=</span>                        =&gt; <span class="Constant">&quot;0f 84/jump-if-= break/disp32&quot;</span>
<span class="PreProc">break-if-=</span> label                  =&gt; <span class="Constant">&quot;0f 84/jump-if-= &quot;</span> label <span class="Constant">&quot;:break/disp32&quot;</span>
<span class="PreProc">loop-if-=</span>                         =&gt; <span class="Constant">&quot;0f 84/jump-if-= loop/disp32&quot;</span>
<span class="PreProc">loop-if-=</span> label                   =&gt; <span class="Constant">&quot;0f 84/jump-if-= &quot;</span> label <span class="Constant">&quot;:loop/disp32&quot;</span>

<span class="PreProc">break-if-!=</span>                       =&gt; <span class="Constant">&quot;0f 85/jump-if-!= break/disp32&quot;</span>
<span class="PreProc">break-if-!=</span> label                 =&gt; <span class="Constant">&quot;0f 85/jump-if-!= &quot;</span> label <span class="Constant">&quot;:break/disp32&quot;</span>
<span class="PreProc">loop-if-!=</span>                        =&gt; <span class="Constant">&quot;0f 85/jump-if-!= loop/disp32&quot;</span>
<span class="PreProc">loop-if-!=</span> label                  =&gt; <span class="Constant">&quot;0f 85/jump-if-!= &quot;</span> label <span class="Constant">&quot;:loop/disp32&quot;</span>

<span class="PreProc">break-if-&lt;</span>                        =&gt; <span class="Constant">&quot;0f 8c/jump-if-&lt; break/disp32&quot;</span>
<span class="PreProc">break-if-&lt;</span> label                  =&gt; <span class="Constant">&quot;0f 8c/jump-if-&lt; &quot;</span> label <span class="Constant">&quot;:break/disp32&quot;</span>
<span class="PreProc">loop-if-&lt;</span>                         =&gt; <span class="Constant">&quot;0f 8c/jump-if-&lt; loop/disp32&quot;</span>
<span class="PreProc">loop-if-&lt;</span> label                   =&gt; <span class="Constant">&quot;0f 8c/jump-if-&lt; &quot;</span> label <span class="Constant">&quot;:loop/disp32&quot;</span>

<span class="PreProc">break-if-&gt;</span>                        =&gt; <span class="Constant">&quot;0f 8f/jump-if-&gt; break/disp32&quot;</span>
<span class="PreProc">break-if-&gt;</span> label                  =&gt; <span class="Constant">&quot;0f 8f/jump-if-&gt; &quot;</span> label <span class="Constant">&quot;:break/disp32&quot;</span>
<span class="PreProc">loop-if-&gt;</span>                         =&gt; <span class="Constant">&quot;0f 8f/jump-if-&gt; loop/disp32&quot;</span>
<span class="PreProc">loop-if-&gt;</span> label                   =&gt; <span class="Constant">&quot;0f 8f/jump-if-&gt; &quot;</span> label <span class="Constant">&quot;:loop/disp32&quot;</span>

<span class="PreProc">break-if-&lt;=</span>                       =&gt; <span class="Constant">&quot;0f 8e/jump-if-&lt;= break/disp32&quot;</span>
<span class="PreProc">break-if-&lt;=</span> label                 =&gt; <span class="Constant">&quot;0f 8e/jump-if-&lt;= &quot;</span> label <span class="Constant">&quot;:break/disp32&quot;</span>
<span class="PreProc">loop-if-&lt;=</span>                        =&gt; <span class="Constant">&quot;0f 8e/jump-if-&lt;= loop/disp32&quot;</span>
<span class="PreProc">loop-if-&lt;=</span> label                  =&gt; <span class="Constant">&quot;0f 8e/jump-if-&lt;= &quot;</span> label <span class="Constant">&quot;:loop/disp32&quot;</span>

<span class="PreProc">break-if-&gt;=</span>                       =&gt; <span class="Constant">&quot;0f 8d/jump-if-&gt;= break/disp32&quot;</span>
<span class="PreProc">break-if-&gt;=</span> label                 =&gt; <span class="Constant">&quot;0f 8d/jump-if-&gt;= &quot;</span> label <span class="Constant">&quot;:break/disp32&quot;</span>
<span class="PreProc">loop-if-&gt;=</span>                        =&gt; <span class="Constant">&quot;0f 8d/jump-if-&gt;= loop/disp32&quot;</span>
<span class="PreProc">loop-if-&gt;=</span> label                  =&gt; <span class="Constant">&quot;0f 8d/jump-if-&gt;= &quot;</span> label <span class="Constant">&quot;:loop/disp32&quot;</span>

<span class="PreProc">break-if-addr&lt;</span>                    =&gt; <span class="Constant">&quot;0f 82/jump-if-addr&lt; break/disp32&quot;</span>
<span class="PreProc">break-if-addr&lt;</span> label              =&gt; <span class="Constant">&quot;0f 82/jump-if-addr&lt; &quot;</span> label <span class="Constant">&quot;:break/disp32&quot;</span>
<span class="PreProc">loop-if-addr&lt;</span>                     =&gt; <span class="Constant">&quot;0f 82/jump-if-addr&lt; loop/disp32&quot;</span>
<span class="PreProc">loop-if-addr&lt;</span> label               =&gt; <span class="Constant">&quot;0f 82/jump-if-addr&lt; &quot;</span> label <span class="Constant">&quot;:loop/disp32&quot;</span>

<span class="PreProc">break-if-addr&gt;</span>                    =&gt; <span class="Constant">&quot;0f 87/jump-if-addr&gt; break/disp32&quot;</span>
<span class="PreProc">break-if-addr&gt;</span> label              =&gt; <span class="Constant">&quot;0f 87/jump-if-addr&gt; &quot;</span> label <span class="Constant">&quot;:break/disp32&quot;</span>
<span class="PreProc">loop-if-addr&gt;</span>                     =&gt; <span class="Constant">&quot;0f 87/jump-if-addr&gt; loop/disp32&quot;</span>
<span class="PreProc">loop-if-addr&gt;</span> label               =&gt; <span class="Constant">&quot;0f 87/jump-if-addr&gt; &quot;</span> label <span class="Constant">&quot;:loop/disp32&quot;</span>

<span class="PreProc">break-if-addr&lt;=</span>                   =&gt; <span class="Constant">&quot;0f 86/jump-if-addr&lt;= break/disp32&quot;</span>
<span class="PreProc">break-if-addr&lt;=</span> label             =&gt; <span class="Constant">&quot;0f 86/jump-if-addr&lt;= &quot;</span> label <span class="Constant">&quot;:break/disp32&quot;</span>
<span class="PreProc">loop-if-addr&lt;=</span>                    =&gt; <span class="Constant">&quot;0f 86/jump-if-addr&lt;= loop/disp32&quot;</span>
<span class="PreProc">loop-if-addr&lt;=</span> label              =&gt; <span class="Constant">&quot;0f 86/jump-if-addr&lt;= &quot;</span> label <span class="Constant">&quot;:loop/disp32&quot;</span>

<span class="PreProc">break-if-addr&gt;=</span>                   =&gt; <span class="Constant">&quot;0f 83/jump-if-addr&gt;= break/disp32&quot;</span>
<span class="PreProc">break-if-addr&gt;=</span> label             =&gt; <span class="Constant">&quot;0f 83/jump-if-addr&gt;= &quot;</span> label <span class="Constant">&quot;:break/disp32&quot;</span>
<span class="PreProc">loop-if-addr&gt;=</span>                    =&gt; <span class="Constant">&quot;0f 83/jump-if-addr&gt;= loop/disp32&quot;</span>
<span class="PreProc">loop-if-addr&gt;=</span> label              =&gt; <span class="Constant">&quot;0f 83/jump-if-addr&gt;= &quot;</span> label <span class="Constant">&quot;:loop/disp32&quot;</span>

Similar float variants like `<span class="PreProc">break-if-float&lt;`</span> are aliases for the corresponding
`addr` equivalents. The x86 instruction set stupidly has floating-point
operations only update a subset of flags.

---

In the following instructions types are provided for clarity even if they must
be provided in an earlier 'var' declaration.

<span class="muComment"># Address operations</span>

var/reg: (addr T) <span class="SpecialChar">&lt;-</span> address var2: T
  =&gt; <span class="Constant">&quot;8d/copy-address *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>

<span class="muComment"># Array operations</span>
(TODO: bounds-checking)

var/reg <span class="SpecialChar">&lt;-</span> index arr/rega: (addr array T), idx/regi: int
  | if size-of(T) is <span class="Constant">4</span> or <span class="Constant">8</span>
      =&gt; <span class="Constant">&quot;8d/copy-address *(&quot;</span> rega <span class="Constant">&quot;+&quot;</span> regi <span class="Constant">&quot;&lt;&lt;&quot;</span> log2(size-of(T)) <span class="Constant">&quot;+4) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> index arr: (array T sz), idx/regi: int
  =&gt; <span class="Constant">&quot;8d/copy-address *(ebp+&quot;</span> regi <span class="Constant">&quot;&lt;&lt;&quot;</span> log2(size-of(T)) <span class="Constant">&quot;+&quot;</span> (arr.stack-offset + <span class="Constant">4</span>) <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> index arr/rega: (addr array T), n
  =&gt; <span class="Constant">&quot;8d/copy-address *(&quot;</span> rega <span class="Constant">&quot;+&quot;</span> (n*size-of(T)+<span class="Constant">4</span>) <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> index arr: (array T sz), n
  =&gt; <span class="Constant">&quot;8d/copy-address *(ebp+&quot;</span> (arr.stack-offset+<span class="Constant">4</span>+n*size-of(T)) <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>

var/reg: (offset T) <span class="SpecialChar">&lt;-</span> compute-offset arr: (addr array T), idx/regi: int  <span class="muComment"># arr can be in reg or mem</span>
  =&gt; <span class="Constant">&quot;69/multiply %&quot;</span> regi <span class="Constant">&quot; &quot;</span> size-of(T) <span class="Constant">&quot;/imm32 &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg: (offset T) <span class="SpecialChar">&lt;-</span> compute-offset arr: (addr array T), idx: int       <span class="muComment"># arr can be in reg or mem</span>
  =&gt; <span class="Constant">&quot;69/multiply *(ebp+&quot;</span> idx.stack-offset <span class="Constant">&quot;) &quot;</span> size-of(T) <span class="Constant">&quot;/imm32 &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> index arr/rega: (addr array T), o/rego: offset
  =&gt; <span class="Constant">&quot;8d/copy-address *(&quot;</span> rega <span class="Constant">&quot;+&quot;</span> rego <span class="Constant">&quot;+4) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>

Computing the length of an array is complex.

var/reg <span class="SpecialChar">&lt;-</span> length arr/reg2: (addr array T)
  | if T is byte (TODO)
      =&gt; <span class="Constant">&quot;8b/-&gt; *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
  | if size-of(T) is <span class="Constant">4</span> or <span class="Constant">8</span> or <span class="Constant">16</span> or <span class="Constant">32</span> or <span class="Constant">64</span> or <span class="Constant">128</span>
      =&gt; <span class="Constant">&quot;8b/-&gt; *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
         <span class="Constant">&quot;c1/shift 5/subop/logic-right %&quot;</span> reg <span class="Constant">&quot; &quot;</span> log2(size-of(T)) <span class="Constant">&quot;/imm8&quot;</span>
  | otherwise
      x86 has no instruction to divide by a literal, so
      we need up to <span class="Constant">3</span> extra registers! <span class="Constant">eax</span>/<span class="Constant">edx</span> for division and say <span class="Constant">ecx</span>
      =&gt; if reg is not <span class="Constant">eax</span>
          <span class="Constant">&quot;50/push-eax&quot;</span>
         if reg is not <span class="Constant">ecx</span>
          <span class="Constant">&quot;51/push-ecx&quot;</span>
         if reg is not <span class="Constant">edx</span>
          <span class="Constant">&quot;52/push-edx&quot;</span>
         <span class="Constant">&quot;8b/-&gt; *&quot;</span> reg2 <span class="Constant">&quot; eax/r32&quot;</span>
         <span class="Constant">&quot;31/xor %edx 2/r32/edx&quot;</span>  <span class="muComment"># sign-extend, but array size can't be negative</span>
         <span class="Constant">&quot;b9/copy-to-ecx &quot;</span> size-of(T) <span class="Constant">&quot;/imm32&quot;</span>
         <span class="Constant">&quot;f7 7/subop/idiv-eax-edx-by %ecx&quot;</span>
         if reg is not <span class="Constant">eax</span>
           <span class="Constant">&quot;89/&lt;- %&quot;</span> reg <span class="Constant">&quot; 0/r32/eax&quot;</span>
         if reg is not <span class="Constant">edx</span>
          <span class="Constant">&quot;5a/pop-to-edx&quot;</span>
         if reg is not <span class="Constant">ecx</span>
          <span class="Constant">&quot;59/pop-to-ecx&quot;</span>
         if reg is not <span class="Constant">eax</span>
          <span class="Constant">&quot;58/pop-to-eax&quot;</span>

<span class="muComment"># User-defined types</span>

If a record (product) type T was defined to have elements a, b, c, ... of
types T_a, T_b, T_c, ..., then accessing one of those elements f of type T_f:

var/reg: (addr T_f) <span class="SpecialChar">&lt;-</span> get var2/reg2: (addr T), f
  =&gt; <span class="Constant">&quot;8d/copy-address *(&quot;</span> reg2 <span class="Constant">&quot;+&quot;</span> offset(f) <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg: (addr T_f) <span class="SpecialChar">&lt;-</span> get var2: T, f
  =&gt; <span class="Constant">&quot;8d/copy-address *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;+&quot;</span> offset(f) <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>

<span class="muComment"># Allocating memory</span>

allocate in: (addr handle T)
  =&gt; <span class="Constant">&quot;(allocate Heap &quot;</span> size-of(T) <span class="Constant">&quot; &quot;</span> in <span class="Constant">&quot;)&quot;</span>

populate in: (addr handle array T), num  <span class="muComment"># can be literal or variable on stack or register</span>
  =&gt; <span class="Constant">&quot;(allocate-array2 Heap &quot;</span> size-of(T) <span class="Constant">&quot; &quot;</span> num <span class="Constant">&quot; &quot;</span> in <span class="Constant">&quot;)&quot;</span>

populate-stream in: (addr handle stream T), num  <span class="muComment"># can be literal or variable on stack or register</span>
  =&gt; <span class="Constant">&quot;(new-stream Heap &quot;</span> size-of(T) <span class="Constant">&quot; &quot;</span> num <span class="Constant">&quot; &quot;</span> in <span class="Constant">&quot;)&quot;</span>

read-from-stream s: (addr stream T), out: (addr T)
  =&gt; <span class="Constant">&quot;(read-from-stream &quot;</span> s <span class="Constant">&quot; &quot;</span> out <span class="Constant">&quot; &quot;</span> size-of(T) <span class="Constant">&quot;)&quot;</span>

write-to-stream s: (addr stream T), in: (addr T)
  =&gt; <span class="Constant">&quot;(write-to-stream &quot;</span> s <span class="Constant">&quot; &quot;</span> in <span class="Constant">&quot; &quot;</span> size-of(T) <span class="Constant">&quot;)&quot;</span>

<span class="muComment"># Floating-point operations</span>

All the instructions so far use Intel's general-purpose integer registers.
However, some of them translate to different SubX if their arguments are in
floating-point registers.

var/xreg <span class="SpecialChar">&lt;-</span> add var2/xreg2        =&gt; <span class="Constant">&quot;f3 0f 58/add %&quot;</span> xreg2 <span class="Constant">&quot; &quot;</span> xreg1 <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> add var2              =&gt; <span class="Constant">&quot;f3 0f 58/add *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> add *var2/reg2        =&gt; <span class="Constant">&quot;f3 0f 58/add *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>

var/xreg <span class="SpecialChar">&lt;-</span> subtract var2/xreg2   =&gt; <span class="Constant">&quot;f3 0f 5c/subtract %&quot;</span> xreg2 <span class="Constant">&quot; &quot;</span> xreg1 <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> subtract var2         =&gt; <span class="Constant">&quot;f3 0f 5c/subtract *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> subtract *var2/reg2   =&gt; <span class="Constant">&quot;f3 0f 5c/subtract *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>

var/xreg <span class="SpecialChar">&lt;-</span> multiply var2/xreg2   =&gt; <span class="Constant">&quot;f3 0f 59/multiply %&quot;</span> xreg2 <span class="Constant">&quot; &quot;</span> xreg1 <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> multiply var2         =&gt; <span class="Constant">&quot;f3 0f 59/multiply *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> multiply *var2/reg2   =&gt; <span class="Constant">&quot;f3 0f 59/multiply *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>

var/xreg <span class="SpecialChar">&lt;-</span> divide var2/xreg2     =&gt; <span class="Constant">&quot;f3 0f 5e/divide %&quot;</span> xreg2 <span class="Constant">&quot; &quot;</span> xreg1 <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> divide var2           =&gt; <span class="Constant">&quot;f3 0f 5e/divide *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> divide *var2/reg2     =&gt; <span class="Constant">&quot;f3 0f 5e/divide *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>

There are also some exclusively floating-point instructions:

var/xreg <span class="SpecialChar">&lt;-</span> reciprocal var2/xreg2 =&gt; <span class="Constant">&quot;f3 0f 53/reciprocal %&quot;</span> xreg2 <span class="Constant">&quot; &quot;</span> xreg1 <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> reciprocal var2       =&gt; <span class="Constant">&quot;f3 0f 53/reciprocal *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> reciprocal *var2/reg2 =&gt; <span class="Constant">&quot;f3 0f 53/reciprocal *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>

var/xreg <span class="SpecialChar">&lt;-</span> square-root var2/xreg2 =&gt; <span class="Constant">&quot;f3 0f 51/square-root %&quot;</span> xreg2 <span class="Constant">&quot; &quot;</span> xreg1 <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> square-root var2       =&gt; <span class="Constant">&quot;f3 0f 51/square-root *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> square-root *var2/reg2 =&gt; <span class="Constant">&quot;f3 0f 51/square-root *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>

var/xreg <span class="SpecialChar">&lt;-</span> inverse-square-root var2/xreg2 =&gt; <span class="Constant">&quot;f3 0f 52/inverse-square-root %&quot;</span> xreg2 <span class="Constant">&quot; &quot;</span> xreg1 <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> inverse-square-root var2       =&gt; <span class="Constant">&quot;f3 0f 52/inverse-square-root *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> inverse-square-root *var2/reg2 =&gt; <span class="Constant">&quot;f3 0f 52/inverse-square-root *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>

var/xreg <span class="SpecialChar">&lt;-</span> min var2/xreg2        =&gt; <span class="Constant">&quot;f3 0f 5d/min %&quot;</span> xreg2 <span class="Constant">&quot; &quot;</span> xreg1 <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> min var2              =&gt; <span class="Constant">&quot;f3 0f 5d/min *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> min *var2/reg2        =&gt; <span class="Constant">&quot;f3 0f 5d/min *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>

var/xreg <span class="SpecialChar">&lt;-</span> max var2/xreg2        =&gt; <span class="Constant">&quot;f3 0f 5f/max %&quot;</span> xreg2 <span class="Constant">&quot; &quot;</span> xreg1 <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> max var2              =&gt; <span class="Constant">&quot;f3 0f 5f/max *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> max *var2/reg2        =&gt; <span class="Constant">&quot;f3 0f 5f/max *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>

Remember, when these instructions use indirect mode, they still use an integer
register. Floating-point registers can't hold addresses.

Most instructions operate exclusively on integer or floating-point operands.
The only exceptions are the instructions for converting between integers and
floating-point numbers.

var/xreg <span class="SpecialChar">&lt;-</span> convert var2/reg2     =&gt; <span class="Constant">&quot;f3 0f 2a/convert-to-float %&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> convert var2          =&gt; <span class="Constant">&quot;f3 0f 2a/convert-to-float *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> convert *var2/reg2    =&gt; <span class="Constant">&quot;f3 0f 2a/convert-to-float *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>

var/reg <span class="SpecialChar">&lt;-</span> convert var2/xreg2     =&gt; <span class="Constant">&quot;f3 0f 2d/convert-to-int %&quot;</span> xreg2 <span class="Constant">&quot; &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> convert var2           =&gt; <span class="Constant">&quot;f3 0f 2d/convert-to-int *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>
var/reg <span class="SpecialChar">&lt;-</span> convert *var2/reg2     =&gt; <span class="Constant">&quot;f3 0f 2d/convert-to-int *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> reg <span class="Constant">&quot;/r32&quot;</span>

There are no instructions accepting floating-point literals. To obtain integer
literals in floating-point registers, copy them to general-purpose registers
and then convert them to floating-point.

One pattern you may have noticed above is that the floating-point instructions
above always write to registers. The only exceptions are `copy` instructions,
which can write to memory locations.

var/xreg <span class="SpecialChar">&lt;-</span> copy var2/xreg2       =&gt; <span class="Constant">&quot;f3 0f 11/&lt;- %&quot;</span> xreg <span class="Constant">&quot; &quot;</span> xreg2 <span class="Constant">&quot;/x32&quot;</span>
copy-to var1, var2/xreg           =&gt; <span class="Constant">&quot;f3 0f 11/&lt;- *(ebp+&quot;</span> var1.stack-offset <span class="Constant">&quot;) &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> copy var2             =&gt; <span class="Constant">&quot;f3 0f 10/-&gt; *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>
var/xreg <span class="SpecialChar">&lt;-</span> copy *var2/reg2       =&gt; <span class="Constant">&quot;f3 0f 10/-&gt; *&quot;</span> reg2 <span class="Constant">&quot; &quot;</span> xreg <span class="Constant">&quot;/x32&quot;</span>

Comparisons must always start with a register:

compare var1/xreg1, var2/xreg2    =&gt; <span class="Constant">&quot;0f 2f/compare %&quot;</span> xreg2 <span class="Constant">&quot; &quot;</span> xreg1 <span class="Constant">&quot;/x32&quot;</span>
compare var1/xreg1, var2          =&gt; <span class="Constant">&quot;0f 2f/compare *(ebp+&quot;</span> var2.stack-offset <span class="Constant">&quot;) &quot;</span> xreg1 <span class="Constant">&quot;/x32&quot;</span>

vim&#0058;ft=mu:nowrap:textwidth=<span class="Constant">0</span>
</pre>
</body>
</html>
<!-- vim: set foldmethod=manual : -->
U8p54ihmHMm2FteX2PJs/hdV9fX/e8ErzkZKRmWebJbdPT07a7u2tjY2NeN1eLdptd7ngl6kPRHvarUN6v0WhciQKQ6k0IlBILOGcpC0BG5NramnU6Hdva2vJcFc7koXwkGamPHz+2er1+xanKvA0yPVPzeN16XCdIrnu/KpS892liIyiGyJfuzKV4d71ed9SG32tiYsJevnxpZub1gUkO09wVlAro0Mz6fGWgC+qfoIj29/etXC778ZuUrzQz3/B37949dwqTu0Jm9ejoqO3u7vaiNjr4/xeCI9Wug6HxujwEkkIxfK5Eo3b0Tfqj91yHgvT98TkpFKZ+GD4jmkDI7/z83N68eWNHR0eerNRut92B+eWXX9rt27dtenq6b64QTNonzlQhFGpm7qc5O+sdI9rt9nIPCBmSLg7aoPoZh1tTs5fjTCh8RDiUc48I27L/BhSVQsQ3ESRREOk8DytI4lrGe0EiqbBziib0p1gs2uPHj+3+/fuuCCi9iZLTIkhZ1ivW9OjRI2dswsRZlvmuXnYzk6ZAwiF9ICJFJGd/f9/rCr969aovIkd4HcHS6XSsXq/bysqKmfUE1N7enr19+9bevXtnZ2dnvUO2LLRhoH/8flgzJtVS9yoTRIZXrc1PhKExgqPMr8VcIvrQ98fn6HX6vLyxp+x6RVM6dynUhSZT30ylUrGHDx9aq9Wyg4MDL2zEhqzFxcW+BL7YD0VUwN1CoXcYOgKCzWscuoVTD7Ty8eNHOzw89ApduqV9d3fXw4Pz8/O2trbmgoZ9HlRSX1lZsfv37/uGsxQtREaP851CE4OuTT13GNrNu3fY+xRxang70hnIRWmAmipaZ4di2jhJ8bmAQng368x1jUbDN+RyZnG73bY3b9546NvMXBFRq3VmZsZWVlZsa2vL91ahhLa3t3uRnkETch0c17+vg4d5PgVFCPqdprfrcxEc+n1caDV1mEy1G1Nj0e/y8kbol44Zxk05Yul7zFzluoiSolDh+byTd5TLZavX6zY7O+ulANkZq8V7GLtWzuc5Kkzq9bqdn597KQGSyiBaiiwfHR3ZxsaGFyXS8n+Hh4c2Pj5uq6urdufOHU86o6r5xsaGV25//Pixl2xMZSoz9ihE4nf8Hdcy/j+M4MhDu5E+ByGkVD81qZJnqRAZRthRYiDSMGUqNjc3PWzMtgdNbKRKmllvbw67eScnJ213d9e2trZcyKEUzMyP1SiXy/bXv/7VncVTU1O2vr5uc3NzHvW5eYwtp6WEg34XnVU0zcXAnudvte9VQ/O9WT/T8674N0wD0Ue0wucqxGLUJgovFVLqiE2hGJ6vKIB50jnTuVOCUbOHd5DnQVkDFUQpVKJILjIWHn2yJQ8PDz0nhXoj1P/MssyT5d6/f+8FjZ4+fWq1Ws3tZyrF8/6pqSlbXl72A9OVJqJJM6zWTyGY1DW6JnFN+XxQqPhzWuod2nTM6rhV5RSFV8pCmJmZ8d3mnU7Hd2eTPwRCIet2YmLC1zvLMt97w3Ef0DinNJ6fn1u1WnWFcOvWLa9gT0Tr8PDwpxMkqQSxQd/TlNk1AoEZwuAiAcSM1ggRI0KI96swUsZlcXEiKvOqdopoSRPX4tj1+qiZosbUvui74xiVMVTgxOJNKbQXmYr1GR0dtampKc9gJPcAwpqYmOg79rJYLHpWK4dsc0QCdvzc3Jx99dVXvsdF15yWEgjXCZE474whJZCiIInv1Dn7qYVJnhDQNYt0ZtZPk3wGL6CYGD9+qKmpKUcmoAvGH7dzEJGhxg2mD7kn9HFra8vW19c90xY+pZYO50TfSJCkJGJei5A15VdQZsL7rPcRncB2U83PIsRNVNHUUOGRt1A6PoWjcYFjCDgyboTB2lKEmvKXxPtVIEaijEwRGZTPIjTX9dD+dbtdLwJULBat2Wz64UrA5m6362ebkGzGHFAEiFMHODqCPIzYh1SLQkQdj6lrUmYj16i/YRjBBD2k+pmXYKnX6XuiglMzl7+j4ovIUZWomfn+KXZHIyCowEYtV85EQujQd/WfFItFfwd5R48fP7b/+q//cmvArLexkwp81MaZn5+3p0+f9hXFviJIBgmL66R1DL1G7R21o15Plp8uppocqnmjQOHdg8yLCBP1PRFK52k5NU1YDH2PEkse4aqNrCZcbFqgSYVaJMSIlOK7BoXDI4PxN7t82SfTbvdOrWereZZlrvU+fPjgdvn09LQ9fPjQHj58aLVarc/M0uen+jJMy4P3tGie3ATZKAqMfRpES3nCUWkmhUi1rEYsdwF9kqTHO7PscnsE64ovRPsPsmePFgKV6IxWP6SfpVLJvv32W5uYmLBnz555stzMjweWv3//3tbX163b7W3a+93vfmf/+I//6MWcrqTIfy60YxBIQdXqZtbn/+BdykRIx9iGJYY8OE9TH4hC3ujf4Ptoqqj01/vyEMCgFrWTCkHeGbWbmmHcn/IPxfm4ifbXNjY25glo3W6vXN+bN29sd3fX121vb8/LC3z77be2trbmB3+lzIlB/fgpGijE7Cotp5SLtjyB+7f2h6a0p5mxKYSuTYWjCn8KO+meHwQMfKiJZTxL/1e673R6Jxb8/d//vc3MzNi//uu/GofnUYHtzp07Nj4+boeHh/b+/Xt79uyZPX78uLfv6nMmKE/zYYqQaZcSGios1AbUSY12rRIFUjX6IqI5EvunGkEXj4VVb3Vs9Am4qIyeJ1SieZIi0hSMTkV9IgLJG6c+J4U49L16Ter+aNpR26TVatnOzo6VSiUvXbCysuL7etTk0DnK68NNW8r0SY0xvneQEInOzev8edc9L/aD34NMz/h+Rb+qjLmOceMAZxy8Az4xuxQcNKXzGNHLssweP37s5SZZ9/39ffvrX//qFf44qH1ra6sXfk7BajrFoHSQEWbzGYgCWKWCBCGjqCBq7miDxhKITAD2oQob+qEmA5Md+xzfEQVJCg0AD7WfEaWkTC1t8XkRRut7UkQav4/QW2F2DC3r8/X7YZqaYOVy2VZXV61QKNjU1JRXLdMDzVJQX+10Wkq4pFrePMZxpMyemyCdOF+x5aG9YVBMXAfli/ijLfqHdB012AAPqLJlc2EKqSvvKApXpLu+vt43dvZI/fu//7ufm9Ttdj29v5iaIAapD1J/RRQmMWyrmj9eG51KTFgMWyKIEB4K4XRho2DSyaY/0cyKxKH7EYCM6invdrv+uTKyauxIgDF6ou9kHCkzTLWWCnOdQxVmOodxLbVPin7ykFecm9i3Tqd3uNLs7OwV528e8/1UZsv/7ZZiqhSN/S3PT6G/iG7N+tEcuTaK6KEF/CMpxQIiifxglr+JNkWv/F8o9Db4FQoF+8///E979eqV8+TMzEy/INFJZEBREETiinapWT8EU+9z6rlZdhl5idGQlG2oElqzVHWiVGixABFlpISZEpD6b/hcQ2rKQDiw8rRsnLNYTCol5OIiMi79HISiY+R/nbf4rGEYIiJRWiT+/59aZLw8kzRP+Q5qeYpFn5mnaFN8Q4U7Le+YZZe+E66PCkX5Lq+l+sf1S0tL9k//9E9e3pPDy68IkhSK0M8iRIoDhag1dAvD6zm/+jtqZAg+5Q+IEFEF3yD0E8O+sWlZOyClmk4IRDav8TxQDF74lFDIg8ApdBU1If1IaZEYoYJY45rF61OhzOsYJvXdTYSJmlX0Z5j3xDasSRRbiplS30daiy3SXFzbaHpp071AOh/R5OT/qLjjGOAt1lZ9KopeoxmT4vlB66h9MjM/glafV8xDIJGYo6TMk5j6eYRTKi3puFasjoNTyapOzogUUoIvZXfyTg298R71d2gfESBRQ+MlVyGimbh5C5MSmtq/SOwR+urzta+KWqJJlLKJIyNE5lCBpP1NwfM4Lv1On80zP0cYXCe4rhNGEfoPup65VaTL3/HelDLT+ctrcQ4iDdP0b+UHEHtUBIR9ldcYkyrwmwjvlNDlXTy3GAk3SsHIqBEh6OfqBOIzmI0J1qiLCqDUZjp9R3SkpsydqH2jeRKTx5S4FHEo48GsipJ88gSZqK8oj1Hiwus86rNViOhYlTAiDFdzUscXTZFhiCjObeqZOqZhmj7jJsJEHY4pJ/FNGEJbZH59XqQjNRG4RmkzD5HkKYnrWrxPlYfSJXyha0DEtNPp+K5uRfa06Igd1FIKLtJvUQk3NRF5MDCG1qL2wgQgvISTCD8Dg+aeuANWfRx8zyHQkaBSzAHCUN9MNAPoSxSACglTIUTuYxHjguQxV5zjvOt5v/pk9D7GYnbpDI45OFFg8n+qb5GpIqPHOchjiBTt5I0/+qcGtRi9+CnaIGQYfXap6IlZei7zhMpNhIgqD1VU8Bi0Qb+IlKrA7XQ6XveE3cHRGtC+DSv0VBnpTzGaM/EBkaAg2DhJmqhlZn2anOQYmNvsct9AfA8d1ZwT7mOSFJ7nSVONvFCnQVEE0E/Nh5jgxbtTtmUKAfDeQQylxKi+GH1Pp9Pxeqa8S4vWqBnW6XQ8I1jnL/ZlkKZM9VPpISKl1PMiA8QWr4+oJk+YRIYaFoEMQi55dJMS6LFFoRqfo+UY85hRNfmgz3XsbKDDucpnCAhVyqmxR9MshcwjWtZ+xPlXiyLLsl4eSfRl6N/6GQwZc0/oXLTn1abne7PLPQMK0eJC813KrxInOkUU9IH0YRVi0TGlJoxOdB4hRPNtEJOkmmYako2Ygq2kOGvYT/vLHEdtpPOv46J/2hT96RxHOK/zHceryihGdPg8Ik7GkUKSP0VLrUvsc+qeVMsz5VJzcVNaoEVTX5/POlL7hevjD5/HfqeEvtJLNF0HKWjto/azqEKEF0atHGFMDPfy4EgYav9HbZbSNHymEC6aUdpilEI1G+/MixIgZJDwUZCkpHMkRm2RcSLjKkrQexAk6iMxsz4Hr441pXVUMPJdng2cIpLo31HiTTFC9I9FQaZ9Sc2djl8JM69y/LAoRAVEypk5yJ+Tt86pZ8W5p+EEjdfo8/OUn/JDpL1ut+t0CkqNQiL+VsGufcxbh5SFEb/PQ7JmP/pIIsyJDB1hbooY1YzRSVYNz/8QHaZLzAyFiRTRcE3MeNX+oJ31PWbmzl4VIJxCxoRpBCT6PuICREEXr9GFwInb7XY9gScukPp99IfqYSkndrTftQ/R6x8FW0pTIhDYJKZOcR1bVCo6Pl2P1KZD/T8+W8eRR/jDaPe8e4dFICna1h248Xd8bhQycW0GvVdpQfsSaSaiPt6VUhhx/VJIO9JRSginTHm1Jq5s2ov/R2GSkqz6v3ZWNaQyqhK7mi/cjy2IgxVTSOPw+DmUcGEGRU5oRwQTxyvwuaZ301cECTUyza7G9JlcHTumCmNCk+AMS6XTRwZVcysKYEWDMGJKKOQJ2xhpUMEU19vM/JzXSHzq+FNBp8JcUYk6sJVYo8kVxxFh+iCtGJFaautH7E+8J8W4eQIo0ntev/WdeYhS3wmvaJ+U9lTR6Dt0PeJ8qKWh79R+pMYZP4v3qLJOllpMdT621GAiYavmVEemwtlo5wEP0QKgFhyKMG+lUrkshS8e7EKh4I5JzuSIqCMuri4mUaYsy3y/gkpkEA/v03NS1S+hAk8ldyRCnQvmPQ8W6yKmzD2+i5mzUWBEwlB0wd9aJybF9Fyje6gUacS5jQgOYa2Zwhri19863jxtPmh8Ogep8UaNH+c0zhOfDxImkT9SgkH7GYVE5JVBvJiaj9T44vzkCRn9TBVAnhwws8uzf3mREgUP44VRiithxL/NLiGhhp7MLqtxqZZRqAuRxfRfhAlnsI6NjZmZ+aHSnz598gOgKLiCMKAPkRgQDDomnhEFIohAFwREo+UTeCZCiwOK9N26kJG48ghQWwpd0JSZ9Z3DhqxVS+EUV4bR57fb7StmlwqglCmgfU4JOxUuOkd5mj9qY1qc67zrU8IgfpbHyCnBFk0ExkDlfRVq+uy4dvH+SD+xqcJWpZSnfCLvpuaZe6KZFp9TjM4hJUB9SZwolZxKNHymA2ZyVGhEzWxmbp7oRMdJGBkZscnJST9rBeZVJMFJZ+pHiNpemcsnQwoVpbSETrI6J7vdy0OF+F/nLToRFb2o91vHSx/yiIh3aF+5v9vtup9Jo3KK6FKMqu/Xd0UGjdpS+wCjKKqMCElNC67nnohsUjREP+NucjUfUkynwlefo8/Q8an/LaUAUhpar43rqjSUt6aMI/JU3tpEAa4t8p0qgVTfeU7KLIzvjN/5SXvaWR2ITkh0kOWhkWjnawdSkFwnVxexUCg4KtGq2Pg5ID76y8lj2h9lVGVeNVHomzp0VXPHSmipvisCiZOdYtKo4ZVgU1onpTVT8212tQI/6wBqSyFLHYdq6iho6H+8nxaJkfnU9dVnYN4MYgKdt2jnR4GX911ch7g+qfdH4an35tFDfJf2TfdjDbpf50ZRRqrv0T8Sr+FZ0ARJoqn3q5KJfafl9buIJk8RFhqDDqc6qMwfBUKc0BRaSX2n3yvMVR9EFEigAkUD2n98KcqQ2nc+U0aICWB5/U1Jep1wfU9kSpX+UZhEAZSaMxWYtGjWIExT2hqhataf3xIRZuyfPj/F3LoOUTENulYZQseoTJWiwzyTSd8Vn5lCI7FfeXSi88w8XidctKXQjq6PKkCEUJ51wPNS44n0btYfhUq16wRdqhV1oeJA8xhJIbLaZDopEbHEZ2un44BTxBURD99pgVwWlj7FzNhoUkUhqP3X8dOv2EdduJSmUi2S5y9QhuB31KwpxtDn6FypA5RoEc+IGkeFCTQA+iO/hb1SZlermKeclVHY5CEL/VH0YnapGVlLbZr3oyZrhPdRkEfGGISqdG5Yx+i7UPrJ8x3oc/T58T6lSUUPrCO0yLhTiEqfq/OcEiSDWuqaYe4r5kUJaClThqZQKi64dj5lPuk1URvE98aJ0kWNzKCoRZkypcmiHa597XQ6nseR0gR5yVpRYKQEDH8rpE/Ngc7xME0ZmBC6rm8sTKXXa5ibezQqFvsUo3DKDFyT0uraT0USMbV8ECpT/1RKKfG3CpyorSNCiQg60pKuGd/nra/SXUpY5SEHaFoFiqYORMWk0Uoz60s90DnTdficdiNBEgmCB+QJCPaCcEQBjUmME3yTQUUtH4VL6jOFvkD0lC2oUDwKkYh8IhFH4kuZOykhos+If8fn5vU17/v4t47t/Pzczs/PPbKS966I8iBijjdQJBfNDu1foVDwk/6gA3WIck3UvJE2+DtPUJtZn7aOyiO+LybXqZC7KYPloYEoiPRdtCiwU0Id4cEuXtbP7DLq1u12PSIZ6VX7FgMX0YeSEtKf24osvBK8MqwmkaWktf6fguR5sDJvABGemaUjIbEfEXno91ETxWsjFM/rG5+nhIN+dx2cHFaQXNdUOChj4ogulUpWqVScMLvdrp8dFNcyJsuhKIrFYl+uCPOWQnKRQCm8o4oFQR8zJdVE0RwTjXjBFPQ1hrIjSqUvil7imqciFDrWPFQd+SEqIlrkC90zxXgVheihcFoigHvY1oHjnDnhXsz8mGgZfWEqdFNg4aatSAapWT6BMBB+K+GQ+8/1KvV0AqIUzxMy3KumSQoa67VMjgqbPInLxGkf6GPKj5ESFoM+5++86+L3UYPepPEMJUaFuXwPM0N4CBVdS4QG/3OivTKjzh3MHJkWGoLRgeYaCsbvos5YiFz9HfzmOqVNzZSmIXTUUQ6D6TwjaFNmB2NQ/88gIaIthWBVyWq1QPqpii3L+n1cKiBo1BhR/58+++zszNrtth/ZiSKN+6GuU5g3be5sVeJgcZHkMTMzbyKjOaDaYFCHU1Kcz+PmoTw0o8ImxcTXoaC8fkUBkfddbNEkGfSclIkyTItrkZeCj5ClnINqPbPeoeQqSFIaVtEdiCUynAoS1k6RA/PCtQgTaA2hE9eZZ+n6wgzdbq9+qQoqZc44rzxLaUx/YnQob1103pWZVXCYXSIBmFznVBEETK9oIxVtOzs766Mh0Aen3nU6HTs9PbWzszNf12h+Km//ZIIkopEU7EsxTQraKbHRUugg/ugAtV2nzbUpEknd87ktTwAMeu4gAXTTd1x3H4xt1h9SVLSiAgBhoUQaE/H4rc8hM1cFQgzpxjVQBENfaAgSRYNaLkFNHC1nqWPBqawaVw/NNruka/oGrI9zldLQcSxqimhkjPezH0yznfWMJ+WLi4sL73uW9ZA9zv3UJkiuyXP803+NrOFbUcHOPKfcBH9LcwNUCU8JhklKORZTTe1UHWBeRiX3DNvi4upnnyNIbvJdauJjX4Z5bhyvMthN5iIVcYtaNDK6alH9LCLJ+B3rGn1mqoEVMaT8BXE7hv5WhQP94SRG4+p7zS5NGGrO8L8ys/YRIRIFib4fYaTjo18IERDd+fm5nZycWKvV6jM19FhNhEVc5+jLAc0outT50fWN88s2BngsorZB7gqlkb9FmBQZvD5c4Z0urF6X8lcMaik7k/8j7KVdh2JSjK2LH7/TlhJI8fO8e1MtXjdIWMT+xoXWlprflNBMwfnUMxSNcE8qlI1w0H1PEelocaqUYI2aPhJw3pi5JlWrReeL8WIGgA5gZN5DVnTM6kwpnthHvRZTjr4QUUk5UGP0KvoO8xB59InoXMZIVXTE6pzj99Ld2yrolS4wr/JSGmKLkTszs6LaUNHBpOnnKu1S9r9qkyjJlYhu2vKQxnX/x89S1w8SSLSbIoTU+wcJ20H9zkM5KSQXr83zEcTP8uZAtbAyikJ6HPW6A1v9Jaw7jB3pbNAcQGuKjlTTwnAICN3gqQXHFRkPUn7qpE7NOX1Q0wjBhbmgwiK+W4W3Vv1L8YsKFfqqjm8z6zMD9Tr6yJyTCxTHExVpCkGmWh4tF1Pbw3UiYgdSn+sAGUx0Zn1OS6GQ+P11f+f1Ie+ZER0M6ruOOSKLz215Ai7vvfGzPFQSGULNkThOdRAiMDTbstVqWavV8jErwWZZduVga56pDtOUVtOxRLMjz6an7ylTIA8BmaXrlcQSE7Fv2g8EaLlctlar1Vc3l/cpo2uhcRhdna3af5zHGs1iPCDKVP+5n7XTqBB8ncqM1bm6aXPfVJwk7ZBOpgqSlLNGpWoULJ8jSKIQUS2X97xB2jV1nVl6d/N1jPw5bdhY/XV9V6bQ39G0GWSu0VLmZrfbtXa7bWdnZw7d+aERFeAdlUrFsizz32hqQpUQPb4L9e1EwRKFTNSUrJemjKvTGObF8Zm3RyXSNEIvOnNT68N9mkE6MjLSd6QKDE9tnFKpZKOjo33CUf05EWWpMIopEJHHVPBCB/hm1HfFenxu3kgUxvTv4uKi/1wbBhgnLPWgPNgd/78JM8aQVAqRxH7l/T8IoQxCHToP1/V9kLBMacbUd6l7B733unGlNGlev1MoBCFxenrqJgzp9syJhlvNLk0JGEr9L8pc/I75J9yXQlpxHCAbNXtUC6d8BbFFAaoow6x/U1tc48iw+q6I8PDTqDMWBtcqfYVCLwv59PTUeUBPO1Azj+8581f7wvi13+122xGjlhYd1KKAUp6MqOsKItFFzWt5Un0Q4w7ShDdtnyNYeN+w/RskSLUNa1PmvWOQ32TQvdq3iEIG9TX+n0KbrAvmTLvd7oPtauvHTZwwIoyhtry+a3R01AtSRX+KPguNzueakcqzFKbH70Ar2s+8e+OcqpBIzb0KLuaj1Wr5OTJcw7thYBDM8fGxffr0ySqVihUKBTcVFeXhGKauDkICIRMFCeiGfquvRJHZsC3lF9W5Ud/ptYJkGPNkGASgLQUzh21RkKTenXrHdf3L0z4plKGElycMUp/nRQMGCRQIJPYTBlNbmf8j2ogMkRIq+hkQHMJWNML7YBbMC4SOmV1hbrSt1uClf9HkUee+CiOeGaMKuhZ6bKr6AzTaE0PU8TkpVM7nGnnR/2O2KpEsXbvR0VGbnJx0wXF8fGytVsv7SiKePosxtdtt96dkWWbT09N9iXwITPqke3FwRKsSSKHR2HRLBONgPWO2sr8v9aAUs6QYK054XktJwrx7B2n6lAbRa9V+TF0f3837bjIeJHS8P+/5qmHV9tb7IhyNoVl9VyrkF/sySHDEyIJeAwJpNpt2cnJiZ2dnyRP81F/CvpnT01MPeWrGLBoXPwGJbQgg8kRUa8I0NLI20YyawasN4ZPaKxN/8sweXV+Ep4Zl1YygH5wAOTJyeYgV1yOYQSVZlvlm15OTExckSve6XYBoFPcx95pDExMKs6x/r40izusQrAoPFU7cf35+3meq0cdinMwIFfMYZFhUMcjRlRJO8TqekXe/fh8/zxN+KeGV911evyCyeH98bp7wi1oweuJZTLSBQku+j3/n+V70HXG+YBIIpNlsWrPZdOaPa8612O9mvWrzZ2dnfZEJDY9qvke73baTk5MrwtbsMlVfmRbGVmIeGRmxsbExm56edi2vmjOOL4VIB621+j60KWpQJtb9ReVy2c7Pz3286kwlm5XxaohXUSYCVpPnELCtVssFkwrVvFweNR+Zv+iLjHRHf9i3o4KZz2is8ZUq8sMyeWyDnDh5i3jd8xWG5gmxPOds6v/U/an+5bXIkIosUg5VJX59fgoxZFn/RkWami7RLNLPrjOR1HaO7zbrEf3Hjx+vhDH5rT+qaCJC0rlRRmEt8b/oukTnJlEj7kX7aTJWsVi0w8NDm5qassnJSd88yvdq0uic5dGpzqlqbhj7/Pzc10h33o6MjPRFYzTXBISGeUHoHEGj5q6aJTE0znvU/6L5X2puKn2l6BwaiNcqEmm323Z6emofP37sOyqWudBMdx/jILPjJs6ZYZAFf0fmv+76iJCisIjXpf6PLU97Ry0eW7SVVQDoojDpqfGmbHElfAiNcGb0hUSBljePel3cIBaJSDfxaVhVBQTX4+jT/sQ+KdphjlRwkDAFAtFKbEDoeLSrMlK73bajoyM7OTmxo6MjP4MoyzIbGxuz8fHxviiFaubrhC59UEbHhNPxIEQwby4uLlxoROgf1ykKZRoRGa4F0ZRKJRsbG3M00ul0PKJWqVT6EvCuU9IIDAQmSEkR1+npqaf/QzdK95hc0G3yXJtUG0Sogzp+HWPnDRxvMAsWNbFZGgUMmkglJtXQsW9KaPRD4/zqiILhtF8qwVUA0lLhZ+2XIhP+1kVTYRbXQt+hGoh+ql9CmR8tx3cwuY5FIa7Od8rEi9cxh2oC3L592yYmJq74R9jh2mg0+uZZw8zsw4GJT09P/RryKIgQ8WxNm49mnvZTP1fBS3RG0UDkAa7DBDg7O7NKpWKVSuWKYuFepSfeR9P9QVx7cnLi64L5i0BjDmK/FFFiIildnp6e9p0d1Wq1+pzAup6MQXntirN1UI7FsKgj9R0vz2uR8JCMTErMwI1MmxpDSjgoAaiWT/Unwk3N9oT5Uns3VHikYCZMRVNNS5+iKRE/y5vn1Gc6/7xXE7kKhYJNTEx4lKDT6djY2Fif0IR5YYaLiwsvkqRrmyfEVfirQDQz3xNi1ktu41yh8fFxN7foM0JhfHzcE6xOT0/NzPqcmgiTTqdjExMTnginkSPtL2scBTTrzvi0/KZGLUAIZpc7cMnHgenOz89dSNJHRYGD5g66o68gFRUM6szV3dI6Pq1bgvmIuaZ9Y7waFUohfkckKUdm3t/DCpXURFwX9lUmgTi1tgQLp4wRQ6MqXKLjDQKJOz9VK8T+aJycZ7RaLTs9Pe3LIeD9QF0O7DIzLxCkBKrSHOERYbeipiiQ8gRfSsBExYApwXeaI4Bdz98QG++Hcc0uTz7UCIsKkxRCKhQuCybFMKKGakulklWrVZuamrJms9mXaasRjPHx8b5sVrQ2xK/oSwUCQkzpQ9cbetAQb4T1rAt0qXt9IrPR9yzrmV2VSsXRlqIYXSflBdaA93M940TIY6LoCZMx7V/NXB0j81YsFm18fNympqasXC67kEaJxDX1PBJlqjzUECcm9d0guzNFWHHClIHUDlWNHBkrJaC0P9iA8f2RoNR5xPc0HE8saLPZtNPTU3/++fm535tlvYQrTvejz/HkPo0kKJzWlhIoZv0aXecrEgXXRt+CEq/2wewyCUrnX21+jdQQ5ow1e5UoFXlRuhH0cXFxYePj41apVPy9kTZKpZLNzMz4cz1CINdCzPSZftJ35ghUw7rp3Clt8TfzGfM7uI/+adN9RdAAfUIxTkxM+FiYH/WFqdnAeiJANSKmdNRqtVxgak7P2NiYR4zMLhEdIWmdH6qqlUolm5qasmKxd5olJk6z2XSBqPOEQu+rkHYdNNb/I2SPzJoSHLpwUTikrqejZta3mHQ+QrAoDFP/a4RAEQG2N8yB8wmH1sjIiJ2cnLiGBGYWCgWX/p1OrzpVq9VyBxnCKpYYzJsjnSeFo8qgEIQiMHV+Mafq20nNf1xLXXOzS/tcIzAqxCYmJtyvAkPrEZ/Mz8jIiJ/VnGWZO0YhZA1xRvrR5yijRjTI76hYVJDp/NA04qGoFeEDw0MPmE5RmKkABvVVKhWbnJz0fBwEMf4nzDZMIK2f3Ol03Eel6x/XSMeMIlO6AalpiBrUbGaO9rIsc/NWzcxyuWyNRsNarVafwxn6cCGZsuGHaSnBEuGXEkReS5kZZv2mCAupoShQhRIhzKrhRTSrmTmTwxBoxk6n0weTP3z4YI1Go2/xiFQAk4F8CAsWHYKLZhP7HQbZwjqfmq8AIfG8mJugpiBEoEzGu2J0aZj14bl6Lc8kuqCp4QhiZZzJyck+Acqa6BoPEmzaVIioQFZBypzjwyHaoTQLVOc5rJ8yCk5cRV5aokAFJf1Qoa2mmvrbNJNX99hwP+OoVCquhPBf8H4EGg5qfaciZE2tV3MIM5ZcF4SL1rNlXj9+/GgfPnzo42vW0JUOndDFHLZFtKJNie46Yo3PUwhudumcxBkI0SBN+Q5i0PepH+D8/NwajYY1m023BdVZRhhNFxlGBWUozKdvCpvNzDM4ge1m1idIBjWYC0YAEam2y7LMmQTBqpEJdbApcTLHMKJq+0EthT4VDWrxHOYReI1WSzVlQG2DEDJzpGZu6h7mDyGu0T/mGEHR7XZtbGysj5nb7bZ9/PjRms1mHxokZT2Og3mM5qUyL2ai0jc0RkP4Ivy4XqvFMW/qu8NHglmlCIk5jihVEZI6Z/W5CFedd65TdP9/AFIRwVoDfpk4AAAAAElFTkSuQmCC" y="-93.064152"/> </g> <g id="text_3"> <!-- Weighted Average Filtered --> <g transform="translate(600.046599 87.754671)scale(0.12 -0.12)"> <defs> <path d="M 3.328125 72.90625 L 13.28125 72.90625 L 28.609375 11.28125 L 43.890625 72.90625 L 54.984375 72.90625 L 70.3125 11.28125 L 85.59375 72.90625 L 95.609375 72.90625 L 77.296875 0 L 64.890625 0 L 49.515625 63.28125 L 33.984375 0 L 21.578125 0 z " id="DejaVuSans-87"/> <path d="M 54.890625 33.015625 L 54.890625 0 L 45.90625 0 L 45.90625 32.71875 Q 45.90625 40.484375 42.875 44.328125 Q 39.84375 48.1875 33.796875 48.1875 Q 26.515625 48.1875 22.3125 43.546875 Q 18.109375 38.921875 18.109375 30.90625 L 18.109375 0 L 9.078125 0 L 9.078125 75.984375 L 18.109375 75.984375 L 18.109375 46.1875 Q 21.34375 51.125 25.703125 53.5625 Q 30.078125 56 35.796875 56 Q 45.21875 56 50.046875 50.171875 Q 54.890625 44.34375 54.890625 33.015625 z " id="DejaVuSans-104"/> <path d="M 34.1875 63.1875 L 20.796875 26.90625 L 47.609375 26.90625 z M 28.609375 72.90625 L 39.796875 72.90625 L 67.578125 0 L 57.328125 0 L 50.6875 18.703125 L 17.828125 18.703125 L 11.1875 0 L 0.78125 0 z " id="DejaVuSans-65"/> <path d="M 2.984375 54.6875 L 12.5 54.6875 L 29.59375 8.796875 L 46.6875 54.6875 L 56.203125 54.6875 L 35.6875 0 L 23.484375 0 z " id="DejaVuSans-118"/> </defs> <use xlink:href="#DejaVuSans-87"/> <use x="93.001953" xlink:href="#DejaVuSans-101"/> <use x="154.525391" xlink:href="#DejaVuSans-105"/> <use x="182.308594" xlink:href="#DejaVuSans-103"/> <use x="245.785156" xlink:href="#DejaVuSans-104"/> <use x="309.164062" xlink:href="#DejaVuSans-116"/> <use x="348.373047" xlink:href="#DejaVuSans-101"/> <use x="409.896484" xlink:href="#DejaVuSans-100"/> <use x="473.373047" xlink:href="#DejaVuSans-32"/> <use x="505.160156" xlink:href="#DejaVuSans-65"/> <use x="567.693359" xlink:href="#DejaVuSans-118"/> <use x="626.873047" xlink:href="#DejaVuSans-101"/> <use x="688.396484" xlink:href="#DejaVuSans-114"/> <use x="729.509766" xlink:href="#DejaVuSans-97"/> <use x="790.789062" xlink:href="#DejaVuSans-103"/> <use x="854.265625" xlink:href="#DejaVuSans-101"/> <use x="915.789062" xlink:href="#DejaVuSans-32"/> <use x="947.576172" xlink:href="#DejaVuSans-70"/> <use x="997.845703" xlink:href="#DejaVuSans-105"/> <use x="1025.628906" xlink:href="#DejaVuSans-108"/> <use x="1053.412109" xlink:href="#DejaVuSans-116"/> <use x="1092.621094" xlink:href="#DejaVuSans-101"/> <use x="1154.144531" xlink:href="#DejaVuSans-114"/> <use x="1193.007812" xlink:href="#DejaVuSans-101"/> <use x="1254.53125" xlink:href="#DejaVuSans-100"/> </g> </g> </g> <g id="axes_4"> <g clip-path="url(#p93e70cae39)"> <image height="149.04" id="image8be5f86bc5" transform="scale(1 -1)translate(0 -149.04)" width="197.28" x="108" xlink:href="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAARIAAADPCAYAAAA54F5mAAD1XUlEQVR4nHS9aY+k53Xef9W+dHWtXdX7OitnhiIlWZFIy5Idx0YQB0HiBEkQwAHyKu/yAfIVAgTJVwgQxH6RxLEVyLAVL1ookhJFDTmcfXp67+qltq6urr3q/6L4O3OqpX8DBMmZ7urnue9zn3Od61zn3IH3339/fHl5qYuLC3W7XQ2HQ43HYw2HQ0lSIBDQaDTSeDzWeDxWIBBQKBRSMBi0fwKBgAKBwNT38O/hcKjhcGifw/dK0ng8tn+Hw2H7rPF4rFAopPF4rF6vp0AgoEgkYn/Gz/GzfGYoFNKv++L7+b3BYFCSFIlE7D15l1gsZn8XDAYVj8cVDAbV6/U0Go3sn1AopEAgoHA4bOsVDAY1Go00GAzsd4bDYXunSCRi3xuNRiVJrVZL/X7f1mpmZkalUkmDwUCdTmdqPcPhsCSp0+mo3+9rdnZWoVBIo9FI3W5XvV5PiURCkUhEo9FInU5HV1dX6vV6ymazisVi6vf7GgwGCgaDmp2dVTgc1uXlpY6PjyVJMzMzGgwGGgwGisfjmpmZUTKZ1HA41MXFhRqNhkajkYLBoAaDgT3TYDBQKpWy72+32+r3+xoOh7a3/Bw/e3FxoaurK4XDYcXjcVtbfj/7ORwObb0Hg4GtaygUUiKRUCqVUrvdtu/h+2KxmGZmZiRJV1dXGo/Hajaburq6smdOJpOKRqO6urpSNBpVKBRSLBZTr9fT5eWlwuGwotGoer2erQ12JEntdlvdbleZTEYrKyu2rwsLC5KknZ0d9Xo9DYdDe/Z4PK5isahQKKThcKjRaKR6va7FxUWNx2NdXl5qMBhoNBrp6OhInU7H7DcajWo0GqnX69mz8Dy9Xk/RaFTBYNDOHV/BYFCRSETxeNw+j78Ph8Pq9XoKBoNaXFy092L/4vG42TQ/w1qPRqPJZwQCAQWDQYXDYY1GI0WjUdsIDgeG3O/3zRlgEBwqDjiOyBv+9cPOZ7KI4/HYDIefxZlEIhFbRP/Z152R/2+eTZJ9vnd0/uevO8ThcGgLyPtxEEKhkD2jN3r/e7zB8L3e0bIR/Gy327U1HQwGqtVq5nTYbP8ufj29sbB3GJE3oHg8bp/H4ez1eur1evZ9oVDIDieOfzgcqtfr2c+y/zgE9pJ9Yd2wD//Zfg06nY4uLy/NUQaDQQsavV7P3g/74Zm9c+b/sRHWnOfodruSZAd7MBio1+up1WpNrc9oNFK73bZ9Y6/5wvH6NSLIcCATiYSSyaT9nmg0qnA4rG63q3g8bkEIOwuFQmq32xYg+/2+EomEZmZm1Gw2NRwOFYlE1Gq1zPZ5b+yU88qf+8/3e8KZ47kDgYBisZhGo9GUbfHnkUhEV1dXZpM+OOM4+L28rySF2+22Op2OeUAiMA/DS4xGI/X7/alD6D2zRyHhcNgekuiHIfHPdSTjD4T/N4fh+p95B+K/OOQ8E5/vP4soTqTjy0dXHBvGEg6HfwU18RneKXnngZGDfK4/v/9/vzYggcFgoGazaQZ+fRN5L56XdffvS2Dwhtfr9ey9QD5EN5wL7+rXy3/hHCSZQ2u325qZmZlaf4/IhsOhOp2O/YPDxJHwDN5JYXd+bcPhsNlVIpEw1OOdSLPZVL/fN0cwHo/V7XbV6XRsLxOJhBYXF1WpVNRoNNTv980e+HzscmFhQdls1p4RJ8sBHo1Gurq6mor6rDGI0Tuhbrc7ZdfpdFrSBG1iV6Bxngn79CjE2w/vxc/7IAaix675LL+fiUTCzjjgwgdw70iun78wCzUzM6NAIKBkMmmLgrfhw9gQH9W9Q/CRgoPChvA5Prr4BeHP+V4Mi7+7nm5dd2IecfDzv84ZXY+W/gsUxjP7n/Gfh+HwezB6jIKFx6vzLt4JEyExEJBPOBxWLpfT3NycGo2Gms2mgsGgotGoPZ//TD6LtfaRyTs6/un3++p0Ohb5JRmS4Pl9GpJIJCz6Xl5e2vfxs94ugNz8TmA4z9jtdnV1dWUpdDQaVTwet8Pv0R/oyjt13g/0MjMzo1gsplarpXg8bmiq0+nYwRgMBur3+4pEIpZ6FQoFtVotZTIZPXjwQD/72c9Ur9ftwPu1ANqTGl5HI0R576iTyaSdi1AoZIcTh0eqxLPGYjGlUqkpRIYDZa297bOefHk796k1NhkKhex3+nSUfeZMjEYjNZvNKVTmbZdg6LMBPissTZwIUBBjIGeKRqMGDyWp2+3aQSMCep7AH1yfCnFgYrGYHTQ+wx8GFp//94eXzfLO7DrH4XkLf5i98/B5NlGCA0WU4ZBEIhFbi2QyaYZEFA6FQrZBfLZ3st74fRrJ9xIdOOTRaFS5XE75fN5yeVIOjI/vZ78wOH6PRwHXHT5OhIPAnmIYPs3yzvHq6soimyRzbN7Zsg+sHe/IGngHFgwGlU6njaPx9oDd4aA5jERxn+KORiPFYjHNz8+r1+vZ3icSCa2tranf76tcLisajSqVSpktl8tlLS0tGcqIRCLqdrt2cEhPgsGg8T7+cPL3PIc/2PBVOCY4MM/5cCjhosLhsNrt9pSD9l/s0fU0jzNA2u0dCXuCzfKMnEFvx94R/roMwAcXzo3/3eF4PK5AIKBWq/UrRsCG+lQlFospFouZ9/d8wvX0hYfxqAND9A+FtyRC+/TB8x7+73zaZC/z5YHjeX3a4f99HZF4voJDCYzzB8SnJzhUYDbP4p0Un4tD4ntZXxwHzi8WiymRSGh2dlbj8VjtdnvKMDyK8BAcI+OLaM8h9BHEczqsOY5SkkX28Xj8K3s/Ozs7ZYSkRMDx61Hs+j88P+ggHo/r8vJSo9HIIrvP81kz0hOI0EAgoJmZGa2trWl2dlaZTEarq6s6OTkxe4zFYioUCur3+2q1WgqFQsrn8wqFQqpWq7aep6enhljYU9IT1imdTk+9E2vkbd7/PwEgGAya82fPfKrd7/cVDodVKBSmbNGfQf4MR0EQ8oQ3AZcAcv2scPD5M3+mfHqMk4W3YS/53usppw9QYbxRPB5XNBpVJpOZysl4qEgkYgsKkdTpdMxg/WFl0filRA7/gr4CgnHzsHwmjsU7Jz7Hcy08q+cwPHLxG+OdCNH816VM3qD5TBb8egTy0fE6zPSEoXc0PqL47x8Ohzo5OVEgEFCtVlO3250iFP1n4MxxWqSgvAvPDjKk2uMdi19D9p01TiaTVunhXaLRqHEJjUZDMzMzuri4sHfwz4fz8KkXjgQkAA+AwWM3iUTCDiwO9+rqSvl8XoFAQNlsVsvLy4YYQqGQ4vG4VVxisZilY9VqVfF4XLOzs2o2m6pUKup0OqpUKkZuYj84itnZWUNm4XBYV1dXRkKmUqkpWyIywzF5nopgIL3hpnwQxqH6IIrtYjPeCfi18ucGJ4NDYM1x2pwRv7/+fOPk/v9S3Os/7wl0SQqzUJ4RJ7dkQXjgy8tLBYNBpVIpi6D+w68TPBxgz+SziNedis+zfx255qE0xsbn8/uvlyP9Qffe03thn8vyPJ4P8Q4P5IPh8L0ctF9HGl9Pufxn+ecnGozHkxJlr9czwpA19KVUnIUni6/zCZ7PuLy8tIoF703kofTqDRJnTkQPh8Oan59XIpFQs9lUp9OxasX/H8IDsfgD4Uu58CKJREKZTEaxWMxIyXQ6baVZuJZms6nZ2dkppEixoNls2nP6wMNB7vf7Ojs7s2cnXbu4uDDnGo1GjXfxkZzfD0qLRCJGgrMPnBPeGeTmAxVOGeIXp0RKDRry5+Pq6moqnWB9fQru0RqoFjlHNptVJpNRr9fT1dXVr7VP1pO19+f++vfxnKRjfE+YB8Gg+II1xsB9mpNKpewX+bySB+Tw4Jh8NYdN8VHLe3Z+tzdOT9z62jcpkYf7/3/lquvkLD/DYeTPSGF4Z59remflN9ETmvwc70FUYO1wmBgFmyfJNonD7olLzx3xrnyPR3Y4Kc9dESkxXgwB50zEikajpqOZm5vTYDDResTjcS0vLyudTtueNxoNO3jsAwfWcz8eZQQCAdXrdQ0GAyPzC4WCpRys1+zsrPL5vJLJpGlY/GGjJN1ut3V1dWWBB6fEGkejUdXrdUvfOOg4ftCT5zDYi06no3g8rkKhoHA4bOTu7OysIpGIGo3GFILDHnhX9scTrp4o52zFYjHbU5+GsR5eHsAX6NAH6FwuZ7ogHCH6FgI+gcanaawb58yT+t5JXT8D14N/GIMKhULKZDKamZkxJhnH4r0fv5A8lXJxrVZTp9OZIgPJNVlIz2HwORBE1zeDA8FmcDg4hNfJqOvpDwt8vcp0/Ytn4DO8c0FABpTDSfC5vtTr38mX2lhbn2pA8Ha73Sl+wwuPrr+bJHseHBVQ+Xq65lMgj8woufrPiMViZtDxeNz2M5FI2Bp4tIXIrdPpKJvNKpVKmS4BxxeNRjU3N2cpAcQq3AXpTDwenyqrDgYTgVg2m9Xs7OzUZ0PUptNptdttC3CHh4c6Pj6eSsklqVQqKRwOq9ls2r5A2LJnPPN1Xo/1i0ajymazurq6UigUMo4I3Ym3L68vuh5YQTt+3zwnwffxnNg89AE2FY/Hzdn6il88Hlc+n9fs7Kw5hmw2O0U9kKp6mwHd4vA5t/4cYvPYMMStBxiSFMZYMOrLy8spDxQOh6e0FJJ+BYXwQBwgSDIWCCKNQ+W9o/d0/t9sjK8kXCc/r6MW/tx/LovAZ/IzPq3xv5fv47D7shdGwpd/f6KAh31el4AjwZn6Z/AIjUjE1/VI6UlSIqz/Hb/us647aoyPn/Hkp+eXCAJoIlqtlur1uonJvP6E54vFYsrlcioWi3aQie7Yx9nZmSQpm82awyFVSqVSljoj8vLpViQS0fHxsRHY5+fnqlar6nQ6ymQylq5dXFz8CvnrU29PVF4PBNhsJBJRp9PRxcWF/T3I6HqK4FGuT405G6ACbBoKIR6PT9mUd3Ce/Eex7M8Bzx2Px+3v+QL5+0onZ/S6zXiOzT+L53r8Wbsu4YhEIhNlK3A0EAiYbsCXNDkUIAFkzRCAPCQw1B9YXtwfHp+KsLi/Lr3he35dxcV7cA4jzwQU9pvjuRX+n9+RSCRMqMQzelRwnfu4zqxTefEEs0crRMPrillQl4eX/vd6os2nn4iXkLXjLHgnf1D8Z0ejUXMQs7Oz5gjYM9Ian9NHo1F1Oh2dnZ0plUqpWq2q3W5rMJiI5TynxV4SvXEczWZThULBDhjCrVQqpUQiYeuazWaVy+XswEgyoVitVtP5+bkqlYpqtZrS6fQUyiVdwilhB15u4MvG2DZ75zkrj7g5nMlkUqVSSbVabQrl+T3zDhsnHggEjLeghO8dAM/u01T+3Wq1FAgElEqllM1mNTMzY7L9WCw2hTR8uZr94Ou6gtkrW31AJxO4Xjjw586T4n49w4PBYMrb4dHxeJ5LYAN8jsdm8IVBo+6Dw/AL5SsLnn2+fpA8VPUviEfnxflejMJ/Fobt/8EzA/NAXCwKQil/iCmRcnB8Xn59oa9DZQ+Z+eKg+7yZP4dghFshckI2JpNJhUIh1Wo1e0Y+/zqJTepKgLi8vFQ8HlcymZwip0FUrBfoqtvtWj+Qz/N9KwUOYzgcGgFLOssBb7fbRiB7sRm/C6FYNBo1A728vNTp6akkWY9Pu902++J9fTBijUmz2d/rUJxDmEqlLHXyaR/21Wq1LEh5xay3UR/0+HlsFyfCGUPUNxpNysqxWMx4Hs4dKVMwGFQmk1GpVDLH7PeVtee/2UMC9HA4tDTMOwRs09sXP3dd4yK9kTLw35wVnqXdbk9SG7yPjyz+AJA/+YpMvV6ffMCXfwfRQ00eaOVZX9APXzgYDg8HxsM/nJYnKDGCXyckw1F5R3j9kLMwbPj1Ck8ymVQ8Hlcmk5EkQziQdJ4EQwTlDZTn91+er/ApG9+P2MpzKNls1pSfVFwymYwymYyGw6Hm5uY0Ho/VaDRsbSiB4niIXBDkkUjEGtnoqyCIwAUEAhOFM6muJBWLRWUyGS0vL2swGFgViNJqKBRSt9s1J4hheseZSCQUDoeVzWbNOSUSCY3HY6XTaUt7cBT9fl+Xl5eamZmxgFMul5XL5cye/N56ZOpTuutOli+4Idb+OqkJYvMBjN+FXfF3oDkCGrbJfozHY9sLvjKZjH0Ojg6UNRgMNDs7q9nZWVPVYqucOVoSksmkGo2G2T3nLxgMTgVJ6U2g59l8hpFIJKwy61E1vxcfwXvy/p1OZ5LaAHEg1nx1xTsCD4F7vZ7m5+cN/uG9+V5IRB4IvsH/Pp+mXM/hcTresfhoQcXAN2H5z/CLh3GwKEidIZ14ntFoZFqaVCqldDptzoJ34AuIfnh4KOkNIQ3KuM75eLjrG8pwiD4d4ZDjUMivw+GwsfNEm1arZZHIrw0RCt6hWCxqNJooLdFTwDPgOP2zkiIQ2bvdriKRiImn0um0oZ1gMGjSd9bo/PxcwWDQeBUQXiAwUdfW63VzEJ7EQzMyHA7VarVUqVRsP46Pj3VxcaFcLmdEZCgUUqFQMPsFcXk4z8GgusT/Uyzg8GKbPk32qeH1A+/313NkcDyeZ8JZkdJEo1HNzs5aSfa6YJH3oaJGmkZa60u+XrhHqgP3gn3/umIJ70haFIvF1Gw2f4VDwr7poMZeffUmjOESBTjARBQW10cAiLpMJmMsPzm8f3giNSkFpbfr1QSPQPjHR2+fuwFXfXmRTQOWXV+w658POcWGeNl2NBq1siObhpGxoV6H4Fuy2TAvOWeTcQI4AKpko9FIc3Nz6vV6hvJSqZSSyaTpK4Cu1WpV2WxWpVJJl5eXhgAwPIyORjYO6uzsrBYXF9VoNKaa5NhfEBrKTvau1WpZqkL0hlthXS8vL83RXl1dmW1gdBcXF2o2m/YZrF+/31ehUDCeDUR1eXmpRCJhh77f7yuZTBrB60lPSWZ/rVbLhGgzMzO25zgOngsnAk/kyXkOCPZ//cBg3/xe37JQLBYVCATUaDQs0sfjceuhabfbFqj53el02lAgQYv17/f7hmSucxzYOmcL0aJHaNfTb5yezzg4E+l0eipw+0IFttVqtdRqtczpkA7idMPXy5X+UPHLiaZAtkgkYv0g3jMGAgFDJdTHB4OBNQRCOFH6Y8GAhx4J+eoGi+FJTw4IBnJxcfErntd/EXlTqZQKhYI9H/CVBU6n00qlUspkMmZoOFiMDrFPMpm03LVer5uh8KxEPN9WUK/XzQHQKQufNBqNNDMzo5mZGaVSKeVyOWWzWVOTdjodczDj8dj+nc1mNR6PzTH5OSugiGKxaEpU9vzy8tLa2RuNhq6urpRMJk3BORgMdOPGDUuxJFm0w4AJNKSpvBPNb51Ox5r1MG4cDigV1HV1dWXOUpKq1apxLGdnZ1YepoxL6z3vTJpG4MKOQAC+PZ5DwrOHQiET2/lD61EiRGkwGNT8/Lyq1apCodCUwwBpkPIScDiQ7XZbiUTCyFNsOZlMWrkcpTDIH7TAOQTF+rQcG8GmQdKQvTgk/tsXG8ggWC/OLc/LueZZII273a7Z9lQvsUcDXm+P9/LlzHw+r0wmo0ajYRGWTeMQtVotIwhRHRIROMgYM7/L8yQefvHlF5MqBlHJl6ukaYIYY2Nhfbrg/xttBOVQr6wE7vvDhPPDgSYSCYticDKeN8lmsxbtSqWS5ddEe94bh8G/h8OhLi8vTe8BKez/jHXGWZCuIPfGUdFRjDFeXl6qXq/r6urKIn82m9Xa2pppi/h+oDClWcq7OAmGGqE3wYHQmIfjgDSmYRSR2+npqaVUdKLW63XjWHK5nL1HOp02wrLRaKjRaKjT6RgqIGpCNGPjPjhx2EBcpHw+oHquAOI0m80aj4SNUWHx2hsa+HxFjf4gbAqHz5mDO0JQ5/vTPO/EYQ+FQpqZmTHHzfeCWuLxuPX/EOiwQVocqtWq8Ty+qODphuuIhupYIpFQ2LdNw+T7ciWHXpqGSyyWr197oVE4HDamnchJlcSXV0mJgNUQch6NeEfic1wP5fCS/AyOhAXxWhIfBYLBoFUT0um0iY4SicRU/snngqy8xoS/p+cDz43j9D9/3VFIst+D4221WnbgeA4qGyAbT4iSJgWDQZXLZXOu6XTaohDpFs55YWFBgUBAe3t7qlQqmp2dVSKRMFn1xsaG/RzpEBPZOFj+83K5nNkQaRpELXvt92Bubs5IxEqlotFopNPTUzv8HIhisWilXvgTkA/OCMeWzWZttgiIBCTtKxB8eZ0GNs4X0d2LKhmxUSqVLEgFAgFDqHz5lJcDTdVHkjm2RqNh9s8+gTwTiYQhGX4X/83vICVkv/2ME1A26LRer9vzEfxwntVq1QIIKImzDKpm3fh9Ph2MxWITZatnaVlEFhmPRLmUhYnH4xaF+eV8H0Rcr9cz2AdEggziz/geFge46SssvtbPYfa1dA6d7yAGyRAFrxOgRAoqIePx2NIUGGwPbflvNoqSKgeLCOKVf+HwmxF2PgUggrD2pCUQeawvcFeSVTb4Hb1ez4wtk8mYcpRDmMvlTAAIRC6VSsYhwCvVajXrwMXxplIpLS8vm4O9zi9gaDwr0Zd3599Ew2BwIuEmCsdiMa2srJjNlctlpVIpnZ6emnNn/0qlktLptFVv+v2+oRHsDtQViUSmGgivE4P8mec9cGw4G1IV71jm5+eVy+WUSCRM28E+skYQptgL9s5n46R9YAaRcGhBSDwLpe7r1SfpjUqZFNkjGtbP6z1wnJC2/Dn2iTO7zp945bvPEAj62EU4kUhMlSE5xOgAeCkcS6/Xs0i4t7enQCCgfD4/1WoN08+BILLyEoHApHsTCCdNmq/q9bouLi50eXlpDw2k4sD6ao+v5rBooAB+HuKMRSPi+Xfi/TmIyWTS4C6pHp/PAYGj8WsFy86zkkeyphgOxsRn9Xo9I98QjYXDYRNssTc4D0jLQCBgPIUvnwOfOXg+ncTp4UjS6bTOzs4M7QSDQSN0y+WykcO8J4cAp43OhOjEHvAu/O7l5WXjxTBGona/37d0Cw2K15ZAVrJ/oIR4PK56vW7r5CMntgwavj5qwR9kT9jjzH1aWyqVlEqljNRF9uAJaqpAXorgeQjPO+IMfDFDejO/l7SftfLchc8WhsOhpVKeEuDdsAWyhIuLC3Na8JIUFlKplJHZOFSCtXeyrBWIDdsM+9Ljr4sw5MLkunhVICEf6llmDgeVBDYdFj4UClmFAeNC+HPdMwNRIYKHw+GUgeIRcWSgJI8qgIOkHnyez//gKHgmDAkHQrTxaSDr5Gvr3mH4shzEMs6IZ4J8xAGRg8N7+NI1z9DtdlWtVpXL5ayBLRqNTlWLYrGYKY19edEfeIyV3qpsNqtCoWDpHchpNBqp0WiYAw0EAuZI4D9Iz9hD3gcjLhaLU527/ByENugDe6RVo9PpqFarqVar2YDm4XBoaUGlUjHNBQpYDisIGyUu6+55NJwSB4m14c9xbnA/RPBEImFrAPLyDXisH2QzSAubAdlz5nDWODKaGz0pzD5ziPlzUki4Ri8GpPqFE2BNCEA+3SRl9QGJM+hFazhKzyGFr5dI+eIX+5KYdzoevo7HY2ukCoffyOilN2MagXjVanWKB/H8QjQaVbFYnEIknU5Hp6enurq6Ur1enyor+4NNJQmdAhAeqHmdU/GlajbVz44A4vIzXifgnQYHlwgIPPRRyesQ+DM2pt1um0KVtcNhXlxcGELh9/DsvkzHekjSxsaGtY57BMU+++8fj8cmv6ZHZmFhwSoyGG+r1VKtVpuSuft/MEwMDkSFI8/n81OfGwqFTK/g9541aLVaVhbF4fDP7OysGo2GHZzT01NLAYbDoc7OzqZa8j0aCQQCFnCazaaJ/jyX5YMUf8ae+A5qUgOCBAcM4plgxDnAqVBtw4H4s+fPAwcV5EyR4Hqvj9d3UJZnb/ni+TKZzBSSIBUitfXVG2///Dz/Dcr3nx/2aQIf5iM9FQtPlHrG3+srLi8vLYdnMX3kI1oDkemDwFHxOzg8SJKBZB66Ula7jhiA3pRQ2WAvnye9ITrzrs1m0xCLj7A8o6/d4+j4TNIM1gKvzmHw+apPp+A0cGygm36/r0ajYcaEY5QmPTZspidgo9GoCoWCRXaMiWjjDQzIi8GgoARNYlxUhhgDyLvxj0dbpIBoJlhz9qHdbkt608NDxJufn7f/RnsC6SjJHAuIGH4LFAbJLL3pzWFvPbGfSqW0sbFhn8VhZ1+wI2yPaH5+fq5sNvsrOiX2kb3zvBGcjfRG69LpdCwNA83RHc16oifBJnFepDitVsve3zs5ntlXh9jzaDRq++fTGqpr9A8RGOBG+J2sDb8Lf0FgDQaDbxwJX3hhX/nAGGFrPXTnQ3EE6XTamFzSF08qeXESvAmHDefA5wIlkYTz55Qcc7mc4vH4lD4C9htoD2sNJCbqQFgC7Uh7YOc9avBojc1hQYmyrVZLl5eXU3NdWT9IVgybQ8fm+HUl5+bAkIYtLi6aw6CUThWF3wm/ABK7jkJ4D54tHA5rZmZG8/PzU2pI8mhIcwhOAooXFXY6HbXbbQsi2I4PFlQs4CBIbX05k8NTr9dVqVSs5Evw4u+Hw6GtN+klh4Rn86jV64ry+byWlpas1I2NYmfsJ4Qtzs+XiKU3HIcPGAQ6xgyAYHGcpP8Qo5SqcVhe0cq6cOA5l6AbvjjkvLMvNOAUselarWZpGHaFY+R9QYReUoEdsb6ce7g3zm3Y5+1EXAyfhYaEoVzEoeDA+FTD90VcF7hQFqvVaqaSg3D1JSlq4j5HpXxFbwGy606no2q1qrm5OXW7XVOjsvgsJLoCr8xjsX1khy/xEBDjgT8iUuGgcA78A0zlIOO5fQkcRAQfgkH4Q1qv122tvZy70+locXHR0CK/i3+8DgcU6A3CB4jZ2dmpHhmiGc8lTfigYrFohkMzJjJ1nyZ6pIZzAiLTDOmdh+fmaNlHSwK5iX1KmkLGHASvyMV2sUnSnGAwqHw+b3bKwCIQhY+0OAIuqgoGg6ZNAV1CAHNmRqORcVasBynXeDzW1dWVoWQ/ttE7RxwAfCPPTmGC88W7+j31FUYCIOie4EPqxPdIb66/4JxxBvhs0IwkO5v8Gb4jEolMOBJ+iGoLkQhBFEw5VRc+FBjouQof9TFGIBMLCDdAz4iPlL7cCxPP8xCR2cxUKqXhcKharWbQnxF43oPy/D5l8RuBwyRicL+HPxS+7wQBGhwDqcD134dx+ioJkNunNz6Fop4PNAXKsib1el2NRkMrKyuGPvg7nCIpCCkYzsUTjZ7f4R35O0/GUg72349jbbVaUySub9YbjUYm7vMVI//9PkDRf0M52v8eHxRYJ36Xr+x5LonIyR7QQcvh93yMT1lwLCAL1oO0Fb4Ce/AVxUKhoHq9rmw2q9FopMvLS7O1SCSi5eXlqTIw/BP7A8kNjwTqnJmZUb1etz4wnLhfa744k96JkfqAsuCBcMz0BuFoOcd8L/ZCIGCdfBUnTDSTZIfecwd+sYDORGAWg6jHAfa6CzbWQ3q4DzpSMRK+F+/INKx2u215KgeSknK329Xz588VjUa1sLBgd8FgfEQwDqvnbdgEKiWw84FAwEqaeHTIWKIXUYuqFtECw8Exs27+3Vh81pxS6Gg0ssNUKpWUTCatLEqu/urVK52cnGh9fd0Ov9dF8GccQI+GfLpD9PLPgMPn+SGM+cfrDCAfWR90LzihYDBo0npf9ucfojhO4OLiwtJDILg3aNbMT/fyKPY6grwenObn5y3yE8FxVL4CyToStUmvvGzAV0V4H2yHJsqTk5OpTlq4K67H9WlJIpFQPp83lAR6pnJHBWkwmPRbUTXy/KJ3LAQ2kDZ8EFlEJpOx9/TOgbNB+oNK+3rV0uvLSGHDRGFPmpJz8sM+V2Px8frX9RX9ft8qOHizWCxm+SCevNFoaG5uzkqJwEXfJcqLS29KW91u13Qr5LdEKDQxvEcymVS1WjUEQykSNMLvpDnOE4S+CkMkarVaGgwGFjEp92GI3sBJV0A4HD6Mz38fESIajapWq+n09FRLS0tGrsXjcR0cHJgK1VcTvMKRSOerUawvCAvniFFgUD4tILhgNBxKn4vzLvyM7ysCrfo8G6PzB5lU7uLiQicnJ2q327/S68KXRygEGp/L+yjNXuPE0UvgHDg4/D8BJhwO22Q10thAIKBms2kO2L8jAQb7wXFLEx7PIxocJmuHQwwGJ/ftFgoFWx+cBoHInw8oAZ+K4fj4Yo/QgV0XP3IuLy4u7JyRlkJfeBIaZ84XawyKCwQCCvso7Q8OH+yHExHdYNOBdN6z+2YtD/HZaL6X/wcVhMPhqSnXLBIbeXJyotnZWUWjUWt4mpmZ0enp6RSngwBpOJwoVmnmY5H8ZWDJZNJkwfTAgFaAmJ4s9c8WiUSUz+en5OOgMw40PTu+OgVcxFGzhnw2qc11p12r1XRycqJgMKgbN24Yt0Gq6NGJ1+tggD518SjDl5t9RQ7j9JPnK5XKFIMP6iJCUv0hAIBeMG70KDgaDlqj0dDl5eXUhHfvSEg3vOANfRL77T+PtManrjgJODKeyaNo0LKvcoG2SQEguD1P4at30ptWEngQCgEEU49mqLRRmuX9Qb7eaUDGe+eBU/DpC8UMnzHwd96hQZTjPPxegVjJPDiPrDX7adU66u0QjJ6g87DJpx/8MAfEQ0GiGBs3Ho+tGuAdSb1etxyZzfA3xbPJoVBIp6en5kz6/b5u3bplhkopr9PpmEbg9PTUnhfCjApFOp22ITDk/lx94NMsH/XJNzGWdrutXC5n+b8nqTlk5LxUg8jLpTedmkRlUohut2toEOIRJ9toNFSr1ZTL5bS8vGy8wvHxsTY3N81QQCL+kmovu/aQmvdh7xC3+RIw2h06c4HxPoBwUOHE/FpgLxgv+hFsh3weO+NniHpwK/y3JGveCwaDUwQoN+n59Jt95vMpoYOwWDf/DHBacCMc5Ewmo0KhYClOp9OxSI/NXlxcqFarqV6vW0GAVBj79rNUsFGe8erqykZYYifeMbFPBAIKEwSRUOjNkGqfMmJ3iUTCKlF8Lmk8QAE78OVjXx3CQfuyd5hSou8twTF48pPN7Xa7Bon8UCPyOjQAHhLjEDw30Ol0bAgND4u3ZvFZlLOzM11eXur8/NxIOQy2Wq3aJqZSKV1cXFjkGQwGpkEBoaRSKXs3HAFkE4fL9yLgaOFmQAyUiEFgwHW8tV9L/u2JMbgZyo2oVUFlJycnhkwgBdvttgnNQDhEVL/OXhjFulJu5T1RjrK3HD4qQYPBZCYrowGJhL51HKfkEQTPhA3wWT6yexEXdoWRY6CgHP4Me/MpjeflsCGMnmgLae+DpOe6gO6kyBwkUAaRmZEO0ACI4nCyvosWhIXjZtQk5DmzZDg7u7u7isfjhshYR5w5wYXgLsnsLJPJWKe1RyDe9jyhzjgAvtcjIBAZdlIsFk0D5LkzbIUALUlhDI58zR8AcmVfkwcKs8B8MF2fni33/Q3klUSQSCQyld8TxZrNpjKZjPEQnU5H5XJZnU7HbqCj3Et+TUTBQVWrVTPMWq1mRBkVDowRw8jn81OpDP0tHAQQCTkslRNgP4fXV7Bg/TkEfB+HB4fR6006ZZvNpg4ODswgQGysL5CUVv9sNqtQKKSFhYUpBSLPgeKRPcBAQZ6kGJT8QBc4KP/zHHzQhSfjfemV/fddtdcrSGhpfJrl0xVSMa+Sxgn5Xh3W1RN/OEFsFgkBhs9n40R8KZ7PARnCh4Dy5ubm7PB5UtePKfSH31dHiPo4HZC6J3krlYrZHt/X6XR0fn5usgbPp3mehbRS0tRs13A4PHWvjfTmkjv2Brvyadd4PLZiB+k//sET7zgpSQpz4DEMv8lEWLwhi+ybe1hoTxiyQPwMi8XL+X4Kqi8YCV4dQzo/P9fh4aF5zVAopJOTEzssfvBKs9lUtVqdGu1HnoqjwWB8Pw3I4uLiYqpHBQM4OTlRqVRSMBi06FKpVKwVPxwOmxIUA2YNgaE+YkvSwcGBCoWCut2uzs/PdX5+bg4zHA6b2pAoxt3Mo9FIlUpFhULBRhEEAgF7LgyK58IRIcBitAB7x76wX0xFQ2Q2GAxMqcr3XeeaeCdSAFoNfJmVz6B6Q6rouSfKxJlMZopzwOhBOxweL1n3a4/D4jD45/CNghxWeBRQsK8uoYui7ArC5eYBKoKokEmz/QgK3h/njLMH7ULgo4XiULOGrDlnAtsHcUNsUzkjYFE4IJX3A6gvLi4MtWEHrFsoFJrSu3in4VEb6E/68spOvLVn+/khD2GBuBihdzo+3wStePkvi8CQaJAJ0QqDh1AlNwWKeSdQLpfNqfE8HPj9/X2dnJzYQFxgLGpGnBybwEFqt9s6OjpSPp831pxejpcvX0qSwVrfAesJWt4fcRHQ+breodfraW9vz9Iy0Nb5+fkU/OfA1Wo140s6nY7dXevRBReUUT0g0uOMrldkCA7kwxi2r3phB14SQB8Pt+5hH/wOv188v09X4Mv4PddTDFDN9efkeUKhkHXjHhwcWHrDM2LYXsTnHQTPzP7xu7zTBZX7Q0U1khSF9M0HDNJ6KiMgJO+osQue1zsHbM4rbSG+W63W1KhMnCNrx3wW7IZ0BMTrHTJrSvoJ/8Rz+kILZ5TCCevrbVv6MrVh2jhfPmJxQNgwf0UihxKDwGg8Cw4k4jPZXNqaMRJf7sUT4skZgYdzOzk5UavV0tnZmW18r9dTuVxWtVqdqjzhvavVqiqVirXhM5Erm83a3+/u7ho5jOEcHh7q9evXCoVCevDggUFen49fh+9EJbx3v9+f6rE4OjrS0dGRlbCDwaBxEdeJLNIcnPJoNNLh4aFKpZKVo8fjsVV0fh309wQwzphn9rCVn+Vg4vjojmWt4YdwIhxUz4f4UrMvVZKmYB/k5p5P4T0xYg4HSGh9fV2j0UivX7+2dSOtwNl4vgrE6RECwQynKWkqRfBfID4IVl+F8zwVKREyAtICqnSktX4wkD+08JUgSM6MJ1hJr0GXEMSxWGwqlWXvQdUESwhk0BDT++GcOI+hUMjkFJx5X43D8dM6ESYyYEx4YdSVwDC83/VSFJ4VmIpaD0fE5+NgyCfhUfDevmTJgmFQKFj5Ak1QPYFlh8vgkPuhSuSmvrJCnhmNRnV+fq79/X0zMvL+k5MTNZtN60AOBid3jdDgxgwJ0BvenYNBdQWGH46nVquZZgDDIvXDMbOpXoQVjU5mj25vb5tAr91u6+zsTOl02vbRp5E4fKC1z/FBBOw9EB+Dx6HggIHAvrrkoyD/JoXxfRn++4lovorkEREGzN+R+1OVGY/HRgb7CCxNUkhaHkBc7CccxGAwmJpVgr4EQaJPH/jsdrttFUwOIlwePwNBTFrBs10v/3sNFo6YdeLAQsLjRNhr/wzeRi4vL20vWq2WISn620DKBCiyg16vNyVGBbXhNPhvSZb2+88JBAKT1AYSB6/jy4IcYFh8n//CdAMNMVC8JJuKE8E44UNo6kMrMhwOTWMApItGo8rlcuZxcVakY/6iJ1rPqWzwd6AbIobXDmAETDs/PT21qETZtdfrqdFoqF6vKxwOG/Hl14BNgNyj6QwEhjF6bQ6pioe8HAIQDcboRz/y8+THp6enqtfrJqcPhUJ2f65vVpRkAQK04Xksr2vBgROxvRQAXoFUxiMGHLjv1GYvPVLzaANHi/1g1HwvdoBjqFQqU7oIb9RUlLAjSabu9MGt3+9b34p3kDhgvhfo73lD77TYH38OcEKgEAIkqd31kirngt/b7XaNxyB4w4dxhQWiMdbsenrNn2E3XiDK4ee9cZikYQAEAhgI1KdFqLURZYZZDMiTRqNhxgIRSWriG418borzYSOupxZsOB7bN5txsJgPAXmIM6PC4sfq8bIYKQZDFEAx66GY5ycoi/oISUmu0WioUqkYX8NBhxCj8gPE5ICNx2PrmwgGg5Zq0KFM2ZoBORgYpXTeK5VK2dWMQNZIJGLvhBPwQiPYdhh5LuD2rey+EuOdO0YlTVdg2D/QYrvdNpUwpWQcEwRxKBSyCf2gUJ9LB4PBqQoJ+46z54sp8kRw0hAgNelMOp2eGl7V7/ctPeFQwZV4HQx8gD90fDZOhsNFBYXvofcLJweCIdrzLlQJ6YbHmftIT9qC3ABpAR3QrP/s7KzdkewvscIxgOqlCerkdgeCGYcex0HwwIZ4Fl+pY01xsKAev644x1AoNEEkXtNRrVZ1dnambrdrF0FjNNdLPqQHGB7Rnf/2B5+fwzDYQD7j4uLCWHagIFEFxSqRjcPjnZWXXkOgshhAfvJSX6HiyzP7nlTGcKhk+NTHi4U88QSPEY/HdePGDXtu8mDUqCAa7ncZjSbXOFJdANKHQiET27GeoBh4A2Dx7OysFhYWTPLPu3GoMSJPAOKQqIANh8OpniGilm8o9A6dNYCX8DoV/wWSYs+5AsOXXgOBgDkSgg7Rl7Ike5nL5SxqYjNESFISiGRSW/7fczUQmDyDl7+DIEAOHn1wOPk+v8bRaNSuNYHz8Hf7eALbp1LwJJRtsV/fr4UWSnrThEd1yTt6kD/7g56G0j/OHyfk9wF0h4OGHvDnEpsxR3J+fm5e7vz83C6nnpubMy7j+uH35Ksn03yey3/DucTjcSv5Ysjdble1Ws0G0uRyORsTwK1uLBgHA4/oITUbjBf18A3E4FGQT+PIQ/P5/FQTHmU+7paRZKSvz7U5XBDIGG273Vaj0bBhNRywaDSqfD6vbrerTCajzc1N+yzeA6PwA3Y52F6DEIm8GZAcDodVKpVsoryvhBBxfLmfA4iB+AOJg/ZVBZw53AlGyLt6h8lYRIIIql32A4cKjGZ9EZ1hqCAK70CpQmBvviGN9wVhoyaFWPQIkjSFgwz6AoERtdPptI0+JKCCKLFN0uFer2cjJSnFgraxLaqN0ptZJaDMUChkXbhwIhx4X0kBWbKPlKGlNxql6xUoeB5SJU+Qe3KYggPpEkI5zpMvzwNAwuPxWOfn5zo6OrJSEYIZZhh4qIvHwqApgXohFFGHFIKN8sQVB7BSqZgEnvJlsVjU2dmZdUP6tMkTar5s/OvYdp75utoUZ4MzGI/HKhQKhlx4Nw40F1BhYDgeIDAzVykzExWurq50fn5uDg+vnkwmbZ4I09D5LCI7zpdI4W85g3Tk/UKhyfUO5NDsB+kYYjQMnbuC+afRaFgejRNmD2HuQSZ+qhjrD8yGgMZp8XuBxcB9PpsrMNDujMdjS8sIFERAeLBqtWo6I1Jk1kLS1AwXfi/kJAcZB8sewXP5GSDAexw5gksk6TgReqlwsJRvWTv4jlwuZ3wGVUOfInsOMRAITF2V4n8fDpnDz5fnIXE2kMn8Xs/zAAJwxB6l8nt86ZxgAontU+NwODzhSC4vL3VwcKDBYGCTm3xJEYPx9Xw8Er8okUhYHdyXhXlwHIGH1IwHIKfk57mFfmNjwwYys/lEbl7Ak4V8H46L/8d5eP0Cz4VD8ZoHNmY0Gv0KqQXfwWZ2Oh3l83mDkzggblvD2P0FRkQ+IDMdr35YDPwLvRfcecuVDkQG1oNN9be6eQITQ+emP5xbt9vV6empyaEhKyEnSUdIr3DYRNRwOGyEsic4cQK+2uYJT5AefIE/uL5060lxnCg/Q7pJtY60hmCFvcJjAPV9egTS8MGQwAQ3xxrgYOAt4O04C9gehHMsNrlwC4rAI8FisWgH2lc2/Z95Qh7E4c8BiInn9tUUnAn77AloUnf2gyDJufSEL2suyRwXnJEka5MJS2+a6KheYMx+1D+QkYXztXu0HlQyMB4OBKglHJ4oNil5wUzjkTkAzHLgpnue0bPuPs3xP8vvxXlxuPkMEA4bfz1VwOtiaJB7zWbTZroiTOv3+8ahgLw4CP79PcstyXQqGDt5OptKJIAQ9tobb0w+tyVq4eC8I0wkEtYtTSoyGo1Uq9VM3AZ5OTc3Z+vQbDZNFcllVBgpyNMToeTLONzrJU2iLWsDHwCCYY34TK91GQ6H5ngoQXKZGIiQuao+5QBhsb44Gmydw+oRNHcM+dSYfSOQEKCwL5CbP5C+rwU+zPMwpVLJ0kOQB2MjSLtJl1lHnBzpJKjFrzPvCeLBMTWbTfs+qpfBYNBm3jDRnzVjPUDl/h28LUua6EjYcIbK4P1ZEP6Og8oG8xLwBpTtfETHK0qTfJBpZq1WayqlwfkQIUajkU0OBwFdL5WxGD5VkmQwltzSPwedkJ5gA0oS/YhQg8HAvh8PjxPkfYG+OCkOAkjEd1XH43Ftbm7aM4NSMGZgLwduPB5PTTmn/Ar3gBPkPdFVeMft/54KwfLysg2AIp28efOmFhYWzDFxkPjd8FscDF+1AxnixGKxmJWe2TPszKc6RFuQmP8c/h+U7Alm0jUOEJHVE4cECVAIRDdNlh5Bed0Qh5gozWfzd9gXUZ3ACinLO5DielKXVIJUCxRFty/26Yly3om1Yv1YCz9GAv6LNB6HxZqyZjgY6Q3KoDeMc8UaUJGjYuuDvqQ3Qj+MkahwvSSGB4Udxyh8iRYPhzeWZJvgS2r+AUlZ/IhC2HUekE5JfgfGSLTkwBDhfQ7KYsE9APO9YwIWjkYjzc/P2417iK04KOl02ioJ6DjOzs7MoLijlrEEHECchDecfD5vG8aF3TheNpayJweYNcchsNkYqP9+DIjKxGAwMD0IRhCJRCwdy+fzJq/26JCSZLFYtM+5XvUCubEnrI9HHd45EwC8XXBAIQGxIY8UCEoIHXE+BC3SHa/JwSESBPxken4n6ZUveQcCAVMSe/LYBy/WFgEYhLBHhty7w+dS5cMGCYiBQMBQiEcXnDefopECg755Pp9S+UqZ/z54GWya9wqHJ9e3jkYjc0qgFoJXKBSyM+F1RPyOYDD45hJxX9r1XIEvB3lvyKJzaPhenyr41IHPYyQdpA3djUQhIiiHBE0Cz8DLUS3y1SRPAPqrFRkABIlMFIIP4jPJMUFfnoTls3CINL8Nh0MjVCE8MWLSQwyF6M7fM3U+FAqpWq3+Sgm63W4b/IX4RodCiZbDwpqRD/vyMhESxMYAomw2q3Q6bXcGkfLAUUB68jw+tQQVYUygL+/Qut2ujo+PDdUtLCxYlzXOFDiOc4JDYs9AFeT0RGXSAd4TTqnX6xl5iP01m02dnZ1ZJCX6Qp5SOeR3caixZ88r+DQCfsZL63FUBEL2BifpgyC2DrKhGkJKRHrCc4NofEqLcwA1EIx8RZM99d/LXlK1JZATSFC9wqOh3fHn2jvKMFHOlwO9EIho6TfGs/WDwUSuPjs7a3ktcBOH40lWjPzy8lK1Wm2Km2ARIHDYVP4eb46klylZ3pGxaKRFEHi+JDg3N2epQKfTsbo8aRUGAAHr2wZ8PZ1Dw8DiWq2mVCplKQI9Qs1mc6oyA/nHwWZtMV7gOI14pIJUhjAgNh/E4NNNSq44CU/ERiKRqZI20Y4OVhwaf4aWxROoXm8CipidnTXRl8/VqdRwCx5Gic2QCrL2zOAgeAD5vdLSB6lqtapQKGRlV25t5JDSm8X6gBSxGxwbe76wsKB8Pv8rzr7dbpvN+vdDXexTdJwKtu/tj/NEdGcQOnsKYvE6J2zaB26furJGPq3hzF0/Hx7BM2qDAOZ7xNDxoG/x6EeS/b5IJKIwqALhD98Iy0uU46GvK9o81MMoveMgRSKCEVU8o8yhG40mk8eTyaQKhYJVQrzQC6TgyTBKnh7qUrK9urpSPp+f4lhYrJs3b5pBQhrjHL1WAseC4fpKEmkNLD3fx+9DYOUJVjYIp8RmA6khWBcXFy06kp6g5aDkyPdzCHyFje8JBoO6uLiwMi/PgfqVSFwsFuW/eFYMmXfm8LGflBppofBNff4wcGD5DIY1SbI+JRwGRs+BoIzrhyxzYBgbwfORRoBc0Eh5HoGDcnZ2Zr/byxRweqBcuA3SO744xHy/v1oFDgzHQAWQnh4C73g8tnEH8Ew4QhAEPTzBYNB+B2sqTZwzZ4hAwJqFQiErsZMy0hgLQU5Jl/0KBAI2cY798vvC2sA1hb3+gtq6F3/huTEMWHMcBNyDNzIOVr/fN+KNP4eL8ZHRTyTLZrN28Ig8Pm+D9OPPiYA4A5AUUB9WGljqKyp+KDMRF04E48X5MKIxEolodnbW7pxNJpO6deuWCbJIB7xj4s8wEnp1ZmZmtLe3p0hkMtkbI8OBzczMKJfLKZfLGTntqzIYh/QGohLRifQQbcB4qiusabPZVD6ftwOBcYZCk3Z9St/sMWXtcDiss7MzI+HW19etYpVIJKbSOQRZ8/PzevXqlZLJpGZnZ+15qfBImur8RmfDeoBaiO4cMj+4G0NnTwOBgEqlkqETUBeIB9v26meqX8j9sQMIXRw5dsae+v3DxnHynhOjCsKBpArpy94EBV8FzefzUxUTngcRHL1lOFHaDyQZiUyKw2d73gN0lU6nbdgXa08w9mNEGEQVDocV9gOSeSFf+sQ7sZFASw42qkM/isBHZ0hI6c2cEkgiPu96ORVPxzMBr9gUHxGBspKMZY5G34zt43NxEhgszsdrS2D3iSwMd74OGcfjsV0cxnPlcjkzBDYMYwOdeZUw30t1ifXhCgrujCES4Dx4XghsUkzIM0SFVH+CwclVCN5BeWPo9Xo2W4QoX6vVDDURjf264NC5a9nn7fBriM1wyBxkdAkgBNaFnx+N3pTKsSOiMM8NoY7jy+fz9l6+DAuxD0qBmMfOSQv481wuZ8gNpIsz8sHTyxu8bXotkufcwuGwBQ5s0VelOGs4RtJ2UsLz8/OpYojnvnwVkewCu6CU7zMKEEk2m51K6XzViR4zUI4/RwRnX6X80iG/gXS+Bs9hBdr4FIAPgf0mymGcLAYHE64iHp9cqoyWxCMRr9LjYTm0weBkJsf8/LwNXeZQ8gxUVTi0OCmMmIUaj8fWmCjJcj/vpGD4ye95V1KJer1u9+DUajUdHh5ayjEYDGwwMWvnS3g+mgC5IYe9A6HhDljMmpJje9ILQjSdTmt2dlbFYtG0P6xFvV43RagkQ0AoUv3ar66uqt1um+q2UqlIeqNXobSZSCRULBaNWMQO4IGYa5pOp9Xtdm2QlCegSX+8MhrHhGPFiCE6sS3ukKEblj9jfQkOpAY4Yx/lSZMhoz0hzddwOFSj0ZgKIt7x+YoazxeJRKyjnefx7RUEU/YWG/X2wRQzb5t8+VST80MaTqHBtymAiLAdzoqvvkqa+m9/nkgLccI+7QwGgwrMzc2NMXqqEUQMNg4FHxuO4g/CEG8LIckVEaAJf0kPkYloEAwGrYzGpsKNUHsvFApGHo5GI2UyGTsopGKw8f1+35wNV4NCluFZR6OJRmV3d9dEdyw0RCabnMvltLS0ZE7ED04iKh4eHlpZOZVKaWtry96P6hLP1u12TfgDEvRaD4yC30cq0Wq1NDc3ZykjuS2GwhqCIDAASTa8CYdAShSJRCziMC7BO3H/vaSBfkiyj06j0cjsBEPHkFl7Pp85uuyT14YwbR2njANFkZtMJq2EDkIsl8uWVhDhcXocTv6O+SEceI+I/dUW8GQgTFAEak8+T3rTjJhOp63Cx37yvgQuBF6IAzmspPE+jfJOwq8jqRVnErsGPVOqvT7igf3pdDrWJsGZJt2FtKbbHDsgrcTRSm/K6+FwWGFKbZLscCYSCaVSKauQjEYj847wHRCy5+fnhghmZmZ0cHBg4h+/WRjE0tKS5dVeh3J0dKRQKGSOAU6GiOSl10S9bDZr5UAuogqFQmo0GiqXyyb0ISKWy2XFYjGD+qAdaQKv0UyQR8MTlEolDYcT5Wcul5tqA2i320b2kacuLi7aIcOIeC9SO/LkVCqlbrers7MzQxvB4GRgErJ45NgQdHwG6R/vD3fkDZyeCZxTt9s1g6fxKxqN2lBpGutISzBAIhJpG0HAc0sEI5BGtzsZlH12dmbyfpwBn+UrIih4mYxOKgQi9NVF3wjJ90BY8qw42XK5bNdqgMD5HOmN9AESfm1tzW6jg/NJJBJGTvI7fRUJ0pe00iMWdEy+lC29GRI0GAxUKBQsyuPIfEMjewRVAFnMZ/F+OCB/wTo6F9LfwWBgcgNJlooCDPhzRhf0+31Vq1UrwRPwm82mOfCwL+UB+XlwbrTjYPd6PZ2env4Kz4DHhyuh3g3U7PV6lruurKzY0GNKpr5agRfsdrva2tpSqVSyiN3pdPT69esp57G4uGgRgsNCdyh3kPCs1MYh9HBSGCaEG7kfqAqvHwqFbAgwRBblwkgkYuMAPPRlSDA8QDQaNYeMiApeB+9ONJmbm9Py8rJVn/w6dzqdKRaedwc+QwQj+QYVEl0Qz+FAQDs+r5+dnbUZsP1+39aVihNRiulbw+HQ2t8x3nQ6rfX19amDQ1kaw0TuTfc1pWpGBBLFcaLoaS4vLzU7O6ulpSVJMudCKRUdEg6dAwIpCRFL+R4uZmZmRvPz81b+5hlA48yJAdkEg0EtLy8bgmdPIOf9jFg0UL5M3OtNxm9SeMDRYZs4JJAWBPBgMOlN4/MpKITDYbtdAdRxfn5ugRs0SspnowBc8QTkDUrHsSPO63Qms2TOz88nqJI7YPiCxeVDmCkaj0/GFnKA2IjZ2VmVSiWD7sjG8dqQgz639Pm7jzxej3BxcaF4PK7FxUXz/PAM3GuDOpPF8uQRvRekHpVKxZhyHCAVlXg8rqWlJTMSIh0Vou3tbSur5XI5SW+mbtHkxuYTVYiKxWLR3pX0rFKp6OrqSqVSyTaDz4D/Qb/CGubzeXU6HbuKA7jKF2VGUhxQECgkl8vZ90OselKcQ4izAP2ATHGKkKFeNuCFcdgL/3CgccY4aQy3UqlMaY5APKwXSHBmZsYEYBwoHBFt9/BulFl9CZx1oJqDiIzKFI6E3318fGx2X6vVTA3sL9iiJWFmZkarq6tWWmZ8hEc/nAneFcITJATyg2PDHkh3fYuK1/KgLyEYgghx9KRDvpDgyW32FScC/cCzsU+cd56LdB0yOoz39ESeh0b8AN7NM7bRaPRXbn7Dq4MqiGY4lKurK8uNC4WCNef5+jTMvidbiWSlUklzc3NWAjw9PTXYBvwdDCb9GUSuZDJpl3LDH1znECBVqRrhYIm0oCbmi8B6cwApjXEQgJ5UB7jCArR2dnZmMx64fU6ScTpwEZ1Ox9KMer1u/A4pKGkBG01uDuKA2wBWSxMy+ezsTO12W9vb24rH43r33Xe1srKihYWFqSoMWhIufeLneQ9K1/A4OE94NByMr66B9DBqDjnP2+/3lU6nVSgU1OtNxh7g9NLptAn1gOMEIlIjOBsQmzQhl+k3gfAEseXzeS0uLpou5vT0dMp2IVNJh0mZQF1whNev3WSqezwet/TGf97KyortP7NACMDwaAS1wWBgIxYuLi4szQMRcm4glckkPKqp1+uW6pAqxeNxu1YFpIsWiJSSswGfws+BSEOh0EQiPx6PLQJB1GB4VB74JXw4zqHVatkIQX4RpVnvyaiPc0kzWoOjoyMrr/JVq9XMURwdHdnhxFFQgUGR56sh8A6QxlQBMBoERiAcqkiUr9nEubk5tdtt60OIRCIm6PLVp+FwqLm5uV+J0hgrylZJOjs70/7+vpaXlyXJfidw3qMKYDRGyYZSYeC/0WnAPRCJJRmPRE/HaDRStVrVs2fPFA6HdXBwoJ2dHYVCEyn/1772NS0vL1slBAcPR+AFVsPh0CI1fSnD4VDz8/OGpK6X24mkpDM+OHlCHLQAUYh9wJ8A7VEmUzHCLvhnNBrZu/OcqFJ5XuzDS91xpl5wB2dHKk8Vj8/nPOAQfSUMkaZPQYPBoDlcOqyxc94Dx0/1i67keDxuqBwylkBNwYPfA1pkz0CD6EXYFxwHzpB3Z2/JIgAQfEFHhPFWMLIYISy79IZVvn4/hq8OkCYgx5be3HzGF7lxIpHQ/v6+EbMgH36OXN3L34lqGHYqldK9e/fsRZAvn5+f290r/B2aD6AhDDXPSNSASObdOp2OVXXy+fzUdZk4gpOTEw0GA21tbVk0G4/HKhaLU6I0lKOMsUSnwDSzQCAw1S7O4RsM3oxVWFpa0uLiouXB5LFcs8Fm+85acm/IQghBtD1M2edC9mq1as6HCHl8fKxisTh1XWa/31exWDRnhlNIp9NW9uRZSAfgPAKBgKVqcDiIqryD5JDMz8/r6urKfp9HCIx24JDBt+BI/e2K/mDhEIn2/Hcul7MDjj7Ii7VYd/YIR+nFYQi4+FwOIrqQQCCgTCZjaTJoHoKYy+c5F7VazVIXKlxQD7Ozs2ZjIGBSd+9YQY5ohdgzqkD8gzPie0D7zGXxQR/Eb44ELxePx02iDPkJD0E+BDTy0QNIxeLCHoNGgEbBYFDZbFaFQsFg6cnJiVVxYrGYVlZWdHl5aZ6wUCiYUXqH4AVN/DcEJpUdUiyMz5cE/cL0+32bEs/74NkrlYqRkVSOOPwzMzM6PDy0NIHoRZ/GaDRSqVSyNZmfnzd4z2AbIhepCmkSDokUhclfaHKA9BC5cD0YEA4J9anX9bB38BmVSsWgtDSRW9PQyD6iK1lZWbFSPwQ0hwnD9R2i8BJEf6aQMQf3unPGsL1KM5/Pa2FhQYlEQuVyWRcXF6aZYd9xouyv153AZ3A4SJlIN64LMSnLUxXkPmlJNj8VxwwCgdTl0OVyORvgjX2CXnAk4/HkwntQEkiGCme73TZ7wTYuLi6s/4cziVIaVAvfASmOLCGRSGhhYcG6qOndYe/Zh16vZ5nD7OysBVWPkvhdZB7Wa5NMJrW0tGTln9FoInvmIiaYXaIkvMnMzIw1wXU6HXspb1ySLF1YX183r7qysmLkFMSRJK2srKheryuTyZiT8nNEyIExEp7FKyWpGAEZ8cC0vns4jQYEFh4Cl80FyWDooKd4PK6NjQ1DA9IkD11cXLQSZrlcto2t1WqqVqtTSkEgM8biB+yScqZSKeVyOXseKk/k1ji48XhshDJcC70mpDYI4EB1hULB5uT6CsP5+blFeQbfYNwzMzNWrvRGR5kdh8SwKwhmNEAgMghUP8eG1AwH5CskrVZLr169Ur1eV6lUUj6fN6eEbgi+BAdMVYwKWaVSMf4rlUpZRQzOhEPmnS4SfJSz7CeOBSdBsyklb9IFv0++4oHTurq6Mq4FpIV6NRgMamlpyQ45++fbQmZnZ60VhVGgpMygeP4hcEYiESNU0VBJsgAOJ9Xr9SzY5/N521N0QlTbwtJEdHX79m3Nzs7q9PTU5oMuLy8rHo8b2jg8PDSvTsTHY3FAEBPh8SVNNbOhJOWlOISQWLOzs5qdnVU+n7dZEUQynAjeESKJA+b7FMiv+R4OIF/XDzGH0VeTgsGg5ufnp9R+kNGQsDMzM1Z9IY16+vSpGSQ5JYOsLy4udH5+rhcvXljn8be+9S3ToCD1lt6QzuS/OFzmhuDQ+W9G+qF1YV1SqZRFX4/eiCxcr4Ahg55ALV5fc3x8rPPzc0MBV1dXNirg7t27VkKfmZmxi82A/SBUyue8B5W+eDyulZWVqYlnVGqoMoFgotGoVbsYf0BVyJdJcWDz8/PGmdBoOTc3p0KhYKM2Qaz9fv9XhiAhF+DwQzxT8of/4zNA9icnJ2q325qfn7fDR88PfWUEOsR4pGPpdNrSQfaLs8i6UQVlBCd6Kpw5tsT/X1xcmG7lOi0RCAQM7fgxH16B7gsisVhMJycncKdhbWxsaGVlxcgWDjiRgJwU6ObLZEjgidJEGd8AhuGEQpMhxVzITX7c7/dVLpe1uLhoIpjbt28bCYmR8BKgCmAYDgNxF57bw24PnZF3UxGCYwF9kNoQEdEQUHnBoweDQe3u7lrkIQ9+/Pix9vf3lUgkdOvWLYvSXitCObTRaOiDDz4QDn1zc9PuusGZgup8JQEnU6lU7KpRgsBbb71lEQUJOkNrEDN5BECEJS2kGkFExgB3dnZs/5HbQz6Gw5ML3xH78XOQh5eXlxagLi8vValUVK1Wp/Qx4/FYlUrFWgxAY37i+erqqlXEkIP73q+FhQVrNcCBE9QqlYoymYxV/bjwDD6j2Wza2MxKpWLEOWlArVYzvgV1LToTP47UCwsXFhasrJrNZk0IRgMeKSBl/uFwaOJMOA+KIBD9CwsLUzf8IRgkteT3+360fr9vKBBynncF5XCWCaxUDim4sFegJRzL5eWlwqhNIcSYp8FGAetRiQLpfU8B99FEIpNrBo+Pj42bwMgozQEN8aa+72FtbW3qTg4v2SaF4eBTpgJVMLgIOE/Vg2dCQg+5WqvVDK0wgAeHBKLC62PYsP4cEPLQi4sLIy8p6QIZSQFICxOJNxcceVQF3MXIstnsVEmOKIvDA8pDLCIGbDQaevLkid5++217D9S9frSjJ9bS6bR9LsYMQXh+fq5ms2mHjtSPw08qjIO4uLjQ4uLi1DBsScaJoA+am5szjQiOijSJO3zgaji42CcpCMpOX2Xw0P3q6sqGTT169EgXFxfWLkCJkwHkIEGcPEIt9goOEccIgiVSsw6kLL4ogO1A0iJJwMGS/lBS39vbMzIbJXa9Xlc2m1U+nzeF62AwGXeApALF98LCgpVpoQRAHqROBHsAw3A41P7+vvF83hlyLnzDJ+cSJBmGeYVUC4VCdjvcYDAwYhEY7Ut98Xhca2trmp2dtcX0MwsgcSlDLi0taX193TaSenY8HlehUNBgMPiV6xgHg4EZTzD4pqcEMpOyLEIy8nU8PIgCpSElX4hW8tFKpaLz83OtrKzYpCrWYHt7W7FYTPPz81Ndrf1+30qQRHFSwtPTU62tren27dsW6cmr0X0gX89ms1btOjs7M4WjJJtr6/scyLdxamwya9lqtfTkyRMbQRAMBi0VBa2REpydndln0u3KYSSyU/YnPfDpJJEsGo1aWfbk5MS6Vz0BDwmLE52bm5uKrKSlBC+cLE6Y1ACHDULA2HEgCwsLdk8SwrDV1VXTplCpIaVB7kCazQQz1pzfnUwmlc1mrehAFZIqHwJAbHRvb89I8GBw0vbAMCdKq6PRyPbJj2ekWsfaUS0ql8uWZnmFL4R2KBTS8fGxfT76FM4hPwNKoz+LM+VbHhCf+QoZ/VOsHUAgjGf1M0nPzs6MpQZKI7qh50aSRW1KQOg1SqWSVR2A0AiEIG7JIzGiWCxmcmx6NnBMtFLjELz60U/Oun5LnR894Mt95MySzJC98yFFCwQCevbsmdrttubm5pTNZjU/P2/ICIeI+pZ1gpTyPRH1et1YfCKPNMmxIQ1JIcPhsF6+fGkREr4HIhb0hYHiUAgGnrA8PT01AtarmOEdxuOxDg4OLKX0re6UmfP5/JSeCCdHusr6gk75/Z7b4YCQpvGc+Xzepo4B8XFyR0dH9r4zMzMWfamEcdBIiyKRiHK5nKUPIAicZzabNdEcSA9OhM9BjEdaDGmJXurs7MzEZ77UDgKmwklgo7oGEi+Xy1b5AcEgtLx3754uLi60tLSkV69emY5nZ2dnanYOz97pdJT98o5nAgCoLhKJmF4JVAQZS/pOFYkmSkryOFacOAAD28GxYwedTmfiSC4uLhSLxazmjd4AtWI+n7fqzfn5ucG61dVVO/Dz8/N2cFhEvDkPe3p6apoHDgbkHjmsr66wKBgNTkSaiNbo5WB+Bi9FbhiJRHR4eKijoyPNz8/rzp07mpmZUavVstTGpzM4MdIwFK3eGNvtts7OzhSJRIwAG41GlmMTyZhlQil7Z2fHiGQcYiwW09rams0v9ZUjZtkS5UFBpEGBQEBLS0sKBoO2NoPBQOVyWdls1np02B9Kgc1m09I7yrc4VOAzkBgUurCwYKkWQYAcnmoe601k9/ocDBzehgOI04DI5XNxplyB4DVON27c0O3bt3VwcKBXr16p2WyqVquZYzo5ObF01EvTLy8vTU9DKkSE9gQiDsT3MEG2glK9loLPGo1GOjs70+zsrM35pfBAygV6Y1K872Gj4kQ/1sbGhmKxmO0D6+5TrXw+bwGZqhRog98Dl+XTFRweQRpHSjDwYjbWlnXBqTL6k88MU/7sdrt6+fKlede5uTlFo1FVq1XrGaD5i1QF1Wej0VCj0bB0BS4CAtaXqgqFgm0epTXQwPHxscrlss1NIAqcn59brs5hb7fbRkReXFyYI6lWqzo5ObG+CDadw000RA3JZK+DgwNdXl7q5s2bRjhTVcGZXV1dmeYin8+rXq+bqI4qA78DUhkH/fbbb5sR7u7uqtPp2OAZJtITtSGMicZUOkhBpTezb6kW4QhRJqPdwXDm5+en4DDpEugD1EPP08nJiSHDvb09S/uIUiiAMURP7OG8cLI4BiIjQjEQHbogAgoODmdOgycVJCpD7XbbyGICE2kbWigqEpCmyMeZcOdVoVxmxdqQGnt9CpUs1gyEBczvdDra2dnR3NycBQUcEiMkGo2GBeRcLmdydjQklUrF3o3fDeIiRSEogYIpUTOQ6/o4Bq/5gctibXDgcDij0UjLy8t2bryj5qrZfr+vs7MzqxaF8bJPnz616EsEI9+nLAgjTOs8nX8YDE1HVBWAlolEQsvLy9apyyFtNBo6PDzUzZs3df/+fdMhnJ2d6fj42JDA2dmZETw4JXQpRGKalBiaQ9pTrVZto4+Pj5XP56fmwbKQOEoOH5EGdHLnzh3dvn1bz5490/z8vBKJyUBp7t0FSoJAIBFfvnypi4sLbW5uamZmxrgQriZFvIQz4ZZBDjachCdwWe9KpaJ4PG75Nc1rvit3MBjYiEY6r0kJ4C9IS3kvDNKnl6Qfi4uLFvUqlYpFVWT8vjfKk+QoKiVZuRN0BYohqjIOgL4RL4rb29szwnp1dXWqD8UThd1u13J6SFcQH9WuZrOppaUls6lyuWxIGhuG+4Ej8JUzKkMERThE/p59IqiCwEmpSFWi0aiKxaKCwTdtH6TP8G/YaD6ft3MFCZ/NZpXL5TQ/P69GozGlHOYCtGQyaSI5EMvJyYn1hwEAkGxwOZ3nWjhTBGP2dzweKzw3N2ciMhBGIDAZcMSmoEBtNpsmqSYKpNNplUolI7tQHpI/kVNRGdjZ2THvfnp6qnA4rN3dXYOdVDaGw6FWV1eNLKPMG4vFlM1mtbq6qmw2O6XOA6EwP5OUYDictLcvLi6afJ5olEqljBPie6hkdTodnZ+fW95Kqe3Zs2eam5vT0tKSVldXFQqFdHh4qEajYS3poVDIjDUUCmlnZ8e0CRhIPD7pOi6VSvrhD39oKQsGCNwGcrOBo9Gkc3Rubs42//T0VMvLy8rlcqbnkWTaCyakUea/TlCScnS7XUMtpIqki5FIRFtbW8rlcmaElBFxcDTG0c/Bc0NOYrSgVfJuImar1TJOBOm4J2qPjo5UqVRMp8IBxWFd70LnYNDFTI+UT5HhhhAQgswymcyUapQ5rrzD48ePTcLAYfcOgqoI5XfeE2c0OztrAQeU57VER0dHhlxLpZJxZgRikO9oNLIJgpS24ery+by2t7eNKCbNw+ZJxwiiICzpzexe7qmmosezUvEcj8cKe6mxF2xhwOVy2bgR8vRQKKRCoWAS4vF4rKWlJUMqHATvvaiN7+7uqtfraWVlxeTWQNGf//znajabeu+993T37l0zOEqT8Berq6taWVlRv9/X69evNR6PVSqVtL6+rpcvX5rjGI/HOjw8VDAY1M2bN7W+vm49NRgd7zI/P6+TkxPNzc1ZKa3RaOjWrVt6+vSpNjY2VKlU9PTpU6t0FAoFI0BxOiAOIHculzPUhNoR58zkcbgMDBC+gbSALyJzNpvVW2+9Zc/P+jNrMxKJaHFxcUoH4CEw78Z6QqQi/qO/ZXd3V2dnZwblEZ/R4oAWhDSz35/MLAkEAjbPFSKcw0a6AWHHWsCrYXc4Ma8wRtvgUQpfo9FoqjxPerK5uWlcC9WuwWBgh4OObBAXCDAajarRaOjFixeam5vTO++8o83NTcXjce3s7Cj75Z1AQP+NjQ1Jb7g8zwv1ej0r20J0guIqlcpUWlooFFStVi3oMDc1lUopk8mYQzg4OLDWiMvLSxukjfCRYVuQzCAYkCLpHhP8mJCHEA7UDucHykVwh41a1YZuWWAfsJXKwMOHD41f8Oy2h5K7u7uKRN6MecNb+kgKD8OBiMcns0aYVg10JdeFwZ+dnTVitNvtqlgs6itf+Yrl+egorq6ulM1mdfPmTTUaDd29e1e1Wk1HR0dKp9O6efOmVlZWjFDiAPr0xUdM6U3dnb4YemqoBFUqFR0cHEyRsb6lvNfr2WS0QGAy8R4+BQ4I+TkktR+hyNfCwoLK5bL9jtXVVSvrkpru7e2p2+1qdXVV1WrVyrkgH1AM5CF7AIzu9SZ3MVNOpdpExKRKcXh4qLW1Nft8xgv4SAyX4NEAe+ynfvF9OLBQaDJ4+uTkxCI/BxvBn2+RAIVQ2YJ7w7jr9brK5bIWFhZUrVaNjzg9PTX4j6QdlE1aD1rrdrs6ODjQzZs37VI0WjyoFEajUa2urhp/BnEdDk/uuo7H41peXla327X/RxUMcpJk5wkHgVBuMBjo+PjYUAKBf2Njw5wr9nt0dGS3AmBfKLA7nckNkUz6gwAmcJL21Ot1G0hFmuh70fwoA/Y9DMwn9UDkRHTFm3L5EIbG4N2FhQX1+319+OGHtpkM0pmfn7cIS70bY43H4wafqXhQaSAfRDJ9dnZmn0PXZKFQMPZ7OBzq7t27RnjOzMzYJuDQgsFJcxp9H0RQSbp586YhHQ4weTwNaufn51YpouwG8eYl6RgJZOfs7Kw13Hn5eLvdVrVataY/FIL8Xk8QLi4u2jyUzc1N/YN/8A9MdIRBg4wY/Hx8fGxXddA75I3WK3hxOPAw0WjU1LL0DIEOOaBAfuyBMiTRzZOtEKdoaZACUALFGV1eXmp/f9+EVf45o9HJpdt0sRIZPe8xGEyGApXLZYPl6HzQ6KysrJj0HHTD76FNg/t9QFrn5+d6+PCh7t69a+kzJWYEXeg1WBNmdnAxO/NrUqmUTk5OjDBNpVJaXl5WsVi01Jhztrq6qmKxaFVU7BddyatXr0zMRuk9Go2abTebTVNin5ycWFMrvwfF+Y0bN2zfUba2Wi29fv16qgeJQIaTxel2Oh2FqWBgJGwC+dL8/Lz1mxBZEV8h3ALy1L+8qQ5IDxuNjoI8EXiGOpXDfuPGDeNTut2u5ubmNDMzo6urKx0cHKjVatkMU8qo9DCQJm1sbGh/f986Gqlu7OzsaGFhQWtra3rx4oX6/b4WFhYsFfOVD/4fAo2+DvoyyuWy7t27Z9CRiOznj2YyGds41sGXlQeDgVZWVlQqlfTkyRN7V9ImT5zyrp1Ox/goqhilUklXV1e6ffv2lKgQ4wYRUPb0l1J1Oh0Vi0VzyrwDEZ/D6BXAo9Fkpkn9y6nrzO30pXXQFuVKDqtvLsTeCBqkW1Q/2u22pQI4O9DGvXv3jPuiF6Xb7ZrkHvVtLpczYhEUirAOFEITohfWzc7OWkmV1AGJPxW0wWBg3FI8PpnbQzrJwHLGSWAHwWDQZvfAId64cUNra2v2fDMzM2o0Gtrb27PzFQ6Hp25v5PfjbElbQMAQ1v1+3wZv4ewlWY8TqIKUhufki2osFTZ4H+wK6cR4PFYYb+dlr0RW/k0tOpFIWIlzMBgYb5JMJnXjxg37xUTiXC5nHZHj8Vjb29uW9xKhMShyd0YeQoT2+30TEm1tben27dt2hwwGjvfFOG7duqVUKqXFxUVtbW1ZxMabQ0ju7+9bZYQFAVUNh0Pt7Oyo0Wgol8vp4ODAmtcKhYJWVlYkTXJx2rNxJFSKIBxpAedw4jij0ahWVlZs1gvpU6FQ0K1bt/T8+XNFIhHdvXtXe3t7qn85SZ3+HsSAd+/enaqYkV+jmgWCI76jZAc3wnR5OIpQKKS1tTVzJBCltBmEQiG7WoIKAoej3+8rk8kolUqZghhU5ydvjcdvLqkiuuFwSDkhzElfIH339vYsTcNJ7+3tqdFoWAkXpMRhQtCGXIESOans5uamyuWyaZdQcPOOnU7H9mNzc9Ns07eQsNcrKytKpVI6ODiYag+RNHXrHxoTIj08FM4JwSeImrQWNEsKhsQATdbh4aEODg7sveE2cdKlUknValUXFxdaXl62Cg8VRPgb74ThVUiTEYnC84UxEjyM/0GfesAp0BLNRjOcBS+IcwBWEkU8v0LE3NrasocFZgEVkRtTQRmNRnrvvfesuvDq1SvNz88rn8/r1atXdkdtPD4ZIASxVCqVpgRZKFUTiYTBeabLx+OTyVPb29vW6Qo5SHmbvD0Wi1k6ReQAamM0vmxOj4InGL3OIR6P6/Dw0LQSb7/9tp4+fSpJVt1KJpNaW1uzKLe9va0f/OAHymQyRmaih6DhjQ7NYrFohCR6DhwCTYLk51TkNjY27GoRpNGMEvBiPqo2BB8/Ic8bMCleNBo15IWuhDI8XAWHyHNPOB1uCPBydpwhCNs3DdJ9i9AOp4tTRW3MrGDOAoGV4UYonGnEIzi0Wi2tr69btD4/P7eDnclkLN32bSFIAeCzQO7JZNLKrfRqnZ+fWxsIQ478UGa0N5xfHA16JzRVlJ9x/MvLy0ZuUyXkzPPfyBJog4HAh8Tf2tqaID0aucj3PBcSjUZtkrkfZgupRck1FArp6OhIsVhMi4uLU9J3ynpMcCfXXV9ft7KtbwIkMvJvyKDBYHJZFcTP+fm5aRqKxaJu3ryper2u169fm6KVsiwKQLQZkmxRY7GYyuWytre3zei8LoUDhhFGIhFVq1WbJIZAh9Zr8ntIKIwNB0LdHcdCRYJ+kA8//NAIQH7+8PBQ9S8vpUIYRhpCPs+MDt9SzmGi05n8F8SAsfBMTFzj50Bn9KdQPuXAEFVpAuNAwA/5yhOR06dPIElSRKIx6RBryAHj4BC92Qt/yyEzgBHigTCWl5etSY9SP8+FChRCn4oTpc5YLKa5uTkr5xIwSK34PklW/QmFQpaOlMtlra+vmwOAk6J9YHt7W5FIRDdu3NB4PDYagPQXFH/jxg0bVQDpi8MmuKFJIkWBIwKdQkzjqEjFfPcvgZag7x0mwdcDhGAwqLBnbSE833rrLVvgubk5U5XS7QvbjqdkEQuFghkQN7mh6djb29P+/r6ePHmiRGIytBhuANEbBCYO5OrqSicnJ0omk1pZWZkarkR/wWAw0Nrami4uLvS9733PYD9NWqjwiM5EUX4H0e/4+NjQgCQjmTmAlUrFSpvJZFKVSkV/9Vd/ZbLseDyud955R6urqyaG4tY7xDugFZwYRokBw2uQ+37961/Xs2fP1Ov1tLW1padPn+rTTz9Vu93W7//+72t9fV2RyGSK3PHxsb0D6mHIWC4Kx6n7aIscut/v29Uf5OA0KBI8EAnSGY7QqtVq2SS2paUlq8Qg6gKWk+JJMiI+lUqZgpncHScICqa87oMAER04T5oEeoaE5P3Pz89NC8TnA9F9vo8DQZJAWsYa+jYN3x9VrVZNn4SwjwNaqVT005/+1MjTZrNph5nKCi0PIApGTBD8GATW6/W0vb2t4XAyMZBrRED/iURCa2trNqzJUwrj8VhHR0dqNBrKZDI2VgFBJeV5OCHOGOtKbw7Ok2DU7XYVplMTz3R0dKRisailpSVTyjFuENSACIyD7IeslEolXV5eamFhwTgHPpfFy345bhG+wY8YRMx0HUHg6MiTkTg/evTImgmHw6HW19ctUkBsEg2JZmhImFE6Nzen27dvW7kT+TKsOoeKRjfeA4jKYfjZz36mDz74QMViUTdu3NDh4aEODw+1vLxs8nqQG+++sbFhfFMoNLmQq9/v66c//anu3LmjaDSqpaUlc7KfffaZXr16pcvLS62vr1tDHtPmWq3JJeJIySEOg8Gg1tbWrJpC5Y0BQ9ls1nQWmUzGIhMHtVgsanV1VXNzczo5ObHbBUmZBoPJzI6TkxMj9UBh0purMflvDicVFEh9f5MhDhhkRtrl9RCk1TzDcDg0jQfpdKvV0tOnT7W4uGh8hx+d6ElDj0r4nR5FUG3BeaHu3tvbU6lU0s7OjumStre3zQFRKSwWi+Yc4WkoRtRqNbuTh1SfsQqBQECPHz+eKodzThBrgqQZjwr6PD8/tzQdAVm5XLZyMB3TkMXhcNjSSpAI/ChpoacLwuHwpGkPYtNL4D/44AOtr69PXaREvowR0OVI9NvZ2bF8lesW2HAiU6FQMLIK4oaqEfAVGP3FF19ob29PnU5Hd+7csZI0MuZsNqvd3d2p0X2w1EtLS1b5YOGo+qBBofKQSqV069YtK+ciZiN/Z0o8kSMUCpnwDKLqhz/8ofEINDCSv5PDMtR3OBzq6dOnun//vsFFDsLy8rI6nY4hDA72ysqKFhcXLWpjOH5uBAQ3DXl+rzgsRBnfp4LuAOIQLgTURKrq75Y5OjqyvwfdoUyt1WoqlUpGkgOtyf2RlUtvSvOoMUlziIR8D/8NjwUHwWdxsNA9MBOHmR/0i3S7XWuj8GJIfg96KIR6dO6i/SHQJZNJazXgzDx58sRQLmkTrQrlclmnp6e6efOmVSwRjTGzhlSbUjI2V6lUphr0cHAEWcjh0Whkjh1Ex7nyaRBCMiqQV1dXxjshJvRtD6PRyCarsYaQ/qSd4YWFBVtQ8tF2u62DgwO7JvLVq1f64osvrDkuEplcb4nXRjqOEYEgAoFJV+fa2prlsUw1J9pQJUKM9OjRI7sGlOEre3t71hyHYwgGg6ZaJfotLy9ra2vLHBJwF/ITeAchB2Khv6VWqymfz+utt96SNOmGZMgOjpMvZNPpdFp7e3tWiVhdXTUEgaZGkvVI0BeDARHtA4GAdd8iCHz58qXlqSgeUdhmMhlrRaC0S1mZA0b099CdqMv0OwyOfQD5AVlxDuxto9EwJeji4qK63a4+/fRTc8Bra2s6ODjQ1dWV/t7f+3uGKnHAODFSqFhsclcNAQK1MA4CO2I8IofHN8uxN6BSoiXog1T8448/VjabtfGLPu3i8PvbFpm4x6AmOCYOIWluIBCwcZvcN43m4+DgQF/5yldULBZV/3KCP2MO0+m0Tk5OTB9FmwjvjPP1X5DX/IMsgMPv05FEYnIfEffWMA+Fsjg8HZ9bqVSmxKmsERoiP6Gf1A7HEgZeUhrsdDp69eqVpTtIcdk4NqpcLhspxSQtPFY+n7e5nqVSyXgHyrxMy8KYe72eDg4O9Mtf/lL9fl+3bt1SIBDQw4cP9fr1a4uwGBARTJqw8sVi0Zr+qFqQ+9OuTQoCZGZE38zMjJGnlUpFS0tLKhaLlkpwk9p1tSmsNY1ct2/fVqvVsgvHO52OFhcX7QpNSG24mqWlJQ0GAxP98fn09sA/1Wo1ffHFF6YCXl9f1/LysrLZrI6OjqaIMTYe5+4dCYfYazf4Pt/9C+lIZe7w8HBqIDXRkgulcAAI0Y6OjhQIBLS9va3BYKA7d+7Y/A2cu0cZfDbP/vbbbyudTmt3d9dQEYHJt8BDhEsywR0VBd6XvWYdjo6OdHx8bAHi4uJCzWbTqhoEKtJjtFKJRMIu5cKx+xGRDMlmreksxw75PqbaLS4u2oBzggFVSkhU6IJMJmOlaOb6npycmCAUFEL1E97q5OREKysr5lSYSEchhd6dWCyms7MzU3wTbEgjfeGFZkbfREoACgPjIOPIo8i9GV/InEhG3+GNKKOx6WwubDdTxfD4lIlBK1Rh6L9hAPWnn35qm468GiRA3knZE8Mql8t2x+nq6qqRpZJsuhQkE1Gf0i19QvADXAQO7PWGwmHkYHKZ1srKipUkfdcpKAA0JWkKfvpGvF6vp5cvX6rf72t1ddX0GQ8fPrQy+OXlpRGr0Wh0CvqDRqhs+IME28/zoDlhbzCgbndy4TpO+5e//KXy+bzW1tYsmsbjcWsqA1GhLoWbePXqlT755BOtrq5qfX1d6+vrJrnHYcXjcRsdAQJeX1/XeDzWysqKnj9/rtevX1tgo6UDDg2nQBoAbIeHwkZxtOwlHAViLErgHqkNh5Oxl3B3dCUXi0Ujp1G40l07HA7tUjRSHi+L99qR6/NeQTweZYNc/ahTnDJ6plAopJOTE3O6vV7PxnOAKA8PD6dUzaT/4XDYghnBjsvrUWhThSLtQ8YAL5pIJCYcCVGzXq/r5OREp6enOjk5sYic/XIyGOVh4HksFlO1WlUqldKDBw+s3IYAjaoFbdsLCwt6/vy51fmZy0F1IBqN6uHDh/r4448t9aGE6A1VkqEGDMXPHUHv8vLlS+3v79v3IN7yw4XgEhAacTB7vZ49k4/gSPV9w1+/3zcCjghFdOSz6AhGucuckbOzM7vClJ6XZDJpl2HhBHDc4/FYv/zlL/X69Wu7YpMGxv39fbvgyZecMUq0NhywTqejX/7yl3b51t27d1Wv1212ZzweN3KNa0e4shSD5DqLfD6vi4sLS384EHBwr1+/1u7urr7xjW9ofn7eyN6rq8k1qJTTmc+Kg6dUfHV1pfPzc928edPWa29vz2TvknR0dDQ1d/V6ACAIgGZJoYmwFxcXJiak4sG7UVb3jppZOARenJsv7efzedNWgUwgPAmKVIEoW8NPEMRAB36oFIiRrECSraW/RwpOh+tLSN2Oj4/NCZAxoHe6uLiwqhxOlh4y7NY7kn6/r/Bnn31m9WpERSsrKzo+PjYRVKVSsWh68+ZNKzth3Ddu3NDW1pZFAeAVkKrVaqlcLtvG7+3t2RSp+fl564z99NNP9fnnn2s0Gpn3l2RGjWL2zp07BsGSyaTlgmdnZzo8PDS1IzfU4SjYjGKxaFUJmqDoB7l//74ZOgw+FQcqRjgSz54zcoGDz6hGoKHnCJAjE9XopqU6xDOQr6K1gMs4ODiwkvWnn36q3//931c4HNZHH32k0Wik73znO1pbW7O1Ozg4UDQa1f7+vt1OODs7q9evX2tnZ8ee+/bt29rc3FQymdQvf/lL6wz1kYznGA6HunHjhrLZrEqlkvWX7Ozs6NNPP7Xov7a2pq9+9at6/fq1jo+P9fDhQ+uVuXfvng0bR34tyUr28fhkotq7776rTqejDz74wCpRSMTz+bxu3rxpsPyDDz6YahWgVYLA5PcImM68G4Rk7FE6ndaPfvQju2VhNBpZEybOhgbIly9fmtP0xC9BlSDDc5LiwXGBand2dqwax9UQfGGniMQYH0Ewo7rixXiS7FpWHDuXlPtuXvrW/FAySvEEsMFgYAGUCiHOM+wh7je/+c2pyVuIsy4uLjQzM2NjEmk+ymaz+trXvmZQD49LFPjkk09069YtNZtNPXv2zA7kaDQyuXe5XNbTp0/1+vVr857z8/OKRqOmeaCX5tWrVzaYmt9Fl+PTp09t1gkODj0B3tb3NUgT8RBR0JeNIe1ASpC2DNUlv2QhmfZNigGCIBJC3MFDeMJsc3PTvgcRE94e502DI5u6ubmpXq+ns7MzxeOTS7qGw6EWFxdVLpd1eHioYrFoRp9MJq3JjtRrNJpc7fDixQsFAgGtra1ZIFlbW9NoNLLLpIDkkUjE0i8GLzOLlGdeWFjQwsKCEY2PHj3SysqK7t69q62tLeuA/uEPf2jVkXw+r/v371sKcXh4aARvPp9XLpfT3Nycfv/3f98I1OFwaBKDq6vJdZ4bGxvmSEifOPA4QmxBeiMWbDQaJiOXJqR8oVBQJpOxNglSA0rBvV5PuVxOW1tb2t3dtcqWb9knwl9eXpoYj3LycDi06gdVx/n5eavUrays6Pz83GwPIphzgcMj1fDOEztLJpOqVqvWDDozM2M0A0LEg4MDPX782NIsr1oH1bLniABxKlR1YrHYpGpDFAABEPkrlYoWFxe1tramwWCg1dVVg2i3b9+2gwz0Z5DP1taWnj9/rkePHuno6MgIOthldAY/+MEPzFlRNsMDz87OmkG3Wi29ePFCp6enJo5bXV01hHBwcKDd3V0rNVO+jMViqtVqhgRGo5EdSPgFxiFSIqtWq1ZpYZQCQitpIlcHYVBJePnypQ2f8YZKjjocDk3xSBkRzQPXgLBBjJt88OCBHQDKzRcXF1pZWdGtW7fU7/dtsBGc1a1bt6yaBoQOh8MG/Wm+Il2IRqOmhByPx3rx4oVevHih+/fvK5lM6uXLl8Z/EL3oJGW2ii8v7+3tKRAIWJs5XNbz588NxgcCAS0uLprSFOTz+eef6969ezZca2Fhwa6o2N/f19HRkfFnoVBI77zzjkFthgcdHBxYdzVpLopUZuCyL6h/vSIXBEaD29LSkvFAlF15r0ajYY59fn5e5+fnkmTEOc7CNxHyHDh2Bm/BR0qaQiIEHNKv68jKzwpBr0Uww7EkEgmVSiUb/O1RH86iXq/b5WrwmO122wIpyM1zlaRfBOUw5TNfVms0GjYVDKiExx2NRpaXcnCA2c+fP9fOzo5+9rOfTeVmEEM87JMnT2xKNjCT1KPb7Sqfz5sMnOEyNFzhgaU3Xa14fzaQwb94UIgkiD0IKqDnYDDQRx99ZPfJNJtNkzdDilL6IhemNFcqlbS7u2uNZPQq3bt3z5SdRDzyYdIlHykhWZ8+fWoO886dO1pdXbVN29vbs1m6vCuIkY7oUqlkFz/DK1CN45CBfnq9nvEdr1+/1qNHj6YqO9vb27YWrBn6HRj8brerFy9eKJPJWJXpgw8+ULfb1dramrWm/+xnP9P8/Lzi8ckFT++//74uLy91eHio4+NjXVxc6Ac/+IGlhLlcTt/+9rdN39TpdOygRyIR67VibIL05tJ6viccDpsK1lep+G8/QoAGQ18WZhg5qXw6nVaj0VAkEtHr169VrVa1vr6uhYUF48IIivwD8mDPOODZbNZ0WVTLxuNJt/DJyYnd1oD4E9VpMBg0WQQOyJOw2AQaKRwUZ5fqDi0YoVBIt27dMk0YYOL6jQeDwcB0UBD+OKbRaKQwZCpVFojLQGAyw/Tk5ESPHz/Wq1evlMlk9P7771uX79HRkak6t7e3dXR0ZCVBFHu0QDPY5dGjR3aNIRJo740XFhZ0//59E2U9fvzYOmPx0KCbO3fuWOpB7R1nRBQFMSHfR0g1GEzmfKA+rdfrunPnju7du2eeH48L4YjGgV6Zzz77zPpiLi8vp2Tcv/jFL0wXwB3K5XLZNnxxcdF+R7lc1ocffmjPz4yXV69eGZ/CHFgmf7169Uq7u7vWtRoKTUY7vvvuu1b9om/q6upKH3/8sYbDod5//32TOn/wwQf64osvNBqNjB9gXsatW7e0tLRk/VaI+4hO6+vrthYcwoODAy0uLmo4HNogYa7vYIpX9svhU8ViUfPz83r+/LlJ5WmWHI/HOjs7U7FY1K1bt6b6h0DB3PcTDodNzg0qfPXqlfr9vqXk8FrolYLBoKFBBHM4V0h50oiDgwPNzs5qfn5ew+FQu7u79vnD4VAnJydGrKIDgktA1Far1YzzQ1IRjUYtvec+G8SfSOdxjjwfs3eQQ5Dik0bncjkrV+dyOR0dHVlbB+fBrwFOwjeXjsdjuy2RqWt0ZpONeGRmgsB79+4ZQeRLRjs7O6bjwPgptdI1eHp6qkePHlmdu1QqaWlpSY8fPzb4lclktLS0ZGiF7lMk9xBUpVJJd+7cMf6BlIIGLvgSRGEgAhyWv9SaCVX83ezsrImnlpaWtLGxYRzDzs6OqtWqCoWCwcl2u61SqWRpiPSm5Evp7eDgwDpY4URYO0kmPiJdQWLPnSNbW1umARmNRjo5ObFB0ihr0aQwOQ10iCQa/U84PLnHtlKp6MMPPzTNwsLCgg3jIWo/fPhQ29vbarVaOjk5mdLo4GB/+tOfajgc6pvf/KZNEcMZkBPTSMnPQh7u7+9Psf2NRsNSMALQn/7pn+q3fuu3tLGxodXVVd2/f19HR0c6PDw0Er3RaOiTTz7R8vKy0um0nj9/rnQ6rc8++0yLi4taX1+3yg7oYH5+Xjdv3tTR0ZFJ4Kl0wA3AURWLRcXjce3v7xvnB4oFqcCbkD4yv8O3cYAqotGoTk9PDT32+30roSKhID1E9EfaQupEmwTl2rW1NUOQpMCgDwjpXC6nSqVilTJaA0BEvkLE2kJkU3WipH5+fm66nlgspuXlZUWjUR0eHqpSqUxVOskOjA7BIPCuo9FIr1690tHRkUmaC4WC3n//fW1ublqD1U9+8hPTY5ACgRQgdSTZuEM6GulXqNfr2tjY0MbGhs0H6fV62t3dVblc1vHxsZWlYbpJRRKJhO7evatWq6XPP/9cZ2dnWlxctOY5vG2n07HJ6ZTN5ubmbHwjKcf8/LzC4bCePXumFy9e2Ji5UqmkGzdumD4gFArZtCyugByN3txIBrnrFaYoVtE4kJc/e/bMDJzIUqvVVC6Xdf/+fdPBoL6lz4j8FNL7F7/4hVZXV7W2tqYbN27oxYsXGgwGpkAdDAZ67733ND8/r9evXxufFI/H7TpLJnZ57uTTTz9VPB7Xt771LXMylMNxmpJMxfnnf/7nSiaTNvMWaE4qSroVjUa1t7en09NTGxy+vLysubk5HR0dqVqtGq91dXWlv/u7vzPnzgS7w8NDm13D8GOqOgj94NxAuxxi+ol8NazT6RgSIlV49eqVOXkOLbNW/BQxUllS6J2dHbswbX9/38qtoNxaraZms2md2rVazeyI2Su1Wk0HBwcKBAJ2j/NgMDBEi+YHRAiSRB1O8yDtGTgg3wVOgaVWq1m/G4I1JCH8HhwZnwn3hX21Wi2FR6PJTV7Hx8fWWNTpTC68WllZUa1Ws0P1ox/9SI8fP9b5+bnljuPx2GTkwK47d+4oGAzq+fPntuhcsEVunf1yEjw5dL/fN88Kyx0IBKaiYDQatQNGd3Gz2TTdQzabnZotyQEgZSOC7e3t6fnz53abHezz1dWVFhYWbC5Fv9/Xzs6Olf46nY6ePHmiy8tLiwxsLMpI71CAy6Q7GLWkqfb7y8tLm6GJloTPw1hOTk60trZmgimcSrvd1ueff67Xr1/r/v37evDggTqdybR1ysr1et2g7vvvv2/9LuhNFhYWtL+/r6WlJat67e/v6+HDhxqNRrp586aSyaQ2NjbsnQOBydS5vb09lctlnZycWBUlnU6bqpeSMRAdzozGThBALBZTqVSylKxQKOjx48eGGtLptM7OzmxsYSQS0enpqQ3jTiaTpuGJxWImtCMtoHqHuGowGFi384sXLyyV8HJ5KiOkD6h3kQV44R8ds6lUygZs0X1cKpXsKo2TkxMjMyFBfXrDPFlEh8ygQbBG6oFjQllNSsNzUsQgCHttCmleMBi0i8l8ywGELDNamPtDdsDYDN/9Ha7X6/rlL39pUHBzc1PvvPOOhsOhveiLFy/0/e9/3xABOTbjEBOJhBYXF20ydzwe18uXL419hpzB+CE6Dw8P7bMk2X0uTMI+OjoyREIEZHgSL4RDKZfLxtZzsFG+YvitVkuPHz+2EiS5Mzkjc1u3trYsCjx+/Fh/8zd/Y87MGxrGSeUCR0FEwmnSNUzqwL8RhY3HY+tRurq60sOHD9VoNDQ/P6+f//znlr585Stf0dtvv23jFUulkr761a9qb2/PLt7a2dmxTfejBLPZrNbW1rSysqJsNqtqtaqDgwM1Gg3duHHDtB08QyKRUKVS0Y9//GP97Gc/UyKR0Fe/+lUrHc/NzWl/f9/aAaLRyaxQdAZ37tyxjnJUq5VKxfLxJ0+emI29++671hS2vLysb37zm5aePnjwQOVyWeVyWT/72c9Mr8PkO9JFZqTSqU4JE44EhwDcZ788esF+OJQeCVPxYb8RX2IDVEyI5jSiUu1ptVo6PT01mf3p6alpcmiM9HL0aDRqoyMvLi60trZmamwKAPAiPCPpDFkDyNW3TMCXoBPBuRIEcSRUh0ConAfsl/fGuYV/8IMfmOG8//77RmCicv3kk0/05MkTI7l8yYcmuXw+r4WFBTsE7XbbhEPBYPBX5pawCGwUkAn0wDh+L8OHZP3ss8+0srKiSCSi8/NzE74xuAU+hXo9G+iHE0EYegdFE1Wz2dSTJ0+sK5RIhfOD3eaeYi91hwfh8zBWEBEbQIs4P0sPEChvOBzq5cuX1rRHdPzoo4/04sULa7pKpVJKp9N66623pi6OpoRdq9X04sULPXv2zMZe7u/vGyGKLiKdTiufz6tcLlsKgVCr253cJ1OtVi0Px3GMRiNTCq+srBiaqtVqmpubs31gPspgMDDxmR/sQ3tCIBCwg8JVq/fu3dP9+/fNfjBwZmz4km2j0bAxDvF43BDOixcvpvpwcNzoUSSZapWZtj4NyOVy1geF02GkBoeSMZOksOPxZFBULPbm0iyPRrljCEUz74Emi7Wk6JDP562bnE5m5u7cunXLBGrYVr/ft0olYyTQmJAq+zEQ9DLhDOnD8S0dELw0d0p6Y7u9Xs9ugfvN3/xNRaNR65GAlKONGpIvGo1a5ODFX758aaKzxcVFW8xgMGhzWDEW8l/axhE+MdmaTSHl8L0hHG4OJSnNW2+9Zdc2IAIql8vmiLyXhbsgsuBdGUrEQQG6wloTvQKBgBFsbBBGHolEbJ6pJGt0Y9wAhDA9GPAHVHDOzs6mplMVi0W7jiMcDuvi4mJqoLJ3QCAcogfPfX5+rrOzM9s7kFMoFLL+HWT9pFVvv/22otGopS+eUIaDCoVCevnypebn561vY25uzowLMdvNmzetheDu3bs6PDzU9va27ty5YzwQdtRsNk0g1el09H/+z//R7OysNZatrKzoG9/4ho6OjqwjnVweIhrnQDUKxw6fQYRmHbEj9pdeq0KhYJWkd99919KF09NTk8F7ojqbzVpaQ/CTZKMIcMJUSOClqtWqpSXwNPF4XLVazcrHqJnhv1B/j8eTjnPfz0UAp70DnQyOE36I0Z7wRihu0VlB0oL8IG6xPewuHo8r/O1vf1tbW1umedjd3dWf//mf6+TkRJubm+aZO53JxPB33nlHd+7cUaFQ0NzcnILBoHZ3d/Xxxx+rXq/r/v37pha8uLiwg+oRCbVxNAxcfQBHgAqQhUVMxr89ZJ2ZmbHKxPHxseWgGAYciKQpwRopEMiJch05KxoJWtAHg4HN3JTeDPulMiTJyFs2GB0H+gmeA86gXq9bqgg5GY/HTQLuJfYMxCGikjLRgexHJIDKKOd5wo31JLc/Pj5W9surEijZPn78WO+++67effddpVIpvXjxQoVCwQ4euotkMmk3C75+/VrJZFLf/e53bT4q1TB4rcFgoM8//1yZTEZ3796dmnUCB0NFhEHO+/v7lvahcapWq0qn0zZTFkhOlWUwGNiAIG7VI+pD1uN0iMIEBpoA8/m8vva1r1l1cHZ2VltbW3r58qUdSNAwAcX39CAS9MgXgSDBhCbRVCplKBIuJBqNWnCgEZG/w4Fh569fv7ZBYdgn3fdQAe12W4eHh1bRoTNeenMrIEJCOBN+Zzwet8AuaSpdxEbD9F7AM3B15PLysjY3N22wUCAQULFY1G/8xm9YA1+tVtPz58+1u7trudTu7q6urq60vLysRCKhs7Mzlctli/jArXa7beiBA85F13AIGOvS0pJOT09NaIRYjEuomAAF+QpRSk8AIiOfSrG5iHxQHWIQvs+HL9ARzD7fg1ExjMZ/biQSsbKnTyfw6GwQe5DNZi2NCwaDqlarViJvtVo23gCJPgfB5/peF4EDwYCZq4s8Gk0Klat79+5pf3/fECPTtlZWVnR4eGhcBuIn0BsVh5OTE7s6VJJevHhhkPzw8FA7Ozumfl1eXlb9y/tafvd3f1c3b940gjYQCOjOnTtKJpPa2dkxqUC1WtX3v//9qUFD8C7+HwIYfSmeR4Ab8Q6WeSDokRCK3bp1y0hNqjaspbcVKp8cZPYUFE1ajF2D3qrVqqFZzgJBp1AoGPIBBVAhAl33+309efLExIhzc3N6+vSpBoOBNjY2DM1xnQslYBwClAJIBWR03eZ9YCa9kWRzjMOZTEbf+973rPTLdO6rqyvt7u4qGo1aCzkT05rNpg4ODvTkyRMb5uLbzxmniGckEjD9/OjoyDgC1HLLy8umsKWS0Ww2NTc3p5s3b2owGFjPwOLiot0d8vLlS+3u7lrKQkmKQ0Qa45up4Ej4wnhBB/S2jMdjU7SCXryuw3fRojQl/261WlaSa7fb5v3ZNCIAEZSoCeqSZO8yNzdnTg2nQipAdOH3IMX24wJAKsB7nBQlYJw4ehyeA1n5/fv3bYQmqUMmk9Hq6qpOTk5sGlmr1dJnn32mra0tvfXWW1M37NFRCgkMQkBr8hd/8Rf6h//wH06tExPb6QlCw8Msm/Pzc0PSKysrCgQCOj091czMjIkHsWW+OIQ4E/qPWH8fPJALUCqFcH/06JGtA86EightHgRfPgsn7g9kuVxWPp/XaDSydIQycrvdtsn4XiCJAyAFwZlwnrh0DacA8kXzRMrMlSW8J+VtVMCkXwg8qcb5Obi812AwUPjDDz/Uixcv1Ov1VCqVrAxEU14mk9FXvvIVZbNZ1Wo17e3t6fj4WNvb23r9+rXNxwQGbWxsmOqRyebSpJJBpy8GvrKyomKxaPfLwp1gSKRPcCJoFHK5nPW4QKRiIGtra9rb2zNIymJ4oZDBMRdZiGAcdOAem+cXFeOAHKYixAFGw0J0YXANUJSqEerKcDg8JVbDmdDkSLTzOTetDTwHHBQXLFHZIo3kHYbDoZUVFxYW9Pbbb6vZbFr5lhvlzs/Ptb+/r0QioTt37liT2uXlpS4uLhQMBvWVr3xFf/3Xf22QGs7rxYsXNjaANUomk3aXMLn81taW3nnnHb18+VKffPKJ/tf/+l/a2Niw4MFlaHNzcwqHw9ZiAY/mK1o4ymg0qs3NTW1sbOjjjz+2ihnd6nzRBUwpFl0O64ko7MGDB+aAOOiFQkFnZ2dmPx6dEuH5XQQyfhdpMPs8Pz9v1RauZeVzmBOChskHIoKYJPtvbtXj+8/OzqbSD9ATyBxyG0Ee5DipL46CIEzAJO3nKxAIKPw3f/M3kmR1Yciar33ta6afiMfjOjs7s+iDM/EwCSdC3b9arRrLDQdwcHBgs06ot+MYIJ+4O4Zy3sXFhY6Pj21KGaI1FKnwDSz+wcGB/Tee1Uf5QqFgaQjOA+kxToVNR3viu4iJWLSZV6tVq+X7TaTSQj8C3c0YHkgCo6CixGxOymqUV3l+0ieETsBqIgXoj8iIk6T3gucbjUZ6+fKl/Xmn0zEx2/HxsSlRyZlv3Lih27dv20XWgUBAL1++nJonCvHGHsGvpVIpG+cJoqpWq/qzP/szbW1taXV1Vaurq1bGzmazevr0qUKhkA07YsgOpeLhcHKB2eXlpaEqn/aCpuGONjc3Vf/yHhnPEUmy6EwER17//Plz00xx8RYd0KVSSaenp2YToD4OnST7fy9OHI1GplI9ODjQ1taWkdrMuqXJk/SL/iYcDhUWn3ZTCeW/+f3YIM/AoCK4M+yPdJf0CvslSHOmeD8QD4gw7OW0S0tLeu+991QsFjUcDnV+fq5YLKaXL19ajoX6kEMHXOXqzKOjoykVHYx6uVy2WaWUPOkuREZ+eXmptbU11b+8/BmSjQuYUBxyICCwfEnO56kcaBwNjoPWaCIszubs7Mwu9aY7GPVjoVCYYsxJgchf+R38PipCePXr/w/KIoKtrq7aHTwgDLpycSI4BiAsBgL0RpPAWL1+v6+VlRUtLS2ZmpSKFhEc/gpS2U9fj8cng5M/++wzVatVra2t6eXLlzb5nfYJ0N1gMGkWw7lR0arVanYBO1oT9hBkS/pGsMHwC4WCdQT3ej07xM1mU5ubm4aEQIvoko6Pj60T1/cH0XcVj8f19OlTU97WajUbDA5n4Tt86YSmwY0qHIJJSZYikTIy54TgQQUPxz8cTm45RIo+Go1MAd5utw0FYzN+sJfXhuDIfCpF9zFVNvaICgwKc56XrmPSO84wX6TfnC3OFw4snMvltLi4qM3NTd2+fVuxWEw7Ozs6OzvT2dmZlde41wURzMrKip48eaJ+v2/zO1+8eGH9IcfHxya7xUPSuToYDGyE3dnZmXZ3d03zD9pg9F2xWLT5lvv7+7aAPkWhFZyoxMLy4iykr5UzvDefzxu/wP0sOCUaAv3kLHJqohufhc6EqABau175YVN8UyHs/h/8wR/YezJYGwP1nI6kKYMgpaCUTJSIRCKmx5HeqGlxYuTefOHoms2mzQmhsvP69WvLvX3ujo5iNBpZX06tVrPOURwsjoUeoEqlYtoJHCOHjPdgvOfLly9tlEQ4HNa3vvUtu43wG9/4hg4PD6fWvtls2kzb4+Njc1CM3gwGg1pZWdHp6an29vbsGba3txUMTubWzM3N6erqylSz/sv3r1xeXlq5/saNG3bz4+Liog4ODvTy5UvTKKFIBW1TKGDQkLc7+Iher2cVFNaPQEBQxpZIGf3sEJw6tkuwYRYxDpiWAK5DIV3zUgmCliRD9KRL4X/7b/+tETyU2ra3t63ngRISKARHwKRx7lmlfNXpTO7KgCFm6PJgMLBJ8rFYzMbfd7tdGwFXr9d1eHhom03T3/n5uU5PT6fSAg4qBwwHQapDJPHphD88lCfv3btnaIQWcd4ROTdoApjtqyR8P178+hdpg5cpg5QYWgz5tbOzo/fee09zc3P65JNPzABDoZARwqgvWWtJhvSut6rDvRwfHxuUxzh4B5AlhgM/hOR8ZWVF1WrVojqVMNabCock61SmjMjdQ95hsa+MH/R9OxDYENdEfJwOju7P/uzPVCqV9NZbb+mtt94yaT+pAFdsxuNxG0h07949a7QEzRGUiKq847Nnz3R4eKiFhQVDZRQCaI8Ahc7MzNjFVnNzc7p165aWl5clycYQ4MBBAT7AQOZ7FD0cDo1PG4/HZnekOaw/du/Tcsh2OIzLy0vrP6P8jFyAcjfBn5I7JXIIZOlNQyfvw1pzrsL5fF67u7t69OiRPv30U/twu/jGwW8WnonrdKlCag6HQxOB0bNDWzTkHU6g0WjYgaVSwyIHg0EbzoMwyQvT2Hg0EZ6IJPqR9wIn2Tzg7vz8vPr9vh49ejQllqPLmc+gq3lhYcEOfrlcNgcAB8ABI/pzGHxkJoJ4STyfMxwO9eLFC52dnem3f/u3df/+ff3iF7+YQiA4CHgPIiJGTTsCpBkG3OtNRhLOzs7ayAGPRHAGDCnm7+nUnpub0+Hhoc0vGQ6HdieLd6idTsdUoOgjDg8PzYDZm5OTk6kS5nW01Wq1tL+/b07JC8yoPJFyffHFFwqFJrcAfuUrX1EwGNSdO3e0sLBghO7q6qrtH5VJRl3iHLEtbJJGuvX1dd29e9dk7fSX0DXM99+6dUvJZNIQDFU+SqyMzYCD4RCORpM5M++8846JPmOxyRWh5XLZHAWVLlIPL6bjzLAf/soI1owbFug4zn55CTvp1NbWlpaXl3V4eGi2gXoavpBpbgQoXzYO7+zs6OnTp/rFL35heRniHhrHfNmPL0hKxC68iGewJZkqj4fxB94P+IHbQGvhRw3wsPws0l0/VoAF5yDTKo3UmMOIMKpQKOjw8FC1Wk3hcNgcF58DeVgsFlUoFIzp5jnYdNBKJBKxtaC8iqiI0Xw+cnNlJRsP1zQYDPTjH//YcnTycZ7PVwNwHnRJY1QYDw6CaBKNRqdSKioZ1WrVkGM0GjVlptfGMLsD0R1rxT5cd0x0id68edP4NQi+drttYxsQwYGCaMxkXYjWBAuv28B537171y6SOjw8tNsCuKVgPB7rF7/4hdbW1vTOO+/o2bNn2tjYUKlU0scff2wqXdaMdaY9YmNjY+rwwz/Bnx0eHioSiWh9fd0cR6VSMTEYg5QRL56fn9vQ7KOjI7vxEH6G60jpvyGNoeAA2vAkLsjB/5lH67ybJJsoh+PkxklmsEiya0Y4P/5qEK7BAIEHAgGFv/e976lWqxnPIMlSHdIZ0IBPH4DYqCsxeLgDKh70UXCQvYjHy815cZhlKhCec8BpBINBy6eBpF72zaHnczm4IJOnT59aG78nqG7dumWRmX4HRgiMRiPTQvR6PRUKhakOS6I4uTPlNVCdX0cMEuEcUJaf9apaIjSGgmGQr4LQvDOVZCgIxMNhmZubs0uaSqWSvQtIlPcHhs/Pz0+lAMPh0G65v7i4UP3Ly81xrjgFlKIoVhnPSKrJLBkQgdfwBINBnZ6eGor0uiBsAR6BbvHFxUUjRykxA+FJadrttk5PT/X69WuT7jPRH5vydgQy4QpXEM3Z2ZlVMHCq+/v7qtfrunfvnubn52005sLCgvb29jQYDFQsFrW1taWTkxPTkESjk6HcVOmGw6GOjo706tUruy4FBzscDu1yMuwKPoxKHAEM5Nbv99VoNKxtAedIsMVG2ddYLKZnz56ZJokgT6qIrfsmwF6vp/D+/r5BKX8REPkRB8KrA9PptEVkoioVGE8ocljgJsj5eAAvlmIxQqGQ3f+Ko8ETkh4QhTlco9HI7n/xaIgZGFRr6BnBQaFx4b5U9AP+PhxaxEmveFYEPLwXTsULkFgzX5Mn9SCq+Y3lMNHfAIwkxQJGY9QI5rjsy3cncwj8hHLyWTqmw+GwdQK/evVqqrGN30W5kXEQrAmpCRGMPeUAUmWBbJ+fn5cka7Ss1+vG+dAMSAkbYhv7gCNA+MjvZO0ODg5sD7BJeB1SKRwAQe7HP/6x3aEMxAf+47jpT/noo49MK8PF7XRYJ5NJzc/P240FOAne4f3337dCBPbMHbsUHeAxUKFCATAuQdJUeufLuZwTAiyBFcfCGnoeBvvge0jFKpWKQqHJ/dP8LA7TSwdAvZzhLzm/NwNrILUkWSUC7gMj5CDjkXq9yWU8wLNgMGjXQ1Bq43ARXVgYr0FBY4Bj8iVTZN2RyOR+nPPz8ykSCKIRZhujKBQKqlQqpl2hFCjJKgzhcFilUsmqDV68wyRzDi/pG9UQNoRn5mepEEFM8d8eFhN9cSB4ef7bt26TQhG5vTQ/GAxa2wFOBCTAFHLmR2BgpK1oBdAw+EHUNC1Sqgd5DIdDHRwcKJvNWoCQNJUa+GjH3zNmAMUsyA4ND+VQtEKsDbCefcN+Tk5O7PngaPykfV+Z8oGH9ZWk7e3tKSFdsVg08R+pBiVq+DH6o0CWDDtfXV21tJxOYZ6BtgfuxkZX02w29fr1a7t0jmCG8A4U5fk40KwX14Gi0E5hqz4443yhC7z4kgDEnTX+BgPWnPSVfrhAIGDaqUQioTC1b9SWLDLlUXJMPJcndKgcwGeQ5hSLRWUyGWv1xxHhIHgQf6ByuZz103j9B3AcoZTvrPWpGAuHl2aTfWQiPctkMioWi3YI6dmIx+NW8gUSUn2iEsF6Af088mDhfQ3e99L4PgxyZp4dtAMKJB8OBoM2HwOYycS59fV1DQYDpdNp6zVKp9PqdicXZTPyACUqTg6jAGl0u10Vi0UtLS39yoAfDic6A4zQdxmHQiEjWb3RsTfk8HBR4XB4qrlyfX1d5XLZCG+4HhwRs3I8v5ZIJLSxsaGlpSUTqEUiERvSJcmGMmObvDPrCyojim9vb1t1xg9S9qpnRF6SrHz98OFDvffee+YI19bWFAgE9JOf/MQ4mFevXplUYHV11ZpFCT7D4dB4CqpDjGPkYHs9Cu0TkN84QBwGjXXj8djOCYEepEgWgkiPzmhQNmcJxOiDoU+h+v2+wvwCopXnIXAgfDgRZTAYmJHyc0AfylReEQh0JB0ggkUik/tMM5mMzs7OrFFsOBwqm80qGAxa7wAEE5PScErIyGmHDoVCNpCXA0QUJ82RZE4DuIyxUX0AvjPAGjKVDfW1fVAKaZofpstz0ymMscEXQVDzu31aAznKYaQqcHx8bEOkxuOxle3z+bzdtkaZ0EN2GshGozc9TlTZiHJIxcfjsU29Hwwmg7L39/clyYR8Hl2iasVR0phJZc07Mea0HB8fmxYHESQDeQgWHGAQKERoODzpq/r000/twFHVikajWl9f1/3791WpVPTs2bMpjmc0GlnayPByytEofQmoHGTGgcI9wUGQim9vb9u4DKaKpdNp06ZQxSO953MRo5HWvnz5UuVy2YYzUa3hZwmwyC88pwPJiqYK9Am6ASWSFkGAg5IR1zG+gAD867hNfAJ0RhhD52AtLS3p7OxM2WzW+kfwgtls1tIK2OPRaDKEhl/GwOZ+v2/XQvDC/qXhWubn51WpVOwzIVspS/HnwG2fDkD2ZrNZ3b171zQAQFgIV/JIyDH4n36/byVPCCWiECP/WEwiHptEKQxnguHxrEBCUjTQCT/r+xn4GcrOaEZwZl6/AYqLRCJTjH8gEDBZNcOBotGoVXv8dDpSSD8hizECDIfy0Wk4nPQMbWxsmOaHJraFhQUbRwn05jkxPBwrxgnHgGOjpwQE5J0ojghOLhgMmoMjfabaxB08qGdnZ2dNeDUcDm1Mot8LEABDwplVClnqUxPWNx6fXKmBFmNzc9OuEYX3mpub09ramiEv7JCWD5S8w+HQnBTjGhnGTGCCBAf9+XQRdSr7jZPEXinV4pSDwaDRCPzM8vKyDg4OrJjCmfPjBdg/P/oUpzwejxXGSPGQEDyRSMTG5gPda7WakVUcVHJpxDWDwWRcHi9cLpenOiVBPaQ2BwcHJhCCNab0SZrjDzAwNJfLGay9ffu2Op3JDW0IhoDofiaE9+CU7tgkfi+Hi3THO1IvH/YpDUbJRgH/+D4ODuVUHByHBJj4O7/zO1pbW9OTJ0/005/+VGdnZ4aEcJrxeNyMrNlsmqaFSM2BlN6kfvBbnpPiEGOUoC4MUJLJ7vkeEAgaiUhk0tHtxWKUd33UAnLjwOB4uCPI1JHhyVUcTMgD5fm8n+ejS5U0I5vNmvSd99je3la/31c+n9ft27d1eHioR48eGeKORCLG2zE3FQQEmqaF47oYDWTNRW4Eql6vp+fPn+vdd9/V2tqaPvvsM2WzWdsnZqxwf83V1ZXu3LljzpARDDgDOBKiP4GNMQ18eRQZCk2uJmH/Cax+3IIXH+7v71tAprDAnkNvkAVwBrwTkTS5RJyWfwx6PB7bJvCL/RUERG+iLXNDWAxuSYNsInpRjgRecVApxTWbTZvdgZPyeSxlOhBIqVTSycmJtre3be4EC433BlZzONCEkFYQodDLsNhIn1kTL6jyJUkvkCPis8CsTyaT0Xe/+11Vq1X97Gc/M0fCc7Im6XTa5sC02219/PHHU6pZnDVOjhKtJCPJR6PRFBKEVIaroqQKKhuNRtra2rL3wcnDO+DIQRjRaFSNRsPmcgyHQ92+fdscKBHQTwXz+g/fk+T1DRzQQCCg1dVVHRwcTPWbcJh4X+wQAt3fc1MqlRQKhUyLwWewt0T6brdrcn9GXwQCk7YNuDymujMWgmoTpWfer9FoWN9Mp9PRo0ePlEwmde/ePXPugcBkzMGLFy90dXVl9wd5CsGXYhn6jKYDG2SeCUEM1MQZJu2BX5ufnzf0RsBG29LpdIybROqATsTzQtgMdsWeov8JU8olugCDQQQw2oVCwVq7T09PValUTDBDvkjEZe7l6empRTpINB4KopOBOkRXXgRoK2mqGW91dVXhcFjn5+c6Ojqycf4eJeExMcxQKGRKR8g+eBHSMTQdoAvIKHpx+FwIW58/euPEOfq8stVq6a/+6q+mCLHrFbF+v6+HDx/q1q1bNrIBmMpcDUY2pNNpHR0dWZrDF8iJCI5jw1HiCHxjGmgPEpJDihPmGb2GSJINdj49PbW5vbxXt9u18Q6gD+9gcRysK3bBO4xGI7vfCMcB2d/pdEyiMDc3p3j8zUVO/X7fhliTHsLBsG9eUk7khZ+ghwoUy9/FYjFlMpkpkRbjDTi0nU7HrvnY2tqyEY+M/8TuxuOx6ao4nH6t2RvWmpsWqtWqrZsvq2MfcFSxWEz1et1SFLQ1ZAQQvlwZg+4LfghaAeRO0GUEAiiRIEuTZjgYDNrVABBer169MrVkJpPR3NycMpmMaUVoMQfm4A2Jkqg7MUpgLZA6kUhoZWVFGxsbajQaevz4sT0cXpfD2u12tbm5aR2sg8HASNJqtWoL5GGuRwgQsUtLS1YXB0YPh0MbcYi3xQHhbYmaGL2Pot4oeW4iBF84ExADqSJGTYQOBAJ6+vSp/vIv/1L//J//c/2rf/Wv9F/+y3+xgTVEDiI/zYPxeNzq/7Tqe/KOqE66yoVNkoxD8FdywOvwHpRlaeUHarM+KGGpyiCsQuHpS4heg8DnY/yj0cjmuIAGudQKB8yhGQ6Hprrm7ziQHIJms6n6lzcg4jT5fgIJ/83dR+fn53YwOETj8dikBKTLpGg03HU6HVUqFbXbbRt7SDAjfaYKt7q6qlgsZkK47e1tLS8v68aNG1ZJIkBxPxAOJp/P22Q8bJTg6fVbngz2afbt27eNp2HWCyQs3InXingOz1cYQdKsZzweV7jT6UxJd7vdrnZ3d6cmSOPFkHI3m00jwK5PyB6NJq3+dBryizKZjCqVisbjsb7xjW9oZmZGjx490uHhoc1LZXM9+765uamVlRUrD1L6wqvjJYHueHNSAUrL/f5khgg9OHh3RuyxMOPx2HJl0BmTulKplOlZWIPt7W29fPnS1sFzLqyH11iw8dencVGt+eijj1Qul/Wv//W/1t27d/XjH//YDgPldQg2GHOekxIxZDbvSJqIbkN6c40ApW6cA4eRagEOE6VxKBRSOp2eyrdx4P1+3/guL8bD4VI1kd7MCcV5UboGbsP3+HYJyHfSHCohVJpAD9Vq1TgJbJT9xD7oml5dXVU2mzVZOrbe6XQsiHKf8ng8tnEDBNRYLGbSfPgZAiHyCIhNruRES0Iwe/TokarVqm7dumUoC+Q6Pz+vQCBgqBTNEtUbL6NnbdAUIeHo9SYXzD948EDPnj0zLczZ2Zldag4xi4aHsrvXJrGPpGrB4Jt7ccLoNJD9Hh0dTTUHSRPdPWnP+fm5zd0EatLgBGwlryZ6Uh7GOe3u7hqc8jwIETAQCGhhYcEujfroo4+m1LZEcG6pA8b6A5nL5WzUfjweN1mxd4zD4XDKsXhn4qHdu+++q42NDUuVFhcXLap961vfsuiHovKLL77Qs2fP7DDgZICtPq3wzqRYLCqZTKrRaOh//I//YX06COAwGqoHVDlAIhxa/g5Bki9Tk6piqDgSIqHXCI3HYxP7cfgCgcDUFH+Mi2fCeYLwMGSqNUR5n+p4TgtSnTSTsqQkm5QGT5ROp42HYewCl1RxAx9T59566y1LY9vtyf27hULBVMw4VWkyHRBuAUcDupqbm9PGxobdlwRvSOMmo0hxOHSzQ6wy2JszQ7BrNpv68Y9/rKWlJX3ta18z1Mn3gA5SqZTm5+dVLpetfHx0dGRrj6Mk6DDe4K233jIEw+wgggVf2Bf2yfnlv0mTcZSQ7t1uV2E2Era23++bXgToXa/X9fnnn9v9NEA1rw0gd8N4yd+IfqCH4XBo3AmscigUslSJuaEzMzPa3t5W/cuLmb0MWJJpOmZmZmwAE5dihcNh3blzR/F43K6UJErCQENccr0DLLlPNWDHNzY2DNqyUT7izs3NWet4IBDQ7/3e7+l//s//qR/96EcKh8OWouHZWTeUiKxRJBLRH/7hH1p5dWdnx3J+dDuQqbu7u/azlPNAOp4UA03wu69DfA4x4ipfKibVAwH51A/H3mq1zNn5/gvSR/8soELSRD4L5wNaITWDKJVkv48GRjiqy8tLu42AxkcqcByCwWCgJ0+eGHoNhSbXcORyObtAjMFPkUjEHDjOiXJ9LBbTe++9p0gkYkg6HJ6I7N577z2Vy2Wl02lzhuhlPv30U+3s7CgWi2llZcUCC42Nc3NzJgplqFexWDRExj7ROPiVr3zFkC/3Cr169crK2V7jUigUzHGwr/QiwUHxb7Q52KrX3sCXcgahCNjfsB/h3+l0TPpMeQmBmTSZr8CBgyH3FQq8FNGaxjOMxJNhHtL6eZksBKVcnoNDTl+ANLk35c6dO8pkMibvXVxcNEZakm7cuGGQsNVqaXt7W8lkUrlcTnt7e9Zr4RuwvE6EA4625LoUnwiLBgWjxxnyrCACuAXWiDUOBCZ3BH/ve9/TH/3RH+nGjRsqlUqKRqP60Y9+ZFCV3w+ZjVOgwar+5Q33OATIUfQN6IBQm3LBNbNdcfC+1wlZNoccx4WjxSbgOEql0tRh9rwQawGJi0Njj3kG3tfzLDwPqTIHhmeEh+DAoP5EF3J1dWX3BfM7KJfCCUQiEUOzKLlZc84G+7a0tKRkMqnXr19bJeett96yd2DdS6WSqbLr9bqWl5etaxjx5N27d60n6osvvtCtW7d08+ZNu/MI5TnPuLGxYVdOZLNZLS8vWwpWq9VM98UlXNyj5JvvsHXufuaMMQKEQMe6k55S7aQ3ajweK9xut3V0dGR/wKYx5AePzFwC33KNYAeHwi8BZfB3KOqIaijnyMHxpIiiKClBZEEseSLJT9Ta2tqyAwQq4eeQBeMs+v2+wd1CoWBEMeVBmG4iBhdan52d6fnz5zo5OVE4PBkB+Du/8zsWddClgFTotpybmzOVaTgcts2kXO4bDcfjyUjK//yf/7P+4A/+QN/+9rf1/vvva3d3V3t7e8YDDIdDS6+80AzZfblcNuKbLwySnN3zBKAVIjsciUcxOBKcia+qscf8Tj4XdMK+g2z4O5Ch19OAIkAlIENPFvMz0pvZM3w/nbLJZFL1el21Ws34CqA4Sl+CH3AfYRpoCIfAs4FuksmkNjc3ba1mZmZsgDrVLPiJ0WikjY0NvX79WvV63SYHcuMg4xgXFhasHaFWq+nTTz9VIBDQzZs3TULA541GI2ucPTg40OHhoW7cuKGbN2+qXq8btYCoLBwO25mQNHUjJE6WIE7fHGkMFSz+H1qAdB7HFP7617+ujz76yPL0y8tLk87yRV5MJMGovCHxC/H0/vPYDDgYvCoHG1aY8jHRlNJyMpm0nHJubk4zMzPGcHNgUeQS4ZmjgGEjHfdzNyCxOMTeYbHoXNfBTA2fpjx48EALCwvmNGHpe72ePvroI3NiIDKfIhCBr5cUGT709OlTffe731U8HtetW7f09OlTQ3I4RhrpIPHC4bDd84txECA8oerfNRKZDG5i3F+j0bC9w5EQlbjw7PpoSSoqOHJSHaI8zpVA48VlkMCSLHCNx2/GKfjuYoYDERm9U2MPvYQ7k8moUChYGsCBpMoGrzEej417oEsa5+krIziTSqVi/B5Im/JuKBSySfv8jBcdsrY4bV/+brVa1uncarXszmWuUI3H43bRHNdkYEMEdezPB00aZ5lUSPDie7zgkPMmydLp6xoS1ph1j8ViCuNJ8XT840uonqTEeZAzYlA4ELw/+RMbjIgL8QwREQPlXg9eCDglybibr33ta3rw4IE9D8w8iCeXy6lWq+n8/NzUnzwD+TQcAiIcjI8FHAzejJCjPPrJJ58Y7wOPACGNwWPoEMdMxmcTYMYpt/tSaLvd1uzsrP3/zMyMfuu3fsuulPjmN7+pFy9eaGdnZyq60rKAAlN603WLZJzyHofJl/XgpFBMsk44JF/2HgwGVt2DF+Mw8w5UsiTZfFKiGv0iXmEcCASmtEKS7GpP7IYvgpRHOJKMJOb7EWl5RbJHFVT+OCyk1+wjtuUdM59B0PPaE9Amc0OOj49tAj73LdP+wBAnr+cAHVKtQgUNKnr16pUFTpAs56vf7yudTtuZgMsBteMIQdUM2KI5EGEaw8JxkpLMxnxaCfqGR4EIDofDCjMLFWPxhsZLewUnHw6CoI+BqMvLkO7AfeBlOUhEIj6bigwbi26Eg7GysqL79+9bRCG/BSU0m03FYjFrwvJScVInjA/YTps9IjkQDAvkFX04UhARm8Sfe+4nEAjon/yTf6K9vT01m01lMhmbu9FsNk2O7EVtNC0yK4TpXrQt/Pt//+/13//7f9eLFy+MgFtYWLAyHkOqpYmuh9Z7SDzya9APXEMoFLL7nT1B6oMBQYI0hwPFGlD5wenjoDc3N3X//n0Fg0G9evXK1LGZTMbuCiY3x0HgGPk8kBwHGwTixWXYKb8X1OSFWHwWJd1gMGh7AUnNe3p07YWIlIVpsCQt8e/++vVrdbtdu74DEpvZt41Gw9If0jyQNnc0Mwh9ZmZGZ2dn+ulPf2rp+3A41Pr6uumK4KuoDNHcxzPjULvdrt1ThVSCdH5xcdH4oIcPH2o4HCqfz//KCA1QDPsFChoMBhMdCR7I1/2BdJ69xfhwDPQ2HB8fT+XR5GgQi0RLH8FQ483Pz9vN8xz6fr+vo6MjI5/YGOT4RDA4AQ4MhsL8CYizvb29qWdngpWfJQpM8ygFhwVagWQCsRH9eF+fvnBIQW5sKEZ9cXExNVMCcpGUb3d3V3/3d3+nd955R8vLy8rn8/qjP/oj/df/+l/VaDSmYCglx06nY3NOSSHy+bySyaSOjo5MGwHnhdMmojLYCCQFiUzUwWgh7+BdqOJFIpP+LCL/22+/rd/+7d9Ws9nUnTt3tLu7q5mZGZtMhh1AkI5GI33++ee6uLiY6unwqQVlbshi0AO2550g68+hCgaDdocx70hJmOBIECGwkQay34xwxGkPBgNtb2+bDiaXy2ltbW1q1ikoM5vNWrrrCxFXV1d69OiRlay5vmNhYUGFQkHj8aRlBS4zFJqMKsjn82YLg8HALjTzSAqymCDJu1wvlEQiES0vL+v4+Ni0JbQZUB2lPAwSo62g3+9Pem3wyh5q+v/3aQa1fmrVtVrNoj/wjF8WiUTMI1POIjXI5/NKJBI6OTkx7UgqlbKcdnNz00qu3W5XpVLJvCL/8BwcYAhcPOjV1ZWKxaI2NzdtkC6IhjF4GKAfr8j7+ogB2ur3+7ZejCBgXUjXBoPJBC6EfTg6ohfQPBAIWFrzjW98Q/fv31en09H8/LwZHZqE4+NjLSws6F/8i3+h//bf/tvUIN5CoWCRAaTIHnIQC4WCTk5O1O12NTs7a4bhScH6l9eNYOA4ataY0rUvLUNw8v8+qu/u7lqAosnSf7Yk0yY9e/ZMjx8/NrTIM2H4tEfcuHFDz58/N7nAdfQAUvKVJp7tOmrmzzzHwtr5IgLnAA7o9u3bhkDoKcK5EVxAUaBAdFc4aoh+Rn7WajW7fJ5Df3R0ZI2NtIO02229fPlSKysrRs62221zbsyDJfX1Kcr5+bnS6bQFOVTL6FuCwaDu37+vo6MjFYtFPX/+3Jw1mQmpL6kO3F4Yb+zTGDbALw4RnRH91WrVnASlU/+FbLrf79vkrXg8bgIq+jGQvHO9AIIdHBg5PM+D0XjSMRgMGhHHJjI0Zn9/34RHIILxeGx354bDYZt54qscbDpt0wij4ElGo5H+4i/+Ql//+tenrjvEMOfn57W0tDTVwyLJZo2CWqQJL3D//n194xvfMKdMbvvDH/5QV1dX2t/f1+bmpv7RP/pHunfvnj788ENzXpRaPeyGSKtWqzZjdXV11dAj0T0UCtlcVq4AxWF7JS7NXpQ5iYI4quFwaNoFyPpYLGbXdJIC//znP9fGxoYePHigbrerTz75RJ9//rlev36tSCSimzdv6jvf+Y4WFxdNZkBEXFpasqFUX3zxhaVpRGOaR4nAvAPoEv4LJwUq4DPobwI1Ugr3pDDiTBwo706D4HA4tCFPCCU9MT4ej21oEmgd1Ac66XQ65tzQUbGnl5eXOjw81CeffKLvfOc7dsVLo9GwyfDZbNYaXxlLgEOizYUzRIUNSkCSNjc3rerlx17ifAeDyTzmWCxmvUZhj0CI5j76eIUk6YqH/WxcOBy2Cg3iNlBJr/dmytJoNLIZDaPRSIuLi3rvvfeUz+clyQ4unpnFB/6i5QDikor4OSFA1/F4rKOjI+MLuJYQjoaDz8H2w5yj0aguLi6mxkPyPhhHq9WyUh9riGG+//77SqVS+vDDD3V8fGxQGxmz71vY3t5WLpfTd77zHbsg+v/9v/+nhw8fWidqPD65MuNP/uRPtLq6aoiC3wsqwPBxCKgoY7GYSqWSvvrVr6r+5SVcEKKkX6urq9bLQUpAtYBUw6MTOBNSGTg2xIh/+7d/q7/8y7+0IVdePUtbgicsQTqBwKQDGBIYAtHrbn73d3/Xpr+1Wi3T7TATZGdnx9IsAiGOj4ICfUkcYN6XL4hZUCVRHZtjch1zZgkCVAl573w+r3K5rIODA0PPzJnN5XLWWEjaBfeGo5qZmTE9CGiLq3OZIUtFDLTv0yec8ezsrC4uLixNYy9B2QRJUMzt27c1Go10dHRkHdUPHz5UIBDQ2tqanecvdTlhW2jPcGPsyKmJ1pVKxer5dMzS8+FhkK+4ABF93smgnK9+9asGwSDtPMHFv1FRUmJlvqVXpIJSEDIlEgktLy+b5+z1Jve7kK7AYI9GIy0vLyscDuv09NRKjBx+SnPU2DFG7i0eDof68MMPdXV1pX/8j/+xQd2vfe1r2tzc1P7+vv72b//Wqjo4SSI/OfDe3p5OTk70f//v/9Xe3p4pjGHtEY69fv1aN2/e1KNHjyzqhkIhIxhZi1wup4WFBc3Nzen09NQm0CHmggj3JDoBw/M3PLPnVvh59EYI2kCTkuyAAMF9pKf/xfeOgMJSqZQFFvgZnAhfVGYikUnX+vr6uqUR4XBYS0tLOj8/tyoeoyfH47Fd4Ibuh9/Ne4GGKeliV56MRn9Uq9VMGAcSPjo6mqo+sZ5+bV69eqXhcGgXoLEPIEUaTfkdDE5iBGM4HLbLv0CTIEt4PwY1HRwcmL3Ce4EYWV/OEHvNezI5bnl5ecq+tra2rDgQDAYnHAk5Ex6GaxsQ6JCi8JDz8/OKxWJThFOlUrHIyRdRCEPlz9bW1lQoFEwYcx3+ezgNJCXa4ZwolRERKO3CHZD/kVb56OzHGNBRyUxWDrYvl/L+3pGlUin9/b//9xUKhfSTn/xE+/v7unPnjqEytC9/8id/YncX47T5bw5Oq9VSvV7XX//1X9sE85WVFZswDmqIRqMmLLpx44bG47E+++wzi9qgNIgwIj/oDMMGMYZCIWtGpKKEapZeDV9K9JwXqMNrMyTZZ2FHcEYMZ/IENnvC5zPBn2l3PC9cGAcRYpmITZBin72YLZ/Pa3193Rwtw7Q++eQTW3s62xmjSKpKCs+QJVJnRGlwEoFAQOVy2YjNnZ0d3bt3T9Fo1IZvUeHZ2NjQysqKPvzwQ9N8wO1hu7Ozs1paWtLt27d1cHCgSqVi/TWcqUAgoL29Pb1+/VrZL++xfvvtt5XL5Yw8rlQqdlc3zpwg6rVglLbPzs7U7Xa1urpqhY1Wq2V9dqlUSmtra9a0CCLt9XoTiTyHnw1fXl62dGRzc1N7e3s2VMi3GtOQ5lVyPCyeDYQBr7CysqIbN24YY4wgBmLK1/yJYIjAYMBHo5H1JSCXhsX3UY/KSDweNxLSpyv5fF75fN6YeEYNbm5uGgxGfo4jpN+o3W7rww8/1Obmpv70T/9UOzs7evvttzUajfTgwQMtLS2ZXqVarVo6haET9SgpJ5NJG63w/e9/31IsIjM6GGbTcqk1DpAICy9Cnl6r1dRoNEz7MBwOTbUZCASM66JixPqSKnLY2VPWmLQEYRfXc+J0Ofis4/UKFWuAQ/KqS0k6PDzUixcv9OrVK2WzWf3Lf/kvbbZvr9cz3oCUBN6DA88MXva/2Wzqr//6r9XrTe7x+c3f/E09f/5cH3/8scLhsBYXF+1uaojKdrut3d1dnZ+f2zwbAl6z2TSRY6VS0cnJiVZXV03i8NlnnymXy+nBgwd2QEejkc7Pz60qgqNeWlrS2tqanYn5+XltbGzYnnW7XZXLZSUSCeVyOdN9cG9xrVYzfodRAVRDnz9/rmazqVQqpdPTUxWLRevi55yl02m7+2dubs5SYVSycGLIPUajkU2+d0O0wxbleZFKpWJ3bXBYqU8jO8dTUiLGOGgxR+5OLpnP5zU3N6ebN28atCfq8/Pe0MjjQElEGD87g+euVCrmUEh7+BlGQ+I9kUyTFlWrVeuQTCaTdqg4OKgYc7mc3VUsTcrln332mRGKEIM4yYuLC5VKJX33u9/VRx99ZHNUs9msRVicM3M3Hj58qKOjo6lWBR81mE0yGo1ULpf1+PHjqe7N66kLhgqRxz8YhkeBvq/C3+jmIxdpKuiIXJpDC7wnZQHB4nC8A5LeKCT9+25vb+s//sf/aJzEYDDQysqK/vAP/1APHz7Uxx9/rH/6T/+pJOmXv/ylRqNJx+8HH3yg4+Nj/bN/9s/0rW99y65NGI0m7fvPnj3TkydPjIDf2dmxSExTKfwcGhPQD8/BO/lyKqkgqUy9XrfeMRpGj46OTIDmy+iRyGSM5tLSkiF/xHKg+NXVVVUqFUshSXvg/3CcFxcXevLkiZ3Jd999V/v7++r3+5qdnVW329WjR4/01ltvKZfLWf/P8+fPFY1G7X7t9fV1sxuqe16PRTGm3++bFmY8Hk+myAO1iVx4cA48pUEOAhUODEqa9HIsLi4ad0Las7W1pW9961tTE9h9MxlQ12sBcBL8N2wxOTy8AC+Eh2y32zZUd2Zmxgb7kjohQadxrdebDKdBkLO2tqbz83MzYhAYcBHRGy3zlUpFn376qaUyy8vL+su//Et99NFHun37tv7Df/gPeu+998zp8p4gEw47v6/X6+n09NRKijg23pemPDYVBp41p2rBGhFdQQ0Ei0wmo/39fUtFSSMQMqVSKeuoZv9RpuJ0SNNarZbK5bIhBcqfpMakHwQGn9bg/CkTS5Nq3+HhoZaXl5XJZPTWW2/p3/27f6fd3V39p//0n/T69Wv9xV/8hfL5vJ49e6Z4PG7jJN5//33dunXLUAEybhzi4uKioSRSZZy6rzQxghGEhbSBWbQEQBAyDvn8/NyCFs6iXC6bg5Zk17SwJ7QmSG8GCNGCQABZX1/X8fGxDg4OJMm4CiqeoD+Q3fn5uSqViqUf6XTaeBH2jfSnXC7bu11eXmpvb0+Li4sWkEjXeFf/XJz9o6MjhRHBnJ+fazwea3l52drYHzx4oEQiob29PXsQzxMEAgGTu2ezWSUSCSsvplIpffvb39b6+rp5NByC51FwEF5Q5PkJIoQngPlefo6fgUDFkUGuAW9xRHhoosru7q5SqZTV8UkRotHJYKVEImEDh3gGX2FYXl7W/fv3TTuRSqVUrVb18uVLra+v67333rPRlAzv8dGaNJHIRwMg38dB8JHOi+MQy3E/CRUnFJKeYPPzVvgd/gtyDY1It9tVPp834R8GxS1z9XrdqnD8HIfGVwRBuLwT1zVAyIKCfM5+dHSkVCql73//+/rJT36iSqWi4XBoKevKyooJ6h48eKDf+73fM8UyM1ra7bb+9//+33bfMM2FFAjYS1/RofqBFgl00u/3zZGDTEjJCDwg+IWFBTvkxWJxqi+JdAJ0SsqJNgNNB1ot0r0vvvhCzWbTunNxcmQLXuVL8AGphkIh02g9f/5clUrFHBCcFrwdmiuEbzgpKIqVlRVJMlRSr9cVpoNvOBzaNKhgMKhisahYLGbfiPFh5MwQpdGJtn9y/a9//etWIrr+xYJ68Q+MP+kV0QtYDuvNz+FAvBPii4joN5mIzcLHYjFrkkLFSZ8BUYNS4nA4tFF8PC/QfzAY6P3339cf/MEf6G//9m/1+PFjGwvwx3/8xzo7O9ODBw908+ZNU46y3kR63hWxXzKZ1OnpqVWYIIF7vZ5d6E4FiNJzPB7X8vKyEZG+/8cLoUgRM5mMGb9vgQBiS5q6qsM7aYwMRJVIJCzCUYEhNaREj6aiWCyqVCqZs0aI6GX8CLS63a729/f15MkTu5mgWCxa9+na2pqOjo5ULpf1b/7NvzHNw+7urnZ2drS1taWvfvWrdqhIYUhDiOigRLgd0BvRHYQCAYsdSdOzgQuFgqU6hULBysbMKJFkRQk/QY/9i0Yn9/EQaOHDIpGIVlZWVKlUdHx8bAQrAjnQ2/Pnz61kDVVAGpbNZrW0tGTnlYmDBCmQ1Xg8tsu8ZmZm7BK2YDCoVCpl1dVIJGJVsxs3bkwGGxUKBaXTad2+fVurq6s26/LTTz81I/AlKvKnVCql3d1dI0y//vWv6+7du9YR6/Nr/tuLmHyHqDRdw/dRje9BGYsn9WiEZyN98mU8IBmbT3RHOxIKheyQswlevCRNprHPz8/bdLhYLKZCoaA7d+7oN37jN0zCjFOgSev8/Fw//vGP1el0tLm5aeQYYi8MGQ0Ld+nA4IdCIbvEmi+f21cqFW1sbGh/f1/x+GRYMJ2npHRMQGONiD44CFAAcBkHheKxWCxapYuLsXyHNfsbCATsuklkAaw3TWL5fN6ITPQjpJo4eQ7QxcWFVldXlUql7JJu9CapVErr6+t69eqV5ufn9cd//Mc6Pj5WLpfT4uKiLi4utLu7a47B92IhEENHggycTnJK/p1OxwY30a0bj8cNhbMWfCYBDPHZ1taWEomEvvrVr+rg4MDSfewRhI7TYjYyJHG/39fa2prZKo7rs88+M20ICI0RAN6RkPaTQq6urhq6IhheP0+cSdJWri6VZBxht9u1YUxmk6VSyWTIwH8Uklx2RW7F9OmFhQU1Gg2dnJyYrPbdd99VNpud8mz+ixcDTnKovfzeE2/e8fh0BwiI0/C1fzaJv+d9vAP0ZejBYGDMO2U/EBp5LqXOYHAyVu/k5ESbm5u6e/eu6vW6FhYWlMlkDI0B+yG5GPIDD7CysmL5OI1r4XDYIjAEYT6fNzSRyWRMdzIzM2NpAlzV5eWlzs7OdHZ2ZmQdRjQeT5rq0BD4ZjsqcKRKOM9YLGaOM5fLKZ/P2zWh8CzJZNKIRDiJZDJpczb4PcjwqThQBubWAEY7RKNRuyqk3+/baMxCoaBarWaCN4+uDg4OdOPGDeNZEomEdnd3Jckk3gsLC1pZWbERE/Ah8FC8CxyUR6aMTYAYR6WN06AnBmRFuoOoMBKJ6I/+6I+USqW0s7MjabqUzXngDPg5uaQ1+/v7U4rS27dv6/nz54bmx+PJyMlaraaFhQWdnp7ameOgc0ZmZ2e1u7urTqdjgkBSZ38mEGSSRlMhq1arduUG7wwqCVP6oSOTKU6H/193b/bbZpac/9dLUrssUftm2ZK8tHvxNHq6YWCSYBIgV7nI/5pcBMhtgrlIMBN0kAk6PdMeW21Z1mbZkixRJCWRvwv2p/SwdN6XlLu/N78DCCJfvu95z1Kn6qnl1Nne9kWL9FxfX7erqys/Ge+TTz6xX//61x5Jp4Yn9QjASFjIMBrUBn4HYeDRwZhKO4gwhdGAVOCu8d0aCo4lWjkubmF2g/J+JAtMCDiKJGw2m/aHP/zBUziS+o8ENrpzd2pqysOhj46OPKaEvREEr8E4Ma4ykUgMPqPWjYyM+OFUBPLRNs0iB3NAsqLyKLoj9oR+X1xcOKo8ODiwN2/eOJKqVCq+X0PT8ilDNDOX5thECJFHtYOBjIyM2NLSkhOyWcdzU6/X7ZtvvrG5uTlPGsRYE6CFkBsaGvJ9U3h5UJUnJydtfn7e9vf3fbHj/gYZYzis1+t+tIlKa+xsmvtFHQTE72xtbTkawL3++vVr29vbc/sY6iPOC5wJGMjZkTw4OHjjXuYK5GTWCfrb2tqy09NTu3//vj18+NA2Nze7DMHY4rCDYkSFweE4Yd1AI6T7nJmZ8aBMzA0gVA9jIDX9/fv3rdFo2PPnz7ukDIscQ2S1WrXPP//cpqenXYIo01BVRQuLEms6ixniggjofLSKwxA0sAqUQUyCMhH0YpiIohbuo00azIT0JfycvQQQEsbK6elplwD//M//bJ999pltbGw4GsFVzTuJJVhcXHRLOioYkhcmogu9Xu8caQkDxJ6DyxEpMj097f0FAXDY2NXVlb1+/doWFxddmmAPYLt4rVbzdJWlUskODw+d8DGyXV1duQ3HzPwoDwo5M5hPYjxQFfAoNRoNR02EtZNaYX9/366uruzhw4e2sbHhhF4qlWx1ddVjLIjtIYnT1dWVzc3N2dTUlFWrVfvxxx89wzyxOqgBhBxAe4wpgoZAOpi5mXlEL+ootEB/UGNnZ2dtfHzcHj9+bMPDw/bv//7vHtqOOnV8fOyBi0p/1HN4eGjLy8td0dqo9uVy2dbX152GSKPx8uVLX5/Ly8tuiiDEoFzunFG8sbFh29vbtrm56QF4ejIiCIn5evPmjZ8zjdpJxn0ET6PR6ASk4av+wx/+4JF6IAj+z8/P25MnT2xjY6MrH4RyJSBYZCxaYCQa4Ul8v7qY4KK4DnW3ZqxPA9ogfIyHTBQIBkakBibqMTPXffHbm5mH8+MSNzPPH4Eqc3V1ZZubmx6fgFrEVns8DUdHRzY/P++TDEFgN6EN9HloaMi3l2NMVNsDx0i+ePGiSzd+8OCBlUolX2jn5+eOOgcGBuzHH3+0y8tLDwMHujPOMFHC9Fn0eEP29vbc3Ylk5VjSpaUlK5VKvmsbBJVlmf3pT39yyY6xELvM6empQ2/GiP1Vi4uLdu/ePc/Psru76/MD+pubm3O1j1wa0CaeLOYTtQKVCScCm9Gw2bx//96Ghobss88+8xylMHjUXbxlbJqbn5/37RSEF2AbBOmgThLgxa5nYqIQXPQRjx1okfiniYkJ29zctKWlJY+pGh8ft42NDdvZ2XEkd3JyYrOzs9ZsNj0UIe6cxhaKDRTa+e///m97//69PX782H7zm9+4kEYVq1QqVjk8PHSORi4NiBkO9ODBA/vqq69sfHy8S91R24YubC1MJPcoo4GZ8Bw2Dd3WjX1Cja8RXSjT0raovx/mEdsLrKUdY2Nj9qtf/cr+93//14mSJDLlcrnr2MZ6vZN4GLSGBRxujuuVTWVYz7En4GJmHxB6+uXlpW/KOz8/90VHhiu8L2bme4Uw+NXrdfu///s/azQa9ujRI3eXo/t///339s0339ijR4/shx9+sHfv3tmHDx/s4ODAt7LDOLCV6WbF3d1du7y8tJ2dHUcjBMKxSDkg/IsvvvBISTOzV69e2du3bz32A5cyGd4wGBMDRETt+vq6RyY3Gg1Ph0AYN308Ozvzw7DR33EW4H0hZF89b9AT4f9HR0dOX/Pz8x7XgToHjbIbGmTEVgEQNQyUfrB7HFsaHknc6CQan56etrdv37oqB7pFqKICsU5wbddqNT+6dnR01JaWlhwVLiwsWKPRcNqAAbNOCGsgxgZ1GkFVKpXsxx9/tOnpaXv06JFvqWg2OylCKmRlArbBMScmJmxsbMz+9m//1lZWVlznZNErM0gt6shMlOkoWlBIGe+PjCqiB7NrWMhiYQJVbWHhaTCUmXWhF+3DwsKCh2Pv7e3Zzs6O69WDg4M2OztrMzMz9urVK58EpCowHmMYvxM/QqYsNSYvLy97rgnsJUSxknbg4uLC9vb2zMwcHZRKJZufn3dmyeTjIVFPDSH2FxcX9vz5cxsYGPAMW8QDqb6ucwURZ1lmY2NjHvlMzM3k5KQnsq5Wq7a5uelxCgcHB+51eP36tW97Jx6jWq3a+Pi47e7u+t6n5eVl+8d//EfP/EbkLHlzSaZDSkJUAGxWuMBXV1fdjgTiZXzV24SqCLJi4aN+1ut1+/Of/2xLS0tdu88HBwdta2vLKpXOecOsj6GhIberlctlZ9DYoqBh7B6aO6VUKnWhKU0xAOJGS2Bux8bG3L2OkZfYEc52KpVKboidn5+3ra2trp3trBdMBdCdRp+/e/fO/vKXvzgaQijW6/VOFnkiJGk02c9++9vf+o5CtXFEhJBCJpGRaFG1KHVPCsEo82GBRnSjjEbbgqqUxzji82bXPvypqSmbmZmxN2/euETDWEpQERIUSUP2t8nJSXv69KkNDw/bH//4xy59m9ST7B6tVqt2584dz9GCUaxSuc7yrRHHEDxSBBf28fGx1et129zctIGBAT9QnKzjpVLJnj9/7h4gmCzeBuwemj7Q7PooSPWaaCwFTI69RdyP0EFlZuGwlaJarfpZNRgynz596m5hVMQPHz643YoAKfarcHjYmzdvbGFhwXerfv311zY6en2uMQsKzxjeSN1BDQrmGjYhXNS4tQcGBuzw8NDtSsSokClOmQABZQQRqjOBWBbihKBTaJ+xRv1h3PWMHiKix8bG3G27vb3tm+tQvU9OTmxpacmWlpbs7du3TjOMA+iM/V2NRsO9O6heBHqS5gG1sIIFmJ2XAwMD9vjxY/vqq698YehCi67dfpiHPqeLX1UNZR6KeJTZaOh86h1m1+kc9Tn17Gi7lQEqg2QCyZjGqX8ESmFYw2IPQfN5eHjYnj17ZmZma2trtry8bKVSyU8MxNUMp2+3O1vWd3Z2fAGzxwEISXyG2owInHr9+rVNTEx4hCmxF3HfEPafdrtzFjELGN2chNi4MYm4VKIGVeGNADqzSDWIkGAqiG1mZsYPSUfiLi8v29bWlhtpp6en7fDw0COJzcxz8965c8fev39vp6enjgwg8MvLS99RzoH3MM6JiQk/BA1kCqOAccBIVCUhXB6XOKrJ0U9n5OBCrlQqHqdCbJLa7JhjQgJWVlZ8SwfXCWcn2dTx8bG3nz02uIzJD6NxU6S+xFCsnkbsJMSBfPrpp+65AaWZmato2OQIpjs/P3emge2QnCu4kisaOzAzM2PPnj2zlZWVrlD0vJJayMo4ip7JY0BMJK4uGIG61OLzKWanRVUa6tTneQYDLIFSEJy60ebm5jzoyMw8M1ej0bB79+45Z/+P//gPOzg4sLW1Nfv666/t97//ve3s7Piu4NevX/sBYEQPk5TXzNxOwZm35XLZF/4PP/zgdphSqWTr6+tWq9Xs7t27zmh0i7fGiAwODtq9e/dsa2urK0gLqcUCAKUSwIRNCPRTrVZtb2/PqtWqGyeRnmbmi6Dd7mS5++STT2xhYcHVLc6V/fHHH+3op+NOP3z4YN99952rYDC0jY0Ny7LMQ7zJfE5dpBSYmZmx9fV1P1QN4/zg4KCfA4RRGTvC8fGxu5D1OM1SqeThEOyQhgawvYCQCCBbXFx0VYGcwTAuwhiwXZiZe4sIt9jY2PBtAxwLQ26WpaUle/funbuaQaPj4+O2uLhoZuZMm60BqDLs22KXuTIn7Fu46nHNY+wmRGFjY8NVS/qOzewnRFPx5DB///d/726y6H0pYgop1aXoGUUmcfGjz3OPqiMptzLXFVXkqS3xOjqxSiP0RkVJGjNgZs4MGCczc+MkqIRw+r29Pfunf/on1+1XVlZ8ssrlsudlxViI6mRmjlpIDUDeWzwZGIE5qnJhYcFjekAdh4eHnmYB42atVvPYGdACMRekO8BYiaGR9AmMzczMjPcFiUzoOAdAsQuZTOUEkRGIpuH0qGTYltTdWKlUPMkPnp7JyUmfs/HxcZubm7N79+51eQ5V6KjqlmWZH5VJci7iNqCho6MjW11dteHh4a6dzUSywrAXFhbsxYsXvohBcTAN2kA4xfHxsX377bfuSYNu3r17Z4uLix6zglcII/Dh4aEdHBzY559/7qkNiEjX7RHs3zk4OLC//OUv1mw2PRn40tKSNRoNPwp2dnbWDaqss3q9bltbWy50CPWvVqvusgbdE8l9dnbWSWyUZZl9/fXXftZpP6WXsTXaPPReJIUucDWAEq6tQTIp12+KkUWvDswgLnws6xoQZ3Zte6EOFjVtA8Kvra1ZtVq17777zra2tmxoaMjW1tYc6ms2tMvLS1tdXbW1tTU/+JqFTgJpjeIkerRer7uRjuAw4lc0WlEZB9LUzNwzcHx87FIaKUn/iZrF5jIxMWHHx8dWqXS2sB8fH3c2Zf0kicllAZOfnJz0MZyfn7e7d++6WgQUbrfbtrOz44sB5qM5f1utlqfzMzNHxa9fv3YdvV6v+z4oCobvubk57xPzrmp4lmV+tCtGZVRBBACLular2bt37zzXLMjUzFwakwyJ2I+7d+96+Hi73UnFwJgPDnbyqJJBrV6v2/T0tB39dPIem/qgd5gZUdeK7M7Pz+3Pf/6z950NdzAu0j9ycsLl5aVvjLx//77dvXvX/uu//svGx8etWq12HcOLigjDQ3XHG7W9ve3R4O/evXOj7k8pJSv229/+1r744osuo2pcoEWMotc9au9IMQYGMBp0NUZFFzvPR1uNqifxN72uFnKKtgW9M9bN75SJiQn76quv7JNPPnGdnWAtNsVhUNNMZcTIELmI+oTHhdSFbADDQMlxAHhSQD0HBwdWqVTclkCGM+JU7ty5Y19++WWXzQNpTs4Y/oiAHB0ddaj98uVL+/3vf+87UbGBEM9C4mFc1sB4ImLNrsPNNfk3Yzg/P+8GaLNrZkcA19zcnNupZmZmbHd3196+feteGRitqriRPqh3amrKbUH7+/u+6LGhmJkjCzKjRVSqGyJfvXrl6h42KKQ20cEsWPKHLC4u2uHhoe8dwjaC0FEhgsQnCpiASBCZpr/ELnXnzh17/PixtdttZ5btdmfrC2caY3/CY0UMEWowa4LM8y9evPB9aah/z549s9PT007s1Ndff22PHz/2wYhMQEvKYBoXWl5RGwf1sJDzPDb8phI27z5lECki0vfoe9VNrL/1U1ALOYFMC7A2eqcYB9ylHAYFIWmya0LraR/6Mdex9L97987RBftARkZGnNjK5bJLQWw/vJP8trwbVaHRaNgf//hHOz099cAzAq3Iqnd1dWW7u7uOqgjXh+CPfjpKEjeqGrHHxsZsdXXVvV0wObLusc1gfX3dNjY2ujaJ3bt3z1ZWVrrijaLw0PnWAoIjDH9oaMi9HWxXIHwftYy0Aqi9rBMYOoZIDNXc8/LlS5uYmHDEUa/X7YcffrC9vT3fW4VNRHfTgpJWV1ft0aNHPsa4vdfW1rq8UNjT2B0OQ5icnPREXlmWOeMjDQF2KCKxsXGBzhhfhNvU1JT3bXV11dXNer1ulWfPniVduUyQln7VnlhShlL9DhGovSO+r4hYYt15NpqUgTaiHCR2qr6UETfWEdGVtlO9QgMDA7a0tORBPWzQg2g185kGoOFOJHaC9Hjz8/O2sbHRFVxELlskpB50zpwgrdhujmchyzLf92FmHhqdZZkzN1DA0dGRbwpE54bQsXGgp5fLZd8moBKU/SIEAV5cXNjo6KgfUcKcYc8yMyf8vPGOc8W18fFxe/LkiWdtp53z8/OubuLFxKgIUiXSN8s6ruGHDx/6XiuCBzkBkbN3zs/P/fB5XOKzs7NdZ2yXy2WPmuXdLO6Liwvb3d311Alm1uVBQSBgY8P4nWWZM/jLy0s/Z0l33hN8h4GeukHJR0dH9uHDB3cJEwSIgwDEVcE1lTKYpoyWqUmK1xicFHKBIaTUCiY8fueeFFpQg6h+V2akxBaZYYo5RhSUUmtivxXl5BG2MqRWq5Op7PHjx+75YSGbXYdxa6AUfQE1LCwsuHeEbGq4DdljwULGmAtkpy2oTUTN8k5FCQRwEW+C25K9JrOzs85UNLs/xl1UtKOjI9/mrp6knZ0de/78uY8xXohHjx7Z5ORk11wzfnEu+nUMUAYGBmx5edkFByokO9gvLi6sWq16MCI2O3a/Y+uqVCr25s0bjyhldzAb7dj4Rhj9ycmJRyHjAkdFAY3oni4CIS8uLmxra8vu3bvnTAwERC5f+oKaNj097QmciQF5/vy5Z0BjXxPBp2bm95pdh1tsbm56zleSrINatre3O3tt4iDnSfzUb/1MWmrxmuWjmxgrogbS+IwyqhQjTHmHUvfGdqfiWIrsMzybN055RuEs67g0yb2hyX10Vy3Z5AlYUonCrtp37965u5joRrLWob8vLi5ao9FwDwk2CKCxmbmxkZAAxp14CggWgzG5UjjX1szswYMHtra2Zmtra3ZwcGDfffed7zUibun9+/c2ODhoOzs7jgRRI0gQzi7eOI5FcxgFUZzPOC+4Z/m9UqnY+vq6qyikCWi324422K/EM3i0BgYGHGFqdDNpBbh/b2/PVUnQDC5vjqi9uLhwBo3t5vj42P7zP//TD+jSncpsLo37YMjROjk5ad9//73t7e1Zs9m0X//6176XCK9to9HwHd7Ye1qtlr169cqRowZHNptNOzg46ASk6cDGhfex5ec8m2oPKk20ifCuIiaSYiSqakWUUwSJI9rpl7Gm6lW1bnBw0Obm5mxmZsbMzN2Bb9++dXcsUZF4mgjfB+ngYRoeHrb9/X13iQ4PD9vc3Jwn4yE8H2hMGDUQWlMmolKYmXsMWFTA9Tdv3nggI7aQZrNpz58/tz/96U++0RC3LC5nDK+1Ws1WV1c9jeFf/dVf2TfffJM7vr3GPDKNvPsjTcR3gECWlpZc3Zuenu6K1gUV6cFiRALfuXPHdnZ2fH7VQ6i5RNg7BfNgrDnzmYhhjOmnp6d29+5dP1KEutjNrTFYJF4i1mdiYsJevXrlHhj2gmnOVnU64OqH4X/66ac2OztrR0dHdnBwYCsrK57svIuR0Lk8eJ5XbsM4ioyZtwmA4/68NqY8UPxpFGaecZfJ4B7d9Bf70Guc8piIPkt7iQxdWFiw09NTe/HihZHqQffUtFotz8lBu05OTlwyjYyM2IMHD2xlZcURBWoL0oSt5SAXbDEYPAlmQyJS2Eq/tLTkasD09LTt7+/b9vZ2V3i2RhRPTEz4sQ7sXN3d3XWGNTc3Z19++WWuTaqfonQbBU8KEaaYidLhxMSEffbZZ04nuI4pqI9Pnz71RU8s0cHBgW8X4Lwf9fBg+MYzhbH76dOn9vDhQ4/vId+vGvCZF7x+mCh0xz5Gdpg316hzaGjI7t+/bysrK35GDpngCGxrt9u+c3tnZ8fdyI1Gw0+xfPjw4fWRnTq4ceCLPCD9lCKpnxf2ru9HmqUII6Xu9CLEIonVbrd9ByRtj0TXr6rXDxSP7VDD89ramrVaLdvc3LS3b9/63ht2wWrOFnRlUM0XX3xhCwsLbg/RXdBErC4uLlqlUnG9GEaiO545KoE2YiAdGRlxA+q3335rL168sFKp5N4UxpGI6cnJya48Jh8+fLDj42OXqGtra/bkyRN/VsetHzqM894P/aYYSS/aUWSl95TLZVtZWem69969e7a6uurjdnBwYN9//72HlmMIh5m0Wi1bXl625eVlb9fFxYWH07MZk3B55ho0ibGUdRHtezAiYlTev39vS0tLHiGrsVyoz2ziI6rZ7DqNBftums3mTUTyS6klt3GjpkrKrgBx5Hlw1P2bqi+mJEiVKM3UWBvvUYSSknj8z9PPtS76pX/lctkePHhgExMTHsEKcSCFqAOj5MTEhD148MA9ENiYYCZXV1ceCckmsLdv31qp1NmsRZYwtsxrZi+z67ydCqFbrZZvwkMNQM0hkpa0hORoIZBtdnbWPv/8c1tcXMw1UqdUVx3DvPHke5GNqqj+vDlTr1fRelGVPMs6+Wz39/edbubm5jwyldMAyffCPBG7MTU1ZaurqzY1NWWNRsPnlmA9VEoMuMSngH5ITYFrvtlserwQWwPw8NRqNVeFZ2ZmfD8TrnP2i7XbbU/9UMhIbmMD+NiSx3DyvCn9lJSUSV0rMpoWqXb9eH7yNgjyXZ9RlUulCIuV7N/tdttevXrlRlLyfBDX8emnn/q2fOqlHtpAuwg/J70Bnp/5+XnPnm7WYRykCWAnLbkwIEzQCYbD4eFhRx3Dw8O+MZA/3K0kKyJzmva911zm/aafQQ55jKfITqJFDbhI9JQBN4VutS1ZltmTJ0+6zkgiRgOXsu72NTPf27WwsNAVAoBammVZl9u2XC57ik+ECMji4ODAFhYWPFXq1dWVvXz50pGR2kTMzAXF8vKyrayseD+Oj49td3fXdnZ2PPCwUjSIPwedpFy4qQHvxbhSk8NCjAuPyUoZSPmcF7Sm92gdKWLJYzJ56Cm+J4bqp9zKapuhVCoV29jYcI/L/v6+xyfMzs662zRV2u2269F8zrLMT7rf3d31HbZE6L59+9bPAyZfCekbCXTC7oJ04kTB1dVVW11d9QA24kx+Cqe2jY0Nu3v3bqEqmlIl+1HFtc+puYnqalFRNUkFUi9hk3oWlAlT1nak1LIs65yZNDs760hD0xsMDQ3ZwcFB12ZJzUnMHLNzmY2FpKYglEDP8M6yzAURQmliYsJWV1c94xp5WSYmJmx7e7uzpaJwFHuU2xjFehkqo1qi6ktUaVR6R104GlFVn+WZVD/0NxZ2XOApO0aMX4nogj4rw1NC1OfzmAr1aMzD3NycTU9P+xkxaoxV4sRwDBHHMTPrBGitr693pU/Ec0MOFAx+29vbnpKP5D5m1/EHDx8+tJmZGQ+oIqCLdAiTk5P25MkTq1arN+abogs8zyAemUBk2r3QR+p55i1VIhPRa/G+vDbpXOYxxMicsJ/gildaBQWCUkkzQPY4XNRsW2i1Wr6dAUS6t7fn7miz6wTcZtcHYA0PD3uqB4zwzDN7yn4WI0kNng6ODl5kGKmi2c3Q56MdgsWkW94VgWAQ0nawoDQlAO3mfbrwUSlSDDLaMaIrmf/aT62bevMIWe/P0/fpE0FVLAAYUQryx/ZQGL/Bwc5h1oeHh/b69Wt39bZanX0fOzs7zuQwDJ6enrrh8OnTp74xDSaxvb1tZh0oPjMzY/fu3fPUhVECxznrFw2nUAx9TDHuItTz/0KVz6tbBY9Zd7xSRNPRe6h0xr6ara0t3xBpZp5/RvuLDQYDKqczbm5u2u7urttY2JhXKpU8KffJyYm1WtdnV5+cnNjY2JjNzMx0QuR/yUHLm4gi+KpEjfuLhUGndIcug68uXOqNEayR08eiiCfPeKtuYJUw2qfITLRdsZ9KWFE66XX+Yh81e5YykPi71tUL4lMfsSClUsmjYMn5gQpTrVZ9n0ij0fCQfpI+YQjkwLH5+Xn78ssvbXZ2NleSpxhJ3pzFkneP1hHV1KhKKGL9JUtEombdqjkF5hDpW9FjlmVdoeuox9icpqen/TgSghnpJ/utYEpmHaZCbMzdu3dtf3/f/vVf/9X36mAz2d/f982HJLbCGEze3YODg49nJCkOGwcr9dmsW8LqTkM2oukA67k2EYEwSdGuQX2RyEqlUtdCjJKftmlMh6ocuqg1KCmlrkXi0XbxHmVIMA29R/uRJ6WVMaUINqUWxHB+nZvR0VF78uSJG0wJuQehkBpwbGzME+3gHtzd3bVarWaLi4u2tLRkMzMzdv/+/a7ANp3/+Dm2KfW73hPviypBrKNXvcp4470xsjnVn5Saw7MRgcR2quDgO6icvmliZqU9FR7svUEQK/NAbcmyzBlFq9VyNPrZZ5/Z//zP/3RtiyiXy54/plTqnN0zNzdnv/rVr3y/VLvdvh0j6YU4ItHGa3HRqhrCzk+Yhv6n86qe6CRQt6IBJayIHrimTEvhYpRckVmlmIqqRbFtsag9SJlZnoGaICi9L0raPOgc5yRVInGPjY3ZgwcPPNS+0WjYy5cvPagJty5Jh8m8jv2DbGgpZp4qeZ6VVBvz1L34bBQERXWbXS9kFm7RGGmdUd3s1V9+VwGUUjsVket72BNEe8nwD/PATkZGuxTdYpA1u1ZtK5WK/eY3v7FqtWrffvut7e7u+iZDs06qivX1dT8m9t/+7d/s7/7u7zxKORnZmld6MRI6otBcB0i9FSzkOHCxpIyPOnmUyFTixMf2qC0B7p6nIjAJRGkq09H7lRkUGe1S7UpBcGVQmrBH+6/t1lJE0NrPOI7Uj4EvyzLPCMZxEiRfPjk5cR36r//6rz3NIZKun7ak2vSxJQ8RaF/zijLoX6qk1DdlbopKuUc/QxMpAy17hBRl4EZmbakbl3ebWRfN6DoYHR21Z8+e2Z07d+xf/uVf7OLiwvf1ZFnmiZTev39vh4eH9u2339qnn37aYW5xMJXjF6kv8XrkhjFdoUK1KJEjgsizMeji0QGI0jeFjOLCjotRc8TG/kcdNc/AGsdJ25B6fwotqKRTWKvtUIJS15/WUaQOFUn/6IWi3RwyX6vVfI/P5OSkff75585AlDjz2hvbkNeOvJJSafphpL0Yq9JcL1tJEWoqUntS6mdE6co0YgClChMKXrqIwNSor4GLfKcO5kr7zimBJycnNjMz45nov/vuO5ubm/ME28fHx7a9vd2xJaYGTScnLgolsMgQYCBY+1n80UCk9WTZteFUBziGzrNgidbTQUB/5H1RvUgtbGVoqA0KN3VgtT1qtFK4WFQicSlioy6IIYUwdOFHhBYNpin1jLp1XPIWQxFjGxgYsEePHnl+kfv37/sendSzWudtFnZeKWIiRYu437pT/dB6b6O6aD3KUFPrSKOPod/4DJ/VQaBz2m63fdMfuUWUlvQ+FYQpRlwqdVKJauE8ot/97nce8JZlndw0U1NTVklJhjyJrh1WfT3+xbroSEQjERUogWvuVLbOR8u2/o/MQhcq6EiLfo/6owZuoW7RBu7XxZmC5XnMgOd1/OJY87wSj/4pGtK4EZ6PapvWkWprqqTQklmHoGZnZ2+0+ZdUCW5bfql3R2GWxxj7LdouRRbxHjwi3B8ZfUT8CDbNUh/ta/F8HP5H9JwqKeSUZZ2jQ/7mb/7Gfve739nu7q7vnZqZmelmJHQspSbowkw9ExunerK6rczsRj2pAYy6oSIEflOvjdanTE+3b0foqkgoGr8iYqAdUaVSJpiXqrIXUSpzTT1L/5VYlBHTT8YvZnnTZyNx5ZW8Nkfm+f+nomhO51/LbVWyFDLUedOSEshm10JV140m7Fb6xE5CfSnB0Q/jj8yH+5eWluwf/uEfPP3BwcGBnZyc3GQkkXnEDhTpj7pwGQy1PKO3AcGibUQ7oLodg8kzKV0xtjl+VpUnNZigEU2VGJEH/Ypn7oBiFHqmoHweEap70OzmwWERcShxxC3tqkpS1A6VUmtS46/vjvfyF43DRSUyyZQKkPdcRGmpe26jcqTeGWM+IvNO0ZrSR5yX1DvzUIky54iKVJjG/scYK/6ioVvnvl+UFfurpgYSeJuZTU9PW7vd7uy1UeKJOlgKjURVQm0TKu2Vo+uCI0mPmbk9JdVBXWCaByIOVGxn/ItSPeUdwYAbja5MmKIf3kt/UHnUBqQljnGcqH4KTEPtHIqidGxUBVRG1Ms2EhdsntCIervW0W9fbltS74u//9yizEQXXR7dR2ShtB7b1K8qqWshCm6dY9QhCvOO6gNtxvIxY1+EZlDJfNNeimHo9TwmQ2U6EFonOz5pkMZg8Hz08ETJHKG0ElVK8lM3KILC4otShz5okl9lJhCY2nFgPJHZxcQ32uZIGKnFq0QY+6fRilEaqvU+jk9knL0WnT4bmYmOXQrJ/NIlqgYfw7j6KXFeeKfG7xQxllhXHJ+UZy2vRPQW66Fd0Jy2HZTCM5qTOTK2fughD11FpOYsKzY+9YIiqKadihIeQqdjMBY9hT12LDKCCM0jYWk7UIsih9eFD0KK9hbeybuU+fAu3fKt7lf6XkRgWrR9vAv0owYzRU48x2eYcAxc0jmizR8Da1OMOo9G+K1okaVKP2pJ7Jde/7kl1hFpMqo9KfSQalOROtUvI4mGWKVv2qXR3zzXal1HirOBL8+GlxrHPFuazoUCj4oikbwOarBVvE8RgH5WJsJAcM3sWqWhRKmJfUUHlMWmBKteDJ2IUqnUlaeBgaeeaNWm7XGwo3GVEu0vebA7wt6IPKgr1kFUIX0kmZAyHcZXtxakEEg/Ujxv4Wu78hZC7GOqxLZEKZm3sH4OCilSg1L1pK6nFlJcTFpSDgJlgnljFRemCi3WnyYuYv7NrCvcXUuksVT74ziplqFtU2EZmVCWZVbRHbexUh2IuIhiUbgNx+ReZQDtdtv3bETkEDujBlBtuP6uz6QMj4ODgzc23kX7gl5LSb8UBIxSNzJWlcxxIUaEweeo8pFOUZmqel/4HGNitN3RrZ5aKDr+qXZrm2Nfo9ob1cIUTNdrOpd5zPiXKKm5S90T7ytqj9K5CjVlknmoOVVXCs0pMuZM5jxaVqRqdnO/kc41cxfpMno2i8ZTmUolMpGUdOUhNVbGAVFdkoZQT/xN3xEHQLl8vD8l1fHixAlIDSyFPnBuCwShjESJoR8pFevPWzhxQaoOqwteJYwio7gIIxPUd6TUrFR/UOeU8CM6i/drXZGRqVCJSDaOmy6uvHD/flFI0X1xDFL3RxqijXEtpBie0nre+3VN5CEdRcl6Dyo02xaKEJy+Uxl7ERpS4aAMRa9FBqltrKQqggiikcmsOxYjdoZFnWqAqhIsXk2wrBIJ97AyFdoVv6ekJr+pXUaZA1uhOaTIrBtCxjiMOPgqfVNMRCdPFyk2GR0fvqc8SboII+SMKI82KtPXhUy9UTVVNKHMCxSnz+l7FImobUyRYUrCKqOPNrY8IabjdZuSYh76PTLlFCPRZ1PMIw9dFNWbx/AUQeahJqX7qLqk+ptCmKl+6FzEovMd2+qMJE8C6MNxIBSVRFds3BCk16MBh+uKBrIs8zNWozFJbTFRSiujcQOQLAa8LiR80azpWmBAJN+NTFU9SZGZal+AvJpTRaV8ykAbS0RtXOP5PIJL6cra9jiXKQbBmKpqFOGxjkk0UscAP+rjPRHxqBCK78uTwHmoL16L98e51Gf0u9aTkvSpudLPsb7UtfjeiExTc5JCtnyP4fa9GHTsu5ZYT4oGfa0VMZLUw1QQIVCUznGBp/akcCh2lK5KVDSU1H8MFAl1MDTxbLlc9sS2AwMDNjY25otaXbZx8GAK7FPQ9ik0R/qynV431tGPuECUc8PgUuMdxzk1oSli0zHnnXkSl75yn/Y/qqac7Kfzo+3BdhPVVkVFen+0HSlyirA/b8EUEXxkHlGCanui4yAu5jimOm7UkWJ4WqKtiH6m0EPsc2RGKQ0gNQ76WYVdihlr+/P6nPoef8uyrHP2rw5UVGdSBKSLRrlthOegCt2ty/NqOIKgWHCcdxvtBLiLS6XOoUSk7MNFBorgXtLJxRB2BlnbowyNbdOKrBS2RwYUkZtmvKK+4eHhLimoE6TPpiRN0QLR70oUMa2BWUddiUFMOh4pZMNJ9Vq/2qZisF7qv/Y1hXhiXyKBx79YdNyLGElEYRG5xbbq9ThvKUmemoe4PpShxD4o8zXrPk+6SN3RdqXCHiKSj324DSPJe38lLv6UFyciCQhHJUwcMC3Rc8C1yM2jXYD26MIul8uewTrezwnshPCqmpUHUbXdMapVublOauT2cds8k6eMKNUObX8KQVBSqg8LLtW3dvva3qF/ZtdxJ5HQ9VpkbHmG8hQKUQahhmxtp94LmmS8QWy9hFRslwoHrYuSWrzaB+2vMjPq0mfiwotjn1pskYZS745jo/THc/rOeC2+P67RPAQSn43jFOc/9VxFVROKcrDYaJV2KeYRP8dAmVRD4m+KdvhMXEW53MleroltI/OhDt4fGZ+iHEVk6rLWYLN+UgUo6ooDHichjm1cvPpcP2MWf0+hiyzL3O2eEhTxXZHZpIhe+xQXnSIfkKnShhKtzpW2N6oOURhpm3h3HiOJY6EltfgiOojSu2hOUswkMuoihBGZCDQY647zpU6CyNhA+Or0iCVvzPKQG/WbWUe10YcjJKZyJQSFxDrhRQMdJXtsSB7RasMZTEU42lbd5q/t5FllGsoU9Rr16ebDPMJJ9VmZYar/EW1EA2j8o648KZeqMzJYrSvWrYsXr1Kc07jHKaoGEcXxHqWXVArDyEh0/HUx68KKTD2qlamxTRWd98i89b2RocU5T723nxKRlV6jT5rgOSIK2hrbGNGkFjV+55XUc/2USh4hlkqlrsjSKHEY8FR8QxywyAHzFmVEQOqZ0HuUmDRBLkxQbRpc15BiZWp5zCu2M49BRskdn9FnFanps/re1KKP8xPbpISoHhSSTPGbxorEvppde5D0RDyMzxB2zHIX+6qbyVKMQvul6pYiTG1nJGz2Q0V1MRoxixZDijH3uj/lTNCFGxkoJYVG46JX4QN96lgrkqAtsShDiQZsbW+qz3k0r9d6McpKtK5rZ1MVY2RTjplCGtr4lHTWBkaJoM9qm+Lijzoy7VPkEtUa7Wtc3DAh9iawYJQxafuLUEe8r4jBaIkStR9Jl1IXms2mXVxcdC1Ild4RCam0YsyIClYbkNJL3oIwSx8On7LpcF88tF2ZQxwnaE+ZSZTq1BWZAOOZUoNje2lznH99j97XSxhEWtM5STFbjN30VekNOlXGTRS4bpLVPuu7b1NSdBpLRSc8LuiUkZWJJTsTblmdfLP8dH55sCt1X+yAEoX+rgwjEn50vZqlT5RPvU9tQcq4IlOixLammEr8XDSpeSpN6lld/LoAiMlRtSSWlCTDyK07jpUIU/aDgYEBj5vB8xY9KTonmpRH+6DvyWPAPE9b8mA7CCsGeikjzStxYcf2pO4vKhEN6p8iEebs6urK99fQF1V3OH3P7JpW9US+FDOjHh2rXu3up1TUiq+N4oVxoXFdCS/CPL0/j5nklSLul2JOkUAigcdFq22MEjW2o9f7+0EkeVBR2/SxJUJ5hAKLH7fzxcWFb5LUDX5qd1B1gWdBJJqoSiWwohOlGSRidA/ru2i37lpWY+HV1VXuaYcRQfMMf1E4qnqVYihxDlLML28RxjapOqElvi+ljjEeoBD9nfWkSBmPV6vV2dRJbBMCNb6ftY7q2g9z7LdUdPKidZiB14GLKgb6M/ekdMLUdy1R6sSFpsSbqiOigwghKagpipqKjKl5kDe2Oe+3vHujpPtYZhIhMvWZdZ/hOjg46Pp2rVZzlUcZ6uDgoBursYvoMQYgT2Ug3M91fTfjrJ4i6EnPVVEEZHYdCKdjo/QWhZneB+NBcity4R41KFNPpC3dGxbv0zHWkuda1mc05yrPxDUT3fY8xz0ES8ZtHK1Wy87Pz63RaFiz2bSRkZGuNBlq11JHxC/BRMyCsVXD2Gmcoo8UFNMSPSWqCkTprYOcmqCiBZt3PRJbrJu+aR/zXGHxHSlmU4SeiphJ/BxVyn5KhK30L8V0mS+kPLAZNMAZNhFdpOAwC3ZwcPCGR0XnWtVHDLfaNl3U1AFa0kXI/fpHG7lPj3pVFz7tZoHyPdobFM0owytCjpERs+B5H+1RwzepIHgX86BISY2sqYx7MNnIUDnIrN1uW71et0aj4fvJYl+VSf5ijEQXV9RXmYxU+sEUKlAiUS4bDZwMwMcwi7zr0aiW+v1jSh4DKGofvxUxj37e16tElVSZpqIVs+vxSeWWTQXMaT1Zltnw8PAN9Uaf13u1LiRoSmeP560A11WCwiAJSlS0CaRnEdfr9VwmqKpNVG9iu1NzmFJJrq6uHN2hkmjqTVVT4prQ3xQRUm8qv4ym1NC2KlPVZ2mbRnYzbtHF/nOL41+VjBFW6YK/jYSNG7diHfHZfkoKYiohpOr7OQu3iHkUSawiNPNLMhIlgiJko6iS7/q+lAoKoelvqW0GkT5UZYz9yrMxxN9Qi0AuqbgPDRqECeHhiEhTja4xZCG2T39TuqJ+EEaz2ew6MJ0xw76EsTQy5qiu6DqLqmkMwUgJdFz8UQNQNJeiA13vP5eZVJRj0TBVaZQLR92S+/sp/SKauDj1e1RdiqRxL/TQD9rpBf16MZK4SPupp5+S6n+eN4b368JgPiPRaWFxqvRVxoE0johGbVB8571KMxFuawHhoBJpG/VZ2hOz7cWziTRJd0qip/oex4x+KlJXIzb3a2gERcc7Cr1IJ4rEFDmaXTPOGOWaMvyCYEByXI9jyTgyrv3Qor6PeiokStGO6EuVmLSRcRIilIZwItHklcg0Ykl5SGLphznwvR/00ouRFJU8lHab58xuMoG8BaBoQ+0mWk+sUwVEbIMiCyVuvusGSg32S0lfdb+apffBpPodEZTCfLPOQoY5sMBSCCYuoNR4qBrPAtYxpj/aF00PoS52tRVGVczMbqAiZTC0O6pDuh7NupM8x/tgmnjtUms2CsFe60/vTZWKdkiJKhKiDniExalGpjjubUtEP3m/p773Ygi9kE3e96IS1YOPLUXtie/qdS2vTuY8NUdqIESPh5kQ53B+fu73kyiKRaCekbgQ1SOS1764OCIDiW03u15AKi2j8V9LDJgz61bFI23E8dPAxXq9fgOZmHVvkMRGofE5GpVN/1Dp1H6hTCJv/LSN1IF3TNXQPNSRx2R7FTfiayNSnEpfEhvVS6pHffw2RQmkH5RQJK3zGEk/zxWVlI7dqz+97on3xbHThZFCHHkEFutVG4Yipna77R4GAqMuLi7cW2Bm7hXQd2dZ5p4fdHYNrTe7NgrqAs9DI/Fzit50cbK4I9SPNgIdE+27GiNT0jkiB7PrvV0gFR0j+o+nZmBgwIaGhm54NYlEVbVJBXtq0yl/sS79fHFxYbVarWts2Oyq/Y+fb8NEzK4NypVYYb/SUImv6N6fI52jVMtrYx4iKron9dttEUUecyqSFredqBRjiRvgYrt79SPOm+r3GBDr9bpHqZKEGmJWNyaqCygEVMCfBpxpHyLa6GdsVDCpykyQVuqM55QETi3KFHoyyz+MLWVn0ueUgTGWZubGV9QvmBfj3mq1utQnjeVRjYAIZm1L7D9CoVzuZAaMruC88eVzZOKRSatBvCv8TSc1VVITkpqI1L1F9fRTUgiiiGncBp3ktasXksqDzbfp+8cwlshEom1E35NqY8pGYXZNrBgRLy8vrV6vd22DgEHE41Sji5XP6PGgFDLb0V7qjIGPKnF14VPUZpK6H5SQ8tBoW2Od9Cel2uuYxngPUBo2FhZwu9329Be4d09PT+3i4sJGRkYcwfG8qoCVSsVGR0etXC47k4C5wEjoMzYiNdRqvI/mC+6H5lQYKFOEmUTb6Y0z/aJFN5YUEumFAOLzH4tSUoxLuWUeU+PZVMlTHfqxYBcxmpQlPfVb0VibpXX5qIYo1E0xkhQzyXtnqdTJVA5hxyAxFj2LBTVFU2HqwgfBsLB0o6eOtdoNom1AU2Wm5oSxHRoa6qo/GjVTKoLWoe1R1KeLJ37X83fNzA/XVi/n4OCgjY2Nefa+09NTZxpIdf6rsyPLMrd1MH7j4+NdEaswbY1BgdFrbAolGpFTRdGdzilzptHKvi0jVhKlU+q31P/bIpCfg0r0e2QcKUbSy+Oj/SyKdI3vVcKKdWq8Bc/kWcYVolJSNoQIqaO1PdaRMpbn3a+2kbOzM1dvlDlB3BpdCUOp1WpO4BAXkpg4C859RrLGOBGkuQZjqURHMqbiRGgL788TdkonsQ71mKjxk/lQ164e72rWYXZjY2O+65p6sI3QR9SSRqPhqoxuIeA5ZdK0e3BwsMvVHTdWMo8xuDQabFMqi9IITFLtNDzbbDat0Wi4658wgGTy5yjpuZa6J15Llbz7+pH6/TAKrTP+lmIMt2V6lIh6olcgj0GlCDjFNKIhVSWBEgr/U/p6HAt9Rok1thNmABPBvZuqC6+CnvQHrNcoVxiFEv7l5WWXx0f7jfcnupyB9mbXasno6KhNTEy4ezMiDtqs79e+FNGeqgda9EQAdjhHewZMwqzjnkalQe2ImyajUFC7Eu2nz6iahL5nWbc7OnqcdExiiesk0hX2MhgXbeYazyJUKlFax5fk6VXaiNsikhS0zHtOCUOvpf70XdFdWNSefn8z616USqSRYengK9MpckmqtOB/lM6RWcT742e+Q7QxHJ5ycXFhp6enzkC0XpVICtn5PaIk2qcMUhe1qmMplQOVivq4X9Wmo6MjOzo6somJCRsfH/dQfFWpUmPWj2CJhlOkrtl14ibdac32AeoirkZPkwTNnJ+fe106jspUUu2DUXG/xsqgyqToXFFN/C0yWmgWhoUKpowP9ITAAL3lIhI6mjfYqdLPPUrIeQtdS577N4+R9GpTr/tSXFq/M6gQKJIg2jKUkTDoRQY8iDw+F+vi3qK6tH181vBuJJgyNIXXGq9A0d2j6klgget92ifaoPtbIETUGerU3cTk4WDRaUJo+nNycmK1Ws0NuLxjeHjYxsbGbngpUmOWV1SAsVD1gHfajsubBYjXSukkzp22JU/I8pn3DAwM2MjIiNs92u22x69wLIsiEsYpImelHRUCjDdM8/z83Gq12g1GovSibb3h/k0NaOp7ERHHgdHO9YsGIFzVh2+DLPJKhHB5zChyaSZDdeWUPsozyukZByWc+L5o7EOiq6tTCTu1IPRaRJIQOAY9YjwUrZDPQkPKleA0bWMe+shrj6oLWdaJOalWqzY+Pm5Zdp2QCTtNlmV2dnbWxYjihjiVjGzYQ/o3Gg0bHh62kZGRrgPkdW7igjPrPsmQa6q6oLboXEQPUqvV8kXebDad0aESIkyhKx3jLMu6wto1zgSmdHZ21qUuXl1deUCgqpxKZ8rw1aUPwmo2m45G8UKpGqeCk/oUCd1AJP2qLClOmlf6QQ5m3RKDTqienHo2pQfGBaqSUQeViYPAorRA8il0xzXKpOhJfXl9VCisbYr3p3Rmrfs20jTVJoiZNigCGRsb84x3rVbLhoeHvd0QEN4X2qpu4fiXJ2jU9UrdGCNhMCMjI1Yul+34+NhdpcyTIhPcyLVazcyu0yEwn3hGRkdHnSnCrKInSJmqjrcyQBapMgzmVcdKs5vRNpg4jIi+ROGhNKjzCDqLDIb31Wo1X9TkkmHMqI92asChoi1sWiq06LO2U+mK+nsyEi29vB95pR9GEqEWg8V3dcml1JD4ORoqlZFEiI1koEQ3nxqgGo1GV7BW1L8xhKnnImbq18Wn3yNaUikVGWFq/FKf43hpUiGza5Wh3b4OLGNcIDaKMs1ms+mL3OxmbEZkhEhiPDAswrhJjXqmpqZsfHzczs7OfAHqQkLKDwwMWLVa9QWhc8zC1iA55lmRB0VD1hV9qlqniJQ5Vy9LpHO8U7Qd+jg9Pb3BuFJzCsOOJTIK2sTpiOPj4102LW27qrnRSI/3CVqp1WqWZTc3Rqrwa7d/OtcmEl4sRYZLrvUjLfPuifo8nY/qgBKcEt5tmZ8OnNYb22Jmzu2ZpNPTU/c6MMDazpgkaHR01CVsXp+L1AJVPcy6M5/pvUoUPMsYpnKQQDQ6HlFN05R89BPkgPch0o+Orc4dW+s1XmR8fNyZQcpYWKlUrFqter2aKpBrimzMrm00ikAUPWmbojDR+WA8sRlEGlGpTX+j5wTahMlg56CdzBteKUWItE2ZlDIGReIw+4GBga7tDJxEqaoXniU1vPMOaHd8fNyZESra2dmZf9ZxcGZNp/NKZCIpCa+EEwkq1q8cWIk7MhnVYc2uVR2e5XekW9ztqW1SYyd1K0O6vLx0HR39kKAbpAnxEEhhd3v9NOAsjnq9bvV6vSt1IXYHJLKWFHON6EyJjPiFeHxDJDaVwCkmnYds9Fq5XLaRkRG3nyjzNjP3lrB48yQzIdowWPZ8MGcpO1OqXYqIIlPUuU8hUN1IGJlJNJQzZswzaonOo7ZZxxhkVCqVPBANQyZ9APl9+PDBXeegXFX7NEVmKjZG+0eBvhQ5qV2G8Wcs1XVPekYYNUz+9PTU6vV6V2oGbcfl5eXNgLR+SxFCuW09KShsdh32y2IH3ppdG7l0gJhkPQZSjZgscgaXiMFWq2Wjo6OuKx4dHdnx8XEXMcJokHSgEiaRdyOp1Y0KAbKQ8pIaU0qlkqtOykgUlaQkGQjCLB3DoijvNvOj+jjXGD+z62hO2q2LYmBgwO7cudNlQIzErwsSWki5LCmMRWQGWi9qKPYeTZcRx5RFHxcsoev0Kcsyu3Pnjo8FTEO9Tfznt3b7+ixrXdjEv1xeXtrp6WmXQGUuYQpq5OV9GqSn+5nUEwYz1DQPjLGql6qSq0BmfM7Ozuzo6OiGNqD3Vlh0UUXol8hSakUkgtsSLgtaJ4XfgJxwQgZHF1dcRCzcRqNhp6endnZ2ZqVSJ6iJyW21Wm7hh2MTkdlqdRLrKsxX16wmK4bZYDRUYuq1aUr7qwYx9WDp9vPokqWfIDbqUwnMNdSSuKiL2hUlP2OgTMKsI8kUXsffeT6v0KaUyqdjFOtUQldGoiHmZtdqBQyCuVeXbbPZtLOzsy7PUZZlLqXjolQvmbZb1UZFxsyTGrAZF1QgooBpD4xCaY/3gaBhauqipx2KSOlPDKpjjfGMojLtWwwP+P8ACZeBE8MVyv0AAAAASUVORK5CYII=" y="-288.73474"/> </g> <g id="text_4"> <!-- Median Filtered --> <g transform="translate(160.513401 283.42526)scale(0.12 -0.12)"> <use xlink:href="#DejaVuSans-77"/> <use x="86.279297" xlink:href="#DejaVuSans-101"/> <use x="147.802734" xlink:href="#DejaVuSans-100"/> <use x="211.279297" xlink:href="#DejaVuSans-105"/> <use x="239.0625" xlink:href="#DejaVuSans-97"/> <use x="300.341797" xlink:href="#DejaVuSans-110"/> <use x="363.720703" xlink:href="#DejaVuSans-32"/> <use x="395.507812" xlink:href="#DejaVuSans-70"/> <use x="445.777344" xlink:href="#DejaVuSans-105"/> <use x="473.560547" xlink:href="#DejaVuSans-108"/> <use x="501.34375" xlink:href="#DejaVuSans-116"/> <use x="540.552734" xlink:href="#DejaVuSans-101"/> <use x="602.076172" xlink:href="#DejaVuSans-114"/> <use x="640.939453" xlink:href="#DejaVuSans-101"/> <use x="702.462891" xlink:href="#DejaVuSans-100"/> </g> </g> </g> <g id="axes_5"> <g clip-path="url(#pb53cb8de5d)"> <image height="149.04" id="imageb4f37e756c" transform="scale(1 -1)translate(0 -149.04)" width="197.28" x="344.329412" xlink:href="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAARIAAADPCAYAAAA54F5mAAEAAElEQVR4nHS9yXPk6XHe/9QGVAGF2guFfesFvffMcEYzI1JikJQoybYUCtGSdbCv0sF/gK8++Q/wwb7ZDoflgx2WrKCsECWR0ojLbJzp6ZmeXtHYUVhrAVAoFGr9HWo+2Vkgf4hgkOxGV32/75tv5pNPPplv4Dd+4zd69Xpd5XJZZ2dnajab6vV66na76na7kqRerydJ6nQ66vV6CgaDCoVCCgaDCgQC9t+SFAgEFAqF1Gq1xM/FxYUCgYB6vZ79O0n2HYFAQJFIxH5HkoaGhhQIBNRut+07er2ePQPf1+12FQwGFYlEFA6H1e127fn5d5LUarXs/0ciEUmyf9NoNOzPQ6GQAoGAhoeHFQwGFQ6HFQ6HJUntdluNRkOSBr6z1+vZuvl1CgQC9m8lKRQKqdPpSNLAZ9ZqNfuzubk5pVIpdTodlctlnZ+f2+cODw+r1+vZn0WjUQWDQXW7XXU6HbXbbQ0PDysQCNjaHR8fKxAIaGxsTIFAQJ1OR51OR+FwWCMjI4pEImq1Wtrd3VW321U8Hlez2VSz2VQsFlMsFlM0GlWv19PZ2ZkqlcrAnrAPrGcymdTw8LAuLi50fn5u38XeBgIB+7zT01OVy2WFw2ENDQ3ZurEufHan01EwGFQwGFS73VY4HLbvTqfTisViqtfrA7/X7XYViUQUj8cVDAbt78/Pz1Wr1Wwf+HtsIBqN2vPXajVb46GhIbNrzoUk+9zJyUklk0kFg0HF43FNTU0pEAhoY2ND1WpVzWZT5+fnCgQCSiQSmpmZkSSdn5/bZ6XTaTUaDZ2cnNj+7e3t6ejoyOwjFAqp1+up3W6r2WyaLXKWRkZGFAwGdXFxoXa7PbAm0WhUQ0ND9u84o9jl2NiYksmkut2ums2m2To20ul07HuwX/v/fEkoFFIoFFIsFrMX846Dh2Mh+TN/qDECDJuX5u/Z/Mv/6Xa7arfbdpDb7fYvGAxGhKMIhUL2nLx4u902Z+Y/mx8cDIvLz9DQkC0o39NsNu3/d7tdhUIhM3j/vqwR/5tDwPv2ej1FIhFbG/8snU5HrVbLfr/VamljY0PHx8e/4Gz5e/85vAvfGYlE7HdZe5zhZUfv/79/d/YWQ2bN+Q6+b2hoyPYCJ81/fllgYV17vZ4ajYbOz891dnZmByQYDKrZbA7YjnfC7F2v19Pw8LA9cywW0/DwsD0DtoT9sM7sk1/D4eFhc868I9/JnjYaDQ0PDysUCikajSoWiykSiajdbtth7fV69l3YCsEFm8FRcc5wsrx3KpVSNBpVo9FQp9OxYMdns+YEg3A4rE6nM3C22u32wNqzV8FgUCMjI2YHfA5rMzQ0pHa7rWg0qkgkokajMeDIWa9wOPxLbbDX6yl8dnams7MzXVxcKBwOK5FIqNvtmqf1Hs1HdbyjfxlvSGx2q9Wyl8Op8HkcNA4Lh4cX9I7AoxU2mf9cPqD+Jf1zeQeEwflnwqBxJGwai+gjgney/IRCIXMaPuLh0fHq/h18VCBap9NpjY6Oqtvt6ujoSCcnJ2Y4/Hs+AyeEI/Hrx2HiIPC8FxcXZiwjIyNqtVpqNBrmiDgM/HjUEQwG1el0FI1GbQ07nY5FL9YZB8q78dydTkfNZlNnZ2d2IC7bQSQS0cjIiKLRqJrNpmq1mqG7RqOhWCxm7xaNRiXJUE6n01GtVvuFaA0aaTabZuNTU1Oan5/XwcGBHj58aPZwcXGhi4sLs43h4WFls1lbW+yF3yH4sYYcOFCxt2MQ4+npqaS+c+j1ehbAsZFAIKBms2lO9fL58meBvweRs868fzgcNsTfbrfN1vxn8TvepnzA8TbHmmC7gUBAYSLGyMiIhoaGNDY2NhC5MT48rHcI/gUvH2KPTjAsHtb/mU8/+DcYoIdR/vD6g+iN3TsXvwD+O3hu/1mXYRoLefndWBePFjx09++OEWGcRCC/wThpDgHRNpVKqVAo6OzsTEdHR4pEIopEIha9Lm8sz8z+8HweTeBIWq2Wms2mLi4uzGEQwb2h+NQM54qz4O/a7bYhqm63a4iV7/KGiANpNBqq1+vq9XpKpVKKRCI6Pz/XxcWFpP7BikQiGhoaUjgcNmTo15d0IB6P2/PHYjH7/ZOTEyUSCY2NjRlymJmZUbfbVTQaVSqV0s7Oju7fv698Pj+QrniUyJ8NDQ0pmUwOpK+9Xs8cHIcUJxiNRi3Sg3gI1Dga0oRGo6FkMqlIJKJms2kBXJI5e58y+333Z8zbAv+bfRgeHrZgdhnN8xzRaNQcqP8OfscHglAoZL9nTgxvyItgYPxD8kzvwVqtlh0eH+39S/MgPt0ASrJJHCKM3kcRXhBHhjF558Zz+lQLSMzv8XeXFx0HFQqFLLXpdDqW2/N3vJN/j0gkYhHfb4hfAwz/4uJiYOE9XOcZfNTKZrPK5XIGN4m8OD8P2Xk/oph3xBgR74tzqdfrqtfr9tk4CZ+i8Wesi0dO8XjcYDCHzv9cdrg8Mw6s0WiYcY+NjSkUChmCuJxm87+JlKRCHEr4i4mJCU1OTqpSqaharSoQCGh2dla5XE7NZlOVSsU+b2RkRKFQSOVy2fgVggHOkjSG/cT+Y7HYwEEDeQcCATukrFW329Xp6alxHj7FZu1JfeBWcFShUGggxePMeZ6QQMUzcj480vbrFwqF7N1Yz8vIhjNPNsHn+PPmeT8CUTAY7CMSjMxHvUAgoNHRUTuYfMDIyIj9bq/X0/Hx8QBs81wGX+ajIsbJwvBQGD4P7XPqyxwLC0QU9EQpn8nhACZ6ROIPlneaGD3/xkdBTxiykRi/52e8U/Ob6iO7J8dYV/7+ypUrGh8f18XFher1+gCR6h2Xd0j8XI4m7IfnRfh+DjlpLU6NgxUMBjU2NjaQnqTTaQsEfBYGx2d6GA+H4NMfSD3QBCjGk4E8bzgcVjwe1/DwsOr1uv3/UCikiYkJTU9PKxKJaGJiQrlcTul02qJqKpUy0pRIT9DinSkwHB4eWorh00FSOJwKgcwT8dgIe9lsNlUqlcx+SKk898T+dLtdJZNJS7VYZ7+Xl7ks7IU9wHb9AfcHf2hoSKOjo0Yoe0cPH8K7+b3meQnmlykLbITnCrdaLVuY0dFRxeNx1et17e/v28GHscZIODwXFxe2OT4iElE4sDw4D8gPkIpogyPzB9YTef7He0hP6LGQOBHvuf2//WWEKQeW97xMSnL4PHvNZg4NDQ38Pd/jCUzeGUd7ueLUbre1vr6uk5MT9Xo9VSoVg898Dp/hyU7vXD389Qbo9wGDB7nx99IrB8VzjY6OWrT16QafPTo6qlqtNrCmPBcID2cCpxCPx5VIJNTpdKyqFI1GrYISCASUTCYH7KjZbKrVaimbzSoYDCqVSmlsbMzWwkfzcDg8gLwqlYohitPTUx0eHqper2tvb0+RSMRQDM8/PDysTCYjqZ9etFotnZ6emn0QTH0K6dMVkJO3c9aetcNOksmk0QZSP42CTxsaGtLFxYU5OW+73tYu85ajo6PGgyUSCXte1sMHSo9K/Dt5tOHtiGf33GC321X4MtvPP4Lo6na7Oj8/NycA7MPgfInIR0z/pZ58i0ajA4fjMhNMdOM5cGYYFMbC8112OPzu5dSDzyLq+JwWQ/A/HuoBV/mOaDT6C7krEeRyKoGjvVyZ8E4BowmHwzo+PrbvrlarlhqZ53cH3TvOy//hHUmDTk5OLL3w6zoyMqJYLGakJuVDohNOL5fL2d+BQjkg2IYnTj2KAnENDQ3ZIQNpDQ8PK51OG6JkfUACIBDPR/l0r9vtqlarqdFo6PT01EjneDyuWq2mer2uUqlkwer4+FiVSmWAiK/VaoYa4Wg4sGNjYxoeHraSeyKRMGeKreLUCa7Sq6gO3+KRNfbJeWi1WsahsbekIJfPgg+yPniPjY0ZoovFYqpWq5Y2jYyM2Jo2Go2BIOqRP+msD1p8N//mMgGMgwz7lAJdAd7RHzwMI51OKx6PD+Tm0i+WJvliDjwknE9n+Hc+ipPv/f/pVPCmXofB8/t/46O4zwM9V8JC8ll4Wr/p3llc5n/8gfF/fpmf8BUfvtfDUP9dwG6qD76UzKZzmHh/jNo7N7/5vmrBOrNWw8PDSiQSxnuMj4/bgep2uzo5OVGn01Emk7E/63b7VT24ta2tLeMFKHNy4EZHRxWNRpVIJCRJz549GyBux8fHDdrz54lEQqOjo5ZaeUTj7bLVaqlarRp6BtnBuYC8/H9YX5wra345/Tw+PlYqldLU1JSGhoZ0enpqToa1xJFctovLvCF7QOCS+oQxQYaA2G63Va1WB/iLRqNhh9+fAb5zeHhY4XBYExMTA9UZOEmKKJIsTSQogub8+fK8FrbsnUutVjNU61P0MBsdCoU0NzenXq+n3d1d+8eU3HhhD894gdHRUZXLZW1tbQ0sqmeH+SyfZ3lY7p2Cd07tdl+w5aEjJKjPD70DYaE9BLycBnknkUqlFA6HdXJyMnBwLx92ft+X2Tw/hOGOjIyo13vF1OMY2RRIQjgK1qXRaKjZbA5sLoZCdIITwjnAbxDF/Pr7NYSj4PPZd/6O56LsSqqbSCR0cnLyC6goEAhoZGTEfj8WixkXMDIyounpadvTdrutVCplTg+BYjQaNaTDuyQSCYPjiOjYM1AL0ZaDR2XLE5MTExMKBoM6PDzU2dnZQNT1aYYn773j7Xa7KhQKunLliur1uq0beww69faNzYOQ/YHz5VW+g0yAihbEtUeVBAkcArbs7ZR98NVN7NFTDBDl5XLZkBRnCBvknHOusPvLiBjnxO+E+ZJms6nt7W1FIhHjPoBfl5ldHAv6BL4Aw/SH0FdiOEwcMs81eBLIH3Q2xef3pCUemfAd/sBf/l3vbDzM5LAT9XF2RDgOBOU4n5oQydAB+GrQZVTDgccR4fmJ4jhqn975kuHlz/G5N//xDD5ojwODoYbDYY2NjQ04SkqVngfj8GITBJXDw0Pt7e3ZofWGGI/HlU6nTUbAPmezWTtcBwcHCgQCSqVSVlnpdDrK5XIaHh42pINzQDcCXwHiADFtbW0pn8+bAz49PdXo6KgkGfrAifrq0OW15sev7+HhoVVdRkZGjHvgc33g48cjVNJE7AkkT3ruuQ7P1UFmNxoNI39Jgzx6CoVCVv3yzhDb5iz9MnQM+Y3Tgkj3iIf9u8wz+qpuKBTql38RJBH9xsbG1Gg0VKlU7LDzEHhv4BHVBZ9f+bIhjoHP8TV7DhU5l8/xWVhfDcA5/LIfWH8MgJzWE7H8ty85A+kh+C4uLnR6emr/jgPvy5ye5/DlNI+ueCaeGePyvIsvwfKZPCcEuP89uAp4g8PDQ4OavqTu00QcfCKRUDAY1NnZmaLRqMbGxgZSU9YF6B4MBq0KMjw8rM3NTUnS4eGhlVmPj4+tKsJ6tdttjY6OKp/PDxCPiUTCDuDZ2ZmRgiAeqi+kT56nqdfrOjk50eHhoVqtls7OzjQ6OqpwOKzT01P1ej0dHh4O6FIQvF2uePmgBQHLd7DWrAXcwvn5uVKplDkn7POX7bWnBfgdUFsoFDKeinPGn11GIUjqw+GwEcujo6PGV0I0S69EjwQGAixnCrRDsIDQxTa8mBAbvZzK8/eep/F/H263+2IevBdeiQ+XXnkl/2GRSESxWMweutVqKR6PS5JBe2robCQe8HJK4okvD1H5M/9S/Ld3Vpc3038ef85nAuGlV4w879poNNTtdhWLxQz+8/k+zwaV+bTFP4PXfZBn+rzTIxVP9LL+lEfRF0AInp+fG48Fj5HP5y3lQfMg9dHi8fGxlUw5MCcnJ0aWc9hisZgymYwddqLW8PCw9V95pxeJRDQzM6NgMGhpJ8hubGxMIyMjA5okenk4JJQjR0dHbY29noJ3wWnA23U6HSNUM5mMra3XDZHKYXegItbb29XIyIiy2ewAoiNwXa78YL84T29X7B1oFC6F9AWnRHUJhIwsnqBHMMaGu92uJiYmBtAWDnh0dFSNRsN6gyjjeoTteTaCOg6VwoSv4CFa48cHcn54z8tpYNh7SW/oPj3wUBBDqtVqRuxgmBx6IjSRyguk2FiqCjw4C8hhZqP4TFALqkdywlqtZshIekU+egTjo5xfGBaPlAVji8ViisfjSqVSA4iKpiscS7fbtYjonSPv6SsMbOJlxHX5B2eHAWIoHBS4ByTqBwcH6na7Bn1JDUKhkOr1ukWyRCIxwGs0Gg0TvY2MjCgQCKherw8YR7FYVLValSRdv37d4PTe3p45kGq1au9ChQmbYm9BQb1eT5lMRul02hx4q9UyvRKaEj4nGAyqWq0qnU7bM52env6CtsQTjBxmT1TDZ/jyOCkTqM9rKLAfzkWr1TIEgD1g7zgS+AYaF3kWUhrOjUc7vs8HNN1qtQwVSrJKGU6E6h57F4/HTZXqK0GJRELn5+eGtHAMnucjVTo9PTWnhoiOM+JJfp8O8v4Q7GEPnzEIcjoWyHv0WCxmkGx8fNwWC49NJGIT8aSeDfY/v4y08kiCUhuOhMUcGxsbqCzgRID4PO9l1MMmUE1ikdjAZDJplalMJqOzszMzzkwmYweGNHBra0vNZlOnp6c6Pz+3z+HHl0BHR0fNQMmRA4GA6Sd8FzBaC55tdHRUQ0NDRpixDqlUSrVazSAnhtft9sVOlFDHx8fNiY+MjKher1taBAKqVCqSZNoRDrok1Wo10xTB9kOGxuNxNRoNFYtFc8w4W1AEqQ52RhT2hhkOhwfEcQQfEGStVtPe3p4WFhYspUZo5olWuoE9/CYIkXqMjIwoHo8bmmb9cA48DyjHcxA8GwGTVIOf0dFRS+VZo1arZUhtdHRU2WzWCGpJxgmBMuBksE/QDTbEGnmuxJe+E4mECf1+GZfmf5LJpLLZrEKhkE5PTwcQtj+noD1f3bL9owrAAuFUPLHpoztRkkgG4+9TIR4cZ5BIJAw2+V6Ly5EZL+k/B0fC70O2nZ6emhcnz+O5PSnJJoJkcBRjY2M6ODiwdAUkQWQHioJ+cAq9Xs/gNZAaHYCH8t6R5vP5AYQRCoWUyWQUj8ftYF9cXGhra2ug+9PzOTjkXC5ne3R+fq5YLGbfWSgULPWpVCqWE09MTGh2dla1Wk2VSsUOLAZD9QhUirHThAZMj8fj5sDD4bDS6bQqlYqKxaIkWUrYaDQGIDWCr06no5OTE6uyTE5ODvBWXp9BJc1/PwdO6qMc35lLxYjnI0B1Oh2zE1/piMfjJmMgEHnVNfbOIeXZsKlsNqvR0VHt7+/bQfRIGvTq9weEGolElM1mlUqlbB/gvUhTPELmx/9vb39I331AJmgTxIeGhlSv1wcyBPg/1vgyD+mrjfBUoVBIiURCsVhMh4eH9pzhy7oMHpLSIzkZiCIej2toaEjj4+PK5XIGqXgRX8XhITOZjFqt1sBBYlGJ4lQFvANh8ynf+ZLd+fn5wCIBjT2R5v/DdycSCSWTScXj8QEUgQOBVCOag1KAeqwBJUFQCgeP3+PfgiLw6CAcHxlwhDhj1jgWixlJipO6DHtpQScqgmZAMb406AlMkCZrWq1WDaGwN61Wy4g+nhOkCjIlOtJF7HUW2IYfGcDBxOFj2BxiUgm/38fHx8a3+dkj0WhUhUJBgUDAIDkphk89IEnPz88HBFl+9k4sFrM9xH5TqZT9PsidUjd8Emvh0Q5KVBw+ZCrvFY/Hlc1mjYdCM+P5HhAsYjkChJcy4PR82s5ZAiWDHkljSO9YH3gb7JIsgCAQiUSUSCRUKpXMGaZSqYHqXiwW63MkftHJ5/FWXtOBl8Noiai+7sziRCIRI6rIj30vD3m/T114AQyI9ME/IwQQjDaMdTQaNWERL4lTQosCVMYogIZoHMbGxixX9GVIHAgbGQqFLJrg9TFWnt87QgydNeC5gbCQ1lNTU7bedLPyOfy3b5dn+A7CI1KlZrNpZC0svd/0er1uUSkQCOj4+Fj7+/uWsjHjA/ifSCTsQIZCoYG0YGRkROl0WpI0MTFh3Bh9LKw/SOPk5EQjIyNaWloyngC78v/u6OhoICpzIKamplSv1y2tA7kwsOji4kJHR0fWM0QAw5F4vQSOoNPpWDMfds6h4wf0Nzw8rPHxcYvwkKWXtUtU6mhUJP1vt9vK5XKKxWKWehDoCIbe3r0Tu4xOOOykyaiTSWcIzoFAYKCnibPKnp6dnWl3d/cXChucIc7h6OioYrGY0um0qtWqcTuxWKyPSDyHgYcDxgE9+TvQAb0SdPSSa1IFkqTd3V0Fg0Elk0mD061WyyAWTsQzwEQtE7p85Zj8IrLBpCN4aF9uZqE8EeorP0TnsbExazefmJiwejoH2efOnoTOZrPmAFl8DifrgmEwGoD3gV/AcM2rf1VJ4aAD931Zj++BDwESg4D4HY/UxsbGbN9YF5xDuVzWwcGBPRcHr1AoWBQlalKN80IuDH9yclKZTEbn5+eqVCp6/PixSqWSGTJoAcQ3Pj5uvE+9Xlcw2J9ihmIUJ4LteNuIxWIm7WePksmkksmkqtWqKpWKYrGYHSofYT3Z7iXtpPWXq3Sez8KRUu3w3IQXBoK0Pe/oq0esM3tNAMSuPXLwlSeCOKlSo9EwYSEKYC+x8JUY0nFkBd5mut1XilWf3pE+gcQguckwCCbhcFhh0ANeEKfh+1iA1LwQDP/x8bFVGMgFfXkPKAmMBrb5RiIORDqdVq/X7yaml4MNvxw9IZR4aQzB8yk+ffL8DQ7B55C+TRyyC2cIIuHzfV4OMmHhQRt8Fv8WB4rT9rDQd5lCwB0eHhqa8CQf+8Ba+zSHiOYJc4/MvG6ChjhfhSFqt1otk60PDQ1ZC74f3QccZn1JKSUZ4sEuiGQzMzNKJBK2XjhAntmjESJoKpXS5OSkcTHlctl4EG9Do6OjZp/sNQcQkR1OwqMRDi7rzL8BKRG0crmc8WZ8DiQpZ4GACBqA58Ch+1SfgAGvA8rERrrdfgvC5ZIuKAM0CopnNCcci0cdBEzP53HGyTwCgX7zJV3QOCPWBzk/Tpm0lAAfCoUU5sAAiVmIyxOQIEnZKA47pbFsNmt5oi99ApHZZK/7R8PQbvd7G8jpvG4FWMfiEB19Xd17WA4M3pi8kVSNNAcHw8QtPk+SkcM4EoyBfN6TU/wZm+qNDXSEQfpqC88IBCZlAKbjSDACH1VBcGwq6MVzVTgq75CJxrwTKCQWixmJ22w2B+Z04Ahxdj5aUaoH2uMYer3eAOJKJBLKZrNGXPtIhqFiS0TYk5MTK6OWSiWVy+UB0R7pJ+tIXw6254Vh8Aa8Oweq1+sNNC42Gg2rlHidBkK3UCg0UMnCYTWbTUUi/alu7XZ7oMvWOzBfsfQBwssLPCnL8/kSLDbMM7CPoVDI+BT+4wnVkZERHR0dWZEC28SW+Q6/dl5dzO9Q2fGZhCSF/QEin+UBPaznz3xZ8PT01Lwbhk0VAoNLp9NGgPlZBsBuNhYyFAjtmeZqtWqqSO9JfWctTWF8Pp+FB8aIOLg+r0UtiNMknWJh/aElegH5eCdJAxCTNQGFEBF8iuYPuXcO/Mez616FCtJD8wDfAsHpo5BttHunX/YMwWDQKkl8b6lUGhA1YfwEBYjIyyMH4bdAaZlMRvl83ngcSQMDjiBPkRSQumBblUrFemawMchVSQa1A4GA9vb2rPKFowHxhMNhC1yeY2PAtSSr5MCHoAImmMJJETRJGXA2niOD4MRZYLccfPbl/PzcnAgVHFTlA4fVpZ+gAngR7Jh98sIzKkjwKN42cWo4JhzP5RK85/0ODg7MWWL/YchQfwi9I8HIut2uEYoYH4cX54Iz8MwzpSMkuhcXFxobG1Mul5MkG97Dg46OjhqUDAQCRs6VSiWrLnjRGdCdiB4K9Zu6gKIMumEz8awYG0Qnm8L7ec6B3JHFZl1ALT46sMG+hH6ZaSdl9NwU/AWbdnx8bEpHrwPAQZBCepIcRMA68L3SK2TFgedZOeikMqwHa+wrOL4S4cnFdrvfCObTCCJ9t9vV3NycxsfHBzpmfQoqybgkSHP0DK1Wy2T59XpdyWRSZ2dnZk9U9ShVb25umkgRmQL2l81mNTExofPzcxWLRcXj8QFdBoeYA8x+cSjhVIjwOBf+vddSUYauVqtWlUJAR7s/gQmS2Acu9htRHCk43+P/nrEIl6tGZACgNCqV3vZITbFhziN74VHuZR7VP2eY6IAT8fMYfG7VaDSMsMNwUUJ6We9lBMOh4eWJrPwbHq7T6ZiX8/0YGAn5H/0wvV7P5mj4iEB5FkWn/x7vcdkw4Jskg314fhYKlMK7A6EvvyskIe+MAfC7nvz1EZ61B/GhfTk+Ph4Yog3vwmeD3jBKIpD/8cgSZ+WrAJdL9qS4THonVWMtWEPSGxAJhKnnCgg0HoUEAv2eJj+nNZfLWXWPah/veH5+rmq1+gs6Fxx6t9s1xAqK8jNPcAKRSESzs7OanJzUycmJ6vW6kerYhF8LAsH5+bkODw+NyyK9GhsbGwgAPrBFo1GrwIFgcNxoMFhjntGnoR4xcvaQIJyenppD8nwm58qjEXgNHLJHK6Ay0C3pJV3O/kxz3jinvjJl2YgX+1ARgCzFMIkw3lti7PwwhYpqBkw6X8RDgVx4GD89GwPFyIg6HG4WBmHM7Oys6vW6Tk9PNTk5af0ocAZemk8aQOQmArFpKEZh/1EZ8q5e8OaREAcJA2ODfbWIA+0ZcdIpHw1JB3yVibWEMSdHxekQ7dg7DhjfyXNcdnw8++joqAqFgpG1pJCtVkvJZFKxWEwnJydWvuaQ8R+qcMB8SYYU2DcEiJCNfrwCKSLOutPpqFQqqVQqmfPhXhhJFlG9ZoR5Jr1ez5wKuhbPhWSzWbu3h6nwpISkwF4WzyFC++HRJYGP3+31espms4YuQLBe49TpdIzLITXzKmAqnj595z05bzw/zoLv5vdBzzhF9tujDlAFFbdSqWT7xf552QF7TboYjUYNRFjqDiT03g/PODU1pXg8PkACEbUwav635yG84+Aw8OB01vK9sPNUMCAjgWYQa2dnZ7YpRGAOP2Uqyqr+0MA18Fw4I8/aIxrzgjIMyEcJFhPnS1QjMvno53NRv6n8Hs7QN3gRETAO/32zs7O2gV4y7x0az+vf35esfWrFf7Nnl52ar2igCCZqctiwF0qlODGgNI6E7yLS8X0e3fp2hd3dXVPgksbw/KRHvgObsjG2BjT3TXJMEOPdaRbEKZD+elTl3xM74eAQxXH8CLdYb8YN4FS73a7y+bzZvu/R4hmoPhE8sNVEImEIPZfLqdXqN0Gyrj7weE4Oh+DTHpy1d0YEX3qafPDj3PC/EUj6QBwIBF7NbPXRCsLN5/xELxwJ3ou/8wx1JBJRKpUyo/EEJ7MdgGF4Rz7fl0k9iUjrOMbb6/U0OTmpSCRiOggUh3S1AutwJNTDSSn4br4nFApZzgzs9g1kPl0hwvg0AUc1PDw80AR5GfV5/gkugVwfToeN5zMwqk6nYwpPn35yeL2jwCl6R8Jz+L3lc4lC/kDV63VzeBDpGBDpDEgrFHp1wRqVII88vXPnB0UpkRxZAWnQZVk3+8+7eQToJ4n5oDc0NGTXUcCf8Hs4Qg6jH4nB2kOyEp15XhBJKNTX6qTTabOd8/PzgTmvuVxOk5OTOj8/1/Hx8UAqxHeDVjzvRakbR0N3OM2Snu/CBghC9XrdeEJ/ox82CqLE4ZOKYucABC8MHR4eHnDU/NhNe97wgO+QR0QENpMvw0iIZnhXD7V8NObPUGT6ciJe3KMOno1DPjU1pWazaSPycDxUaJCzV6tVI2kvy4JxbkBPX/5FPwJi4B1xQvw+EdE3yPEfKhyJRMJmrvpSMQgGR82G8HcoNGOxmGZmZhQKhbSzs2OO5vDwUBsbGxofH7eDhIGDnnwVDWfE4fe8yP9fyuN/2EOqJZ4nwdg8sqGiAQT2f8da+Rw7HA4bWqWfA9SFzfhKFpwEhCVGThrAe4JSQUaJRMKQkycbOcjYna9eePLdy/b9aEiCTzwet7UhnatUKuZoE4mEIWucFc+az+dN8IXjAyH7w+w1MtiKf1bSGio4wWDQ1tKXm3FIoCafZnruBQQGJcB3sQ4++AxcR4GR84BAHyDjZbIND4Xnx+lgGJCDvBDDdyXZiwLfPWmJ4wHKQXp5IpToCGTm7zBO+he8sAclKzwDsC2dTtsAYmA2sBY0gfPAQKhG+IoMBwfjR9jk5fO+tAbZx+aPjY2pXC6rXC7r5s2bajQa1hh1dnam9fV1uwcWh+7vsWWoNmsA+vDOHSP0uS+H0zt/0gj2BiTk1cmeJMQJ0xMSi8V+IcWCm/LVKRzA3t6ezs7OtL+/b/yEd34+0PH5VAmxUV+94fNjsZhSqZSy2azdW+xRF0ERDQ9BDeSDMpTU3pd0cRIeLfKstVpNJycnA5GbteacgAJQ+fJ3oGicA+eRqiUjDTyfhm1hX15zQ/D0jo6KFv8fVOf1Paw5jtcHFo+yQ6FQv9fGM7ReNIMDAW7zYPydV8QS4chpeVCMFu/Hy0O4EbF4EVIJIjQLRKqBF/SHkReDH+FgxONxEzNJr25Mw+nR74DiEiPzrDnfBRoBqqKshaSj9wi4CHHG8xGBWCcOhOdkWCeqJe12W0dHR3bL287Ojjqdjubm5gwR/bLqkIf/HF6vn2D/eE7eAYfjhUxeb0Olge/0+4jewsvWfxnSZX+xK/4MwRnqVWlwYle3+2rG6ejoqKXO2Bmfwzv77wcteC4NnsNX0XwFxVcvcZyzs7MDpKv06i4nnhcnifPB4ZMicQ5AF1NTU9bD4slh1pwUhfeBw2TtWF+/dyAO+mj4TNYF5811vazHZbv3mhhsGMfhObxu96tLxJmH4UksIoFfaKKW5zHwgkQAIjkP65lfNo5OTl9uZCE5RBgppFaxWLSGLf+8ELjhcNgmnR8cHJiD49lHRkbsMiK+73LuiUGw4JC/LDAwsNFoKJvNKp1O20H0f+8rFJ799vwIRuBLanACHrqenJxYL9D+/r4mJiYGxHc4DwwFZ4TUHJSJ08Mh+5wZZ9Butwf6dei8BaFxrQNIEwNFCUzQYB35gYuSpHK5PIB4ETa2222748anMrwX6QFlcH95G99BKTwYDA7cLTM6OmpVElS1fu273VfT8lFqg6DYS9/EODw8bKMHPILDgaCDOTk5MT6NdJkyNtwK34mIk8Dlq4OcK5Aa/AqIhjOHzdIN7mUa8Gy+AsnnwQVxFskWcN7YK+faIz4LJjgIGF48Dd7HM7c+MvHyPAQek3/vRSu+6W5oaMgciW8a4tCDZlAeBgIBnZ2d6eDgQM+ePTOuBJ6Dw3Z+fm55Li8diUSML8nlclbDJ0olk0mLcPF43IyPMqyPKiwew4fIp0FrwEIqBRCMoDgMzZdpPUHNgSqXy8YX0NoP5C6Xy8b8w8fwzJTsiYAgBh9V/BQ5D/ExCM95sYcnJyeGHoiGiLFYA0/6+YDikQ17yXt50pvoDKpEnMYh5KBSaWGfPTcHKmVtWRvSS+6+oaeL/+91IER530vFu01MTJgKNhAI2BS6w8NDQy2s19HRkarVqur1us1ZBY2TavN3R0dHlhaDPNgHECH6LfbMFzwymYxVrUgHCfI4F9bLp+04DtS4gAjI6JGREY2Pjw8otwk63maNfwS6cpB91PRCFg/BMV420HdGYix+SprPvfxhg6fgoGLkOBQY+93dXe3s7KhcLmtiYsLy3na7bew5JNbFxYW2t7cVj8c1MjKiSqWio6MjXb16deBeDwbT4Dh8KYuDhAH7yg0HgfId70jkILJzUHzE4j2JhKQgQMzj42Prh9jc3LRWetbUj84D1ns+BKeBUftxAb7i0G73lajobUi/IBd5Ng4AVSSiMyV1/x7sG/vtUygM25O2BBqf/sAn0Cntg5iP+gQuj2r4HYIXQYYKGrwGlRQONM6EgAgJCQrBXicmJoyHY397vZ5VIbmADG4EYdfFxYVOTk5MF8NeoyDlLCWTSUNboCoUvYxChMAm5fNFENYJJw+68TNkkFt4O7m836wTdwuxxj5IERzwF51Op68j6fV6lk6QA/tDxaKx6KQsPpfFU3oNAhtE1Pdlp06nf5McPAIPvb29bXwC8P7g4EC1Wk2Hh4eSpEKhYF75+PjYVKBUgyAk4/G4dZReJqUgyDynQD3dp3PwAr7CdHJyMnCREYIjcnT+zM/LZHMpK2KAFxcX1tlarVYNkaysrFh+e3p6avC/VqupWq1a5cA7O3pRiEw4/mg0as4QB8BhAY16B0RTF8NsKKuyt4lEYuAmOxwqSMxLyQkuvoSL48KIQTH8HtJ6X/HzpDakLo4Ah+SrQtgzsnAqbKSfPnUmPbu4uDD5AO8C5+CRbrPZNNKVEQCMLYCQJ+3gWSDFvXMOBPo3+Z2fnxt68DoZ75xxBj6lIA1mJq8XksLhBYNBlUolq4jisHGkviv/sjwCZ8dasGaca/5dt9sdTG0o8wDVQBIcfi9Cwvh4cA6/10j49n1eknSGHJsUBCPjgHCQa7WazUVtNBo6ODjQ1taW6vW6MpmMyuWyHUwUmOThlUpFpVLJon6n07Eb0+BY+Gm323ZAcSoYWqlUUjabtUjIIB9fwvP5Nr/nFa9EDBw0OgAcxeHhoQ4ODmz6+cbGhm3s8fGxKQmJeBxevuMyo8+aE3UuLi6UyWQGOBrvKKVXE8Mul2khHz2pDalK5OffS7JnBTlJMpvB0XFAfHTjuX0O7h1Op9NROp3W9evX1ev1tLW1Zf8Gh83zw7n5MjeoEfKaykkoFDLHyIgFhptz8LAf1pPpaTwbtowGBVvHmXqVtE+VL2t30NF4aoB99+fNl7pDoX5/FR3LvrwN0kSqz7qzl3BpvsLK+2CLAAcvLfC2MjQ0pDA5P0IsfygwVv4BVRX+HhjEw8N38O9YaIg+Fg4NAHmWJ3X5Dp/PUx8nr6WBz89OLZfLajT6A4grlYoJgoiyh4eHBi9R8PmFBvn4yAyR++jRI92+fdumceVyOTMWX94EdiLV7/V6hlwggoliKysr5nDRCNCQ2O12La3jwLCWJycnKhaLmpubswgGtL5ckvVODqfBwSLKe+adg4uRYFg0oHHIQVKQyV5bhPFDaHqxnUco2BUH2muJLms8fPl3YmJC2WzWODRGT/AMOAfp1d0yOHVfgcDZ+GDC+3gFrHf8nm/CaQQCASOiOSM4EVALBD2pGikYKTT750WGoCLOgm/RgPeggsSMHvhC1oF1JkX2XCTnBuLeD6yWZGmU/95g8NUkQJCodclDbOEZaTXmRXggL1vnQVhIHzF8NYKNwOmQQmFMRChPBELe4VVJK/yiHx4e6ujoSKlUaqD+f3x8PDBOD8n88fGxORIcH9HSX4zNEGM/I/b4+FhbW1saHx8fKN3iBHhncmpfpeJAQfxxaPf397W9va1kMjlAnkqyPNy3yXPFImt1eHio58+fW2Tp9XoqlUoDEZAff9CZGIYBsIdEP5ChJ0h9dIWo9s4HJ8A7gHg4zDhbj4JAUr7UyZ+D8qj64eC4S9iXuSmNYks8FwHLQ30qV8PDw8aT+LEWnAMCIrbnUz2UrKwTzpXDzv54zsIHGz4/FOoP/2YGCmi41WoZX8dz0r+EPfHOBDVST/hBfp/nhl/DDnFk4XDYUAjnmDPH+rKXPBMUBWvEOZDU7/5FPDQyMqLT01NDHb560+12TXVJNPFelo30Obv/IqAUB58F5YEqlYpFAQ4pBjI5Oalms2mQ1EfVUChkz8+cBPpC6O1Ip9NGupGnYhC+9+bg4MCaFnmGSqViZJm/HgLOhJyYH1CA3wwvJcYhcr0D78HajYyMDHwPa+tz3l6vp/X1dXPECNfS6bR1DI+NjRl5+ctKexgUaZHnt/h9Ih7oyqNH/kNVgb3lwMCDgHI8kiGweA6NA+XRL2khe4yDPTo6suofhs5PJpMxRTPrxbvxXQRI376B0+W/sUX2hx/U03w+Tgdy1VMDpFbwLKAsutiHhoZUKpUGeEiqIiBXnAdT70dHR22PU6mUDg8PNTo6ak4dpOU5HmbMYut8j/SqQsml8J4H4dzCSfmgmUwmba86nY7CbBQP4eveQCEcCZ6P9AVHwkJzcIg8nnhkMymbgTpwQEdHRwYreTigJvkuG4sxYPD8GZUUxvlhvERUH30xIFqp0TFgoKhOgc5wML4X4rIj8TV2yDQiOVEbElaSNW/RJe2NhRvzMpmMaRhAH/6zJVkah05iamrKFKZEZDgpUgfW0v/vy46CSIxiFB2JL/UyiZ/DQnXBIxv2CbvwlRLPRfE82JxPQXAkkix3D4fDNkWeH6p18Eg+xUBpyj54PoU0EcftUypI3V6v3+GbzWa1v79vTtMjMZwlh98P8fb8Cc+MBgfnA2e1s7OjbrdrM4WhA1D08p0osr34EWHk0dHRgMwfHhIn46uz2DVAgb0i2Eqv1MNQDeyPpH7T3tnZmRkr3EOj0fiFBja+gJ/LENcTX/73fMS9DPn4t6QwwC64AwwWWAr/AjxmEfCqwWDQHAmLhbIRDYQvW/L8eGBf6yf/5XpIDjBEc6fTGcjxaV9HX4CIivfkEHPJNQY3OjqqycnJAXIxn8/b1RnSqysr/Ppy6GgHiEajmpiYsBK5z/N9IPCpBuvkxWpEKohcggNzRv2+eLIWB4LNeP4B1Acq+mWEHtCZ3+fGQ4xW0kBLva/u+IPBexG4+G44Mx9gPL8CWvXlat96wYEkqEkyvsRrg+AwuBSdoMdsVb/OHG5SFoIu4y5xjp6P4bnZG4IeuiUcbjKZHKj84IAIiCAq9owzzbniHKJrglTneQn47fZXF2QBFWkq2tvbswoKXwCv4X+88QHJeFmQgudK8OzeK8PHgCaY1kWujGGQr7N5GACbDanFQec7vYYCboDv9QcpGAxqcnLSjDIQCJhidnFxcSAn9/AcpwOCgrze2dlRPB5XLpez5/V1+ps3b6pWq9ml4HRpggYQyHmBEpCbKIiT9sOQEd15584+sf4gQfaV9AbnQDnTo1S+l3wZY+V3/LWcpI4+mIRCIZvzi1341Jm7c7iqgYOJitmrpfleH+VJcXzpFNgO0ctn8q4MJ/LoGIKTgMVhAuHBR3n9CqgHnYZPK6gO+jSe1MUHL1BRs9kfWDU7O6tYLKZqtfoLQddzQwRREBPOnXPnf3xJGSUtn3l51KRHMD4ohMPhAa0KaW+40Whoa2vLcrhqtWpTxfP5vBkMHwK89vmuj054XF4KgwU2e/KNtKBcLuvo6EiNRsPyOTaeA+zLWbwU+T+GCoJis3A23qCBYl7LQPrEZvlyIRHRp2t0qXpGm42BoEPWfnR0ZIcPRBCNRjU+Pq50Om3lbqoKHpX4EhvVGZwKBDmbiSMBteEccCKe9GaPfCrLXoFOkKuzThw2epWI4hx6rqGUZF3Pl+2FFKjT6Y+45LY5nGSn07HUCKfAM/JTr9d1dHRkUB/4TRqMloPnZmSlR6Y+kpNOeDQNcsJh9nr9hkqcAnuF88GJoQmhedK38EOsSjJRoEdsrBHrDGnr7Q7n1Wq1rIkVHoYz4BE2yJH0Bsfhfw9i2p8NT7TybJ5I5hzy35FIpH+vzdbWltLptC4uLkzLwN2w/qIhjJBFx7vBQQwPD5sR0Q8ADOPf4OUgZUulkg4PD+1gcnjYSM9v8F1EWt+XwKKwCf7gsBg8s3cqEGQeHvvf8QcW6I70ng1OJpMGyUl/gLysA99D7r63tzeAzHhWBFMYDekTkmrejX4TX0b1VQQiF0bE1LdWq6VisWhwvNfr6ejoyKoi3vg4/Bw8T5TjbDlsOH3W8fLv4CzYJ9aRFIy99ToHSYbKer2evS8oAdLYowqf/7OmBBOcPTcSUpYGDfM92AOjLEnH+G5Sl8upvEd76XTaZAnMgYUcRvcRiQzek0xQwtF7h8XsV9YEe4Zs90HIfwbPRsZBeuOvfAH9sncgHmzTZwCeqOVnaGhI4V6vL/Pd3d3V+fm59vb2DMrs7u6aAYbDYYuKnpDDwbC50uA1ghhyu93W6empqS/x/JVKxfT9REfKu5OTkwMzP/zv+K5P6VUJD2fl0zAWHbjmvTMHjvchwnEoyEUxVA49UN/390ivYC4HxNfzidIYA4fGfyeOz+ejdBbz+5cbDNGnoCPBgcA5eCm81B9XyPUf5XLZ5nVcTiuR7ftmN6AuJVQI8k6nL/YDCTCugf3gsGAbIDQcQa1WG4DV/h2wOTg0kARGXavV7E4g1u+yoIu0i2eG6OUA4SxAFjhZUA9qVg4anIUn8HEGPl0E+l8mKsfGxqy6CIrEARBQQAW+yuSdGFSCV1X7gOaRHOfNPzPOmwZaP13Qc2w+CICqfRGl2+32HQnqym63a4rLoaEhnZ2dWQmQejSLwqGq1WoqlUpG9l2G52wYh4fLnyB1vWqT76cUS+WCA84PL8Hie5aZ34eo4nPJyTmMHGgimCf0eG5J5u1xJBgTn0FpFifG4vuUzDu3hYUFm7mKzBvtC4iACI6jYMNIU+ha5vs4sBwqD9VxRP55Ls84XVpa0szMzMB7gTIgfL2QCWfqNR8EJN9Yx5peJkrZKwIWvAQHwU8e63Q6KpfLdth9iuil+KSTHo5DlBKIsC0QB7CcSAw3xfszD9gjYB9ESW0hhvnMdrutg4MDC1C8L1PgQEdzc3N2OAnIXhVMAGcfPT+EfWJ3gUBg4Hl8JQk79hyl9KrHDHsn0HkHBKKGVGfdcUKcszBGwIbiIPxLEO2JJBjTZfLvMuPtyT7KYZBjqVRKhUJBkUhEDx48MIM8PDw0uTLOxjPVkGTe2xPVgOvcJgec9P0BXg3rq0N4eohDNmp4eNjmVOKtQVAQxdTxgdSU/HxK6NM06VWqUalUzGkTodlcng0j9sbP53so7h0X1QOiLKlWr9ezi8UnJiY0NzdnB7zT6ej4+FidTsfSqFwuN6D7kF4RcqyHd5w+ko+NjQ1U03CKHDCek7+DcMVJ4cR5tmq1agHNp9n+3l6fSnW7XQt+KIc5qEjKPVcG93NxcaH9/X1bXxC35+MikYgR7wRbH7goaxN0SRc8gjk+Plav1zPBIc4AZMX3c94gWHE8pKrYCnuAPbNnBAVJNliM9RwZGVGhUFC73TZkwveSelHBo5+LdcY5h8Ph/jwSSQMlOb7ILyKb6qOuX9TLhCELxwbg2ZgDwr+BNOO7gVj+kuLLZTp6B4hQfqQfRoenvgwXz8/P7aqKUqlk8mIuccIBcq+Kj3J4bgwR+LexsaFAoN8xScs6P5QdcSI8o1+/4eFhm/vBIQMVojzEiLwyk7/zyAAHjyH5QABSQcxESb1er2t/f98cKJJ9UCbOkDX0FTyPDHFYoVDISo+UDjudjsmxQaneWePAfWDjAOEQfRqNQ6K8yqFijbBVdEGgEQ4qTXSkCTRRIoXwGikQCO/hAwp7623YBzCCHWvBWfBKbg47BL0fJwCCwwkQbKiO8QONEA6HBxoyCZCsFykXax8IBGwkJLZC1ziBAALZE9OXK29h4DQDkPGWXpnIg+JAiGA8NHVpXt6X4IhCHjZ3u33xWLVa1eHh4UCNnkgBLOX3icKQnJBVfpQdB8mX/UhzeBfKaj6nZ5EhoCiVUg7kJxAIDFzGjZenilMul5VOpy0lw5MfHx+bKtM7R76j0+kMDOLxpXFk7a1Wy6oOQFiQGAfa3wHkHQASfUjFdDo9cIgwaCocXhLOXT+8J8+E8aPTwGZ8iZvv5J248Z7nALnBsfCu8A1E3aGhITtEkmx9PerwuhKMm78vlUomzoLk5XdGR0fVbDa1tbVl6SYaHtbaB1vWyBPiqMH9IfNVGd6HtMqfDZzP1NSUHVQChacIfGn5Mi/Hd7DX/H9fjPA8h0f3cKGgQtA73dAgFGyLdSc4WVmYg+hJQukVacgB8loCDjiQutPp2IH2JBH/7eW5kgbareEdcFz5fN5Yb17U60OGhobsLpb9/X0bQUCaQgkxEolY6gGU5wcdAPfR8t1ra2tGLPJOiURCx8fH9uz+SseJiQk9f/5c+Xxe4+PjhrIY3Mvz5vN5O+zU8HEUPjViCBObnMvllEqlND09bemPZ9G5ipGDsbm5qbOzM+MaiCgYpee4iGq5XE61Wk35fH7g7hycF06ZaApxSykX1MP1GDhEkBwHa2hoyBwuDX++GoIgMhgMqlgsmm2APoDUvoTrBVbYCulZu92/NA1nwHBlxlGQfjUa/cunMpmMfSYEKwfZV6EkDTgInDl7AaHNOhLxIZNHR0ctUPqUivtqmK2D85Fkk98SiYQhWL+2vjzPftMzt7u7awGaqmOr1b+djyopDgMnDI/GbJRQKGQXc7EWXnsUDAYVRjPPxvGiGJKvyMTj8YH5pqFQaGAsPgeeklkkErEIzcsB5fg9jJB/u7CwYEbl0RBOiYHPRGSvwmODvWPrdDo2XgBDQLwDooDs9BwCxFsymTSoByz2VYpgMGjXYhCF/ACcoaEhZTIZcw7kycw4JYXA0QC7QRaZTEZLS0vq9Xr6+c9/PrDpIAnPSfEdRL1w+NX9tnNzc3aYmdEBiqBJE3vg9rter2cVncePH1ulBGdDp3U2m9XIyIitJakYfS+I7rrdru7fv69er6dnz55pf3/fqkbenqR+qz5rQ1rKOhO9w+GwEcKk35dTUSbhYceX0cLt27c1MTGhhw8f6uTkxG44yOfzRjBi79wzDKIitRsaGjJbwfb5N6BANEnYKM/A4SQA4PRCoVfX3TJPxOs4+DcE/kgkYtVARImAAZwadAUVPa87wfaTyeTAta84OrQ0pGwgT0kKJxKJX3oTGv/ND01ZaPpJXziMnoCJRqOanp62iEJLMsaCcAmiCeOT+r0l1PkhhPhdvqNWq5ncGOOhqgEpRUUFB0Rqw4uzGX6eBocDx+bHH+Cp/eg+TxSSo/oULhaLWa8M8nKQHcbHDFm4AXiIVqtlpdvDw0P7Mw6HL4XzmRgxjhI466sQHlIT9YhSZ2dn2t3dNePhuUulklZXVwe0OJ4/I9KCKBKJhMrlsoaGhgyBkDrTnMlzkxKD1OAA/N9hj61Wy+6MJvp6zosD5FNSnAZrFolElM1mjQshOE1MTKjZbNol5FJfbDc2NqZKpWKSg1QqZcOl/HwVUjTshP1iQjxop91um6DOyxqwSUhqRjdks1nt7u7aepHeYOMgtE6nY5L8k5OTgbGQNKH67uCJiQltbm7aRWQIA0n9vFKW9PLi4sJK1pIMZbbb7b4jAfayCDgU/8Ohq9frFqH5QGrkbAydpzw4TglJ+N7enh06oCsoyM/ViMfjNsgWBBIIBDQ9PW3XI7KYLFSr1bLBQxws0gHgH4s5PDysQqFgBkf0YE38hV44uVgsZu8/MTGhSqWi1dVVE3TxHRxktBheoMf30NbN9zPUhsMBZObCsuvXrxvS8eMcQCNsOAfBk4PcoUtQQFbvr1jt9fr9IBx6+CJSLpwnKROpliRLqQ4PD008BYrodrs6Ojoy4vXJkycWdDgwrVbLJsiTe18u4bdaLeuWBe4TSHwFiXf0js9XjDwiCYfDOj4+1s7OzoA2huhNunS5fEu1zAckLw/AZnDW7CXv7Ctz3jnjPBnAxRpwyEHn/H96x1hPzqMntNGukArhiPkJh8OGQDya87/DOjDvhHQVBB34lV/5lR4eFShMLsXL+xIgG1coFAbydqISMyn9FPN4PK5qtWoKUGYv4IEjkYgpPTOZjD0onIMfusSBxpHQrOSVgPPz8woGg3ZwZmZmrFx3enqqYrGo09NTG+HoIxkpBVASkRapD0OLQqF+L1K9Xtfa2ppF4GQyqdnZWTvYMN6+4RCHiHRakh1mYCfpEzMsgJ2gLHJUeCuqCGw4aROVMua9NhoNQ32gSwyuXn91Ban0iifzTD+HmI5jUGsqldLt27f18uVLtVotIyw3NzeNaPZcEyiDmTLlctlK/RD27C9Vm0ajYdUm2ikajYZdX8kB5kD54eJUzRhryXrDg3nFKmkBvA8kv9d7eH0Qn+MrkARPDh+H1HdI4zxCoZBSqZTxECA2T/RSHSU18sgWe6LaxHMdHByoWCzaOaONQpIR36FQSEdHR1a1jcfjymazNk3Pk7J8r9cqGTLFWOr1uukz6Dzs9Xra399XJBKxqkQ2m7W6NI4EgwS6NRoNbWxs6Pz8XNPT00Yskn9RwqRPA9LRe0zyNlh+ynxEQua9QmL5A7izs6P9/X3jMJ4+fapQKGTXVKTTaUWjUZszAkrI5/PK5XI2nBcdRTKZNG4C5SBkWbVa1fb2tiYnJ5VMJpVOp21eRSAQsJ4VSCs2lahCHr6xsWEbRQlOkonPIAxBepDOlAqJcuTInhgEZRAIksmkUqmUyd/5nGq1asbuy+Y4cozJIwbspNvtamNjQ8Fgv7W9UCgMXMXZbrft+g40C8BuDhMEu/SKt2KtcJCtVsscNtdDUNFhb+hrIb3c2dkxZBmN9ievcwc1fBjNcZlMRhMTEwMOlRSjVqsNVI8IOvF4XJVKZYAz8K3+fnIZf07gol/s2rVrNkZTenXRPD/8O19i9+k0iJcUiODh1cYQuXAv2Djoholx+/v7luIzQKlUKtnMEpwg/z4QCCjMvbnRaNQmMh0fHysajVo+hPdhJgUGSuROp9O2oLVazZxIt9vV9va2yuWyksmkTk9PbcgQhhGJRCznvLi40NzcnAKBgIrFohYWFgaEXChe9/b2dHp6qpmZGSM6Oajkv5lMRoVCQY1Gw1AHDD7dzVRYRkdHlU6nzRCJulQq6Gths5D64/AmJiYUDodtNgSkWq/Xb/aiJIfjBEUAJykrwolAtpLaIXwiXfL3u3ikgHPyhwZnRRQHcWKM3W7/WotQKKTFxUXbe1AmGh2/JqAYb8hETH6PdJLUJZFIWMp5enqqvb09U6Mydxe0EQwGB4YjgZ5w8HAilLkxdlA1ewBhHgqFtLe3Z84pnU5bajc3N6ezszN9+umndmCJ3K1Wy1AtjgUUyXrTAzU1NTUgQuOKFOyJShcHuNVqqVAomKMhXSbFh6gncEA/UP5lzf1IzsvjL3yqFwgE7O4eKksI8miTAFAghaDChVzDSyEI6qCa8P7+vsE5YArEUDKZ1MTEhC1WLpdTtVrV2dmZ3V53/fp15XI5cyrkmMzbILflz3u9npLJpI0sADJ6QdH09LRBcH+xOJF0c3NzQLoNAjg9PdX+/r7xHHhVauXZbHagMRBF4sTEhHK5nEZHR3V4eGjwNZlM6uzsTI8ePbKFRwUIEkomk5qZmfmFmZ6hUMg2HbYbHsJPaDs+PjZjJU2gOQ6dDmXxTqejUqlkCmEvRe/1eiaww3Fdrh5x0CEeIY6Juslk0tYShElKRukP7QdiKZCQF+pRdfCydS5Ixwnk83lFIhG7NaDT6dh9xhwGxli0221LY0hxUKmOjIwYCkQp6u2Z9MSjPA4E7zI6Oqrl5WVLR6vVqorFopW66Q+LxWK2D1K/y5lUgDnAKHkTiYSlwaBu0hWQ1uTkpCTZvUuMBYU2II2Ao6lWqwMlVwoBXmvF2WK/eG6yAlAnzmV4eFgLCwuSXtEJ/j4gQAS2hBzg8gDyMGVA4D4P68lSYDD/kIeORCJaXFzUxMSEbTJGCacA+sBJ9Ho9u2yIWaoffvihHbyDgwONjIzo+PjYyrq+YhEMBs3gqNF7CbUnuUBa0WjULvwB3rEZ8XjcNBQ8u4+wbHylUtHe3p4ODg4sp0YYx/cBr3EgHFJyWSIaDgHOgOnlIA7gPpUVnAyOmkhElITMw1GRijDwBt4AA2q32yoWi8arzM3NWSWNKyQlmeIRY+UgcBh9qRzn2+12ValUVK1WjSu6TFLyHKQqOEWpz7XQu+VJw263q3Q6rfHxcR0eHpqoDSeHzXnExWfS3s9eYL9jY2PG0TDCED6EEjelTnQ5OHFsk/WORqP2+6SKBDECB7xQOBxWPp/X9evXVavVdHBwMEAs8795RgZD47Cx31wuZyhI0gC/mM/nzTGCCv1Fcsjd0UN5hS1S+VQqZVwK/4a9ppTPuQ7jGLh/tFwuD5QZQ6GQ9V8gCmKzgsGgdnZ27PfIfy+PzmdRyPVLpZKVe09PT7W9vW3l2ZOTE21sbNgVDXt7e+a0gOAQTqQaKFJ5wampKUsjGA8I/IWjQJ1LXkjPCwiASDwxMWH/vlKpWJWFFJBICiwlxeLw4QxqtZpqtZq2t7cHStd+GBDvT08JhCySb4jD3d1dizIQtM1m04yCgUzBYH9aHGXvaDSqWq2mYrGoUqmkbrerL7/8Uu+//77u3r2ru3fvmjCKKg+OlAOAnB/nACHHACL2amhoSNvb27YvcGcYb6lUsvI5ZXU6vyH7QQ7BYH+qHJEasRQpJiiT1BDFM3YnyQoBrDPOi8CFJoXSK3wSzo6gg9gQIpjn8xVPbJTUDxtDxQ2SRQAIrQCi41l4/stoknej3E6ABl2TLRCYsLWjoyNzpMPDw8rn85b+8llUQUmF0+n0ADHNsxHIotH+nUlhHoK6MZsLccpGhMNh7e7uGgEKyQePkkqljEsgPcAoiURc08kMknK5rKdPnxp0CwaD1syGBB5NA3Ct2Wxavk1EpqQL+UNkHBsbs4hZKpVUqVQsOrdaLdOX4DipivD/qdkDRSlFI3arVCo6PDy0tMj3VyCmAvohzgN+c1ggnymhw0FAUJ6fnxtxfO3aNUuHKL/hBKkiYdhE85OTE+XzebXbbRsgtb29rXQ6rYODg4Hc/cmTJza+gZvjcFKUGXluP4uUO144QKwRUc8bO4Hm8uEl/cKoOaTpdNqg9tzc3MDFYmhCQDDk+5TZSVv4b+zap5dE29PTU1UqFdXrdaXTaQUCASWTSWWzWftMkC+2Q8WE5wchwWOBzqiqUI0hZceOvEIcp0y6gvOo1+uampqyyiEoBaeJwpmzc3Z2ZmI+znChULDzQgEhFAqZ0BJUDv/R6/U0MzNjZXfaDVgzgnIsFutL5LPZrKampgya7e7u6uDgQIuLi2q1+tdbhkIh7ezsDNx9C6GWyWSsXMlB4NpCNpEa+NTUlHEPqDufPHmitbU1TU5O6t1331W5XNbDhw+NNCMaIzrCEHzXKtWm0dFRMzav2xgaGjIDhq0n3wbS4sykV8125MEIi+LxuKanp7W7u6uFhQVtb2/rk08+0cLCgjqdjnZ2djQzM2O6Gjw+vA1wVJI9B0iO9afqcHBwMDD4FxjJeqIToXyIghgjrNfrVu4EwtOMWK/3LxhLpVJaW1uzdK1YLA7I9InaHNpCoTBAhEp9LgZE22q1zH6I/lyPypUZkoxs9q3sGDx/RpmUNDOZTNrawZ941Aiy5n/7aWXBYP9OHIIZgW1ra8ucL+k4KSd2D9lNtYxb7SjVoq6FgMaJgApAblSl4vG40um0DVJnH3lGUjP+HkcNfcANBLwnzhiCOBKJqFAoDJCkFAQgUgEDQ0NDmp2dtdm50BCgfwhqCGPOdK/3asp/JBJRmCiMIVLiGhkZ0fz8vDkMPBCbgBOBNQcFkBbgWJaXly23vnXrlkmlC4WCms2mHj58qPPzc6XTaXMMk5OTRu76ciHP4luZkSJDypHPNptNHR4eGjFGVYnIGggE7EJpymYIiogCpDQI3dgonClGHA6HNTc3N1AGh7TjsLTbbZVKJW1sbCgajerKlSuWN1NqJRUCefkeJNaYDSWywEOxdojXMKhwOGy8DEjGH5xIJGL7DKGGc+AwcKCpcMEPkNZQwSIl4qCTnoB2fRUDUpbPgefhjt1gMKj9/X3VajUT5+3u7qpYLOrw8FATExMqFAqm6UGhDFeVz+cNrpMK00RIujgyMqJcLmfOgOiMzfH5wWDQ1NZ8F8iDZ+XZucaUffG6FpwiVS8UqqAU0pZOp2NBEeeFiJM99R29lMLZD2whk8kok8kMcF0gTc40qN/f8wvHNz09bSVkUk4+HxuB0wun02m99dZbunbtmsHDo6Mjzc7O6tatW78guWZRMG7k4kQxNlbSgIoUD4gnxzlEIhEtLCzoxYsXVpLDEfB5ntz1BCToxJNfQGxIUPQqGBI6CQwEmA7/QD7IZxcKBXOEnkc6OjpSKBTS3NycpQmQnChBEXLhrHu9no6Pj7W5uamPP/5YnU5Ht2/ftrtY4CAgtIjeXlvRaDSsjIdjwQCi0aiVNv0BB8n5veB9e72eRV5K3awB65rNZu2wFItFhcNhzc7OmvCwWCzq7OxMy8vLkl5pgKhwEE0JDKwnitdEImGNnaQbOK6JiQlTy2K0vP/29vaA4/ZiSuyHtAGSuNPpdxmjUoZoBCFTQTo7O7OGTPaBIHN4eGizdylH47wJqNVqVXNzc1ZA4Kx4lSupMlU9hHuFQsG0LpR0ma/jL8wi/UefxdqjeYLz8/NjOCP8PoQ0xHC329X4+LiRu4FAQOVy2XgeOC36iuiGDyP1zuVy1lG7vLxsYh/KPJ4baDabRhjRvOMbpoaHhzU+Pm7QSpKy2ayq1apNZAfKEhkKhYIWFhaM4ILE4SChDAQl4Fw4oI1Gw6I/kYJcm1H6EGnoRkjFyM8p1/nLgHwbvI8qRNcnT54YQTs9Pa14PK69vT394z/+o6anpzU/P6/j42Nz0rwDAp+TkxNzoEj/IQ8xMtYcIwWNgRo+/fRTBYNBzc/Pm4NHEg0MJQpxKBimwwwV32QnvRr0zTq0221tbW1pb29PkrS5uWkRCqdWr9cNTWK4VDRwJiBZkMXx8bH29vasxAiKGxoa0vj4uPWCjIyMqF6va3x8/BfGb/qeKH6PosD169d1dHRkNsAawKdIMi5kY2PDqpdcjMZ6oT2SZLwAfAUlVZ4B0h10PDExYeinVquZipvqCIia7vvz83OVy2XbNzQr8GCTk5OW5kAPYPs8AwQ354Bn3t3dNRSOPZJlSDJE5oM1jYvsEdxovd4fxH12dqbw5OSkNftQCp6ZmdHFxYUeP35sG0KuB7TDqdDViCjt+PhYn3322UBEZWaFz2WTyaSlAtls1vpeEGyR10KG8mc0/iHa4oDTDCX1rzSAVUZ0hcf3/RFUJmD+IWohGH2K0ev1tLu7az0QOB4i3djYmClp+a5kMqnp6WmLQj6fxQiZwXFxcaFcLmcHjQM9PNyfIUrLASI3kBj6ANYCZ8PdwBxo9st3XEuvBivh8BCGcdDoDN7f39f+/r4FAH7QbVA2ZPKdR4xMuQe5keOjsSFFC4VCKpfLGh8fV7PZ1Orqqra3t42bAnV6cSDlUNJE+CRmzkB6F4tFlctlTUxMSBocZUF1jyFXpAHBYHBg+HSn09G1a9fU7Xa1v79vUR/kSdGA5/T3x0CY0tAK+gP5EfVTqZQ+//xzFYtFXb161UYkELxBPwS5TqdjzpNnJD2C2Adhe4kBmppsNjtQvme8AKp1zg7O+uLiQhsbG9ra2rLvk6RwJpMxkq7ZbBrk293dHcibSAWq1apVXt58800tLy/bIrZaLbuImwPC3S75fF43btxQONyfrA0BRVRFwETEgzHG6QDVySlZCByOn4+A1718IREogAiMFmFkZMQUuYVCwUqrvV5P29vbRmiSl2PYBwcHA/06lDCJptevX9f4+LhFimazP7TGj5HM5XLWIUyEhACLxWIqFovGFSArTyQSFhl4fp+LF4tFO1C+rOfLrZBqOHwcOlGXiViVSsW0BChTvTzbp4ikOZFIxLp0Icn5PiIgP57PQdGKlkl6Nf/l4uJi4MAA+TFu6VX/Dg610Wjo0aNHSiQSmp2d1fj4uNnp2dmZ8vm8aStYW4hqrkeBB+x0+hPe4vH4wDRBbAOil3aP09NTQ7+Qp5VKRel0Wtls1iI91UWehcBVqVS0tbWlSqVigf74+NhueeDcSjLpwtbWls3YoXTv9UU4SngQX8rH8cMN7uzsGOcGyqeqSFc0n1Ov1/t3/0J6ebK0VCqpUChYxJb65aPNzU1TMa6urkrqC2Hwuoh8vIIUwQ1y7kajYYcG2OvLiuRmpCPwMKFQSNvb2wPlNCouTBFnPgYGzvdJMnhLQ5m/25aDBok1MjKibDarL7/8Uvv7+7py5Yo1uxFduZsFxwejvbS0ZAbUbrcHvgeH0uv1Z1RMTU3ZRlHGDAQCevr0qR0G5OH7+/smzMJZoagkspLfb25uWrVpcnLSZOg4Xn5Pkg4ODtRqteyGPkYIAp3v3r1r+8keQuJS3vVlXNbDtzbQOwLBK8mubOA6EpwojuDs7ExHR0eamJhQJpMxhSmDq46Ojqyi5N8LaUImk9HJyYnZCNwJow1Q3OKM2C/4GtAP6390dKSjo6OBea/Mdm21+jcygkDQudDrgi6j0+nYZ1CBKZVKmpqaUj6fV71e19LSklVIu92uNjc3LbU/ODiwoJ/NZg2dRKNRHR4eDgyNwmGjWGWOEE4aVMifERDITiCfWTuUvnAwHn2FUW9CvrCJpVLJJOypVMpKl5QvZ2ZmdPXqVWNxqWiwGfTDEOGoorBxRE+iqS+zAokjkYiePXtmPR++moJxwiAT3UhTAoGAdnd3tb+/r93dXVPgUtL1Un6MOB6PK5PJGDsvvSoDSzLZPcw3IiwqOtTagbCe6OP95ubmtLu7q1arpdnZWS0tLalarWptba0PEb+SNG9tbdnnkFJgMPv7+/acGD3TwCASqb74ihQkJbAb2EpzHWsNImB9RkdHbaAPxi9J4+PjtjaU6iH3MOChoSHt7+/r+PjYohuGTbqKIhNH6ElPyFGqRTdv3jR5wdramg4ODkzeD7KgHEuVg4MCyoPsR/eDrbHnNKednZ0pkUhYaRcxGk7osgMnPQuHf/FOYrhGmkR9X06n01GlUpEkK/eXy2Xt7++bWpvyM1U+1hGt08TEhDk3ytdjY2M6ODgw/pAA1mw2LV2uVCqGTlgHr2+BX6LtYXR0VGtrazo9PbV+pmAwqPDu7q7Ozs40NTWlg4MDHR8fa2tryw4V0JMHy+fzOjw81OTkpBKJhHZ3d414gwCMRPrDlMnRKLH5HJYSbCwWM4n+8fGx1tfXLeLhGEqlkg4ODmy2JHn34uKibty4YVUURGE7Ozt67bXXzHPCH0xMTNjQHfpbGEZ9dHSkVqulhYUFk95jGFJ/EAwlSG9cm5ubFnVIUSRpdnbWxFDNZtMGS4+MjOjhw4cDvULAfiTtrE+n07EoQ3XisniOPJaKx/HxsdLptHFbGxsbJk6C4R8bG9Ps7Kyq1apWVlYMBfj+DODy6Oiotre3NTs7a9EWniWVSin11T3LHlEA/Wl7QHfiRyZIr1JmoiHpLnssvbpn9vj4WJOTk1a6JTWk2kVzJJVBxhvOzc2ZKJGZuuijJOnp06eGCKlQbW1tGd/FdyOEBD2n02kbbgSCPjg4sGf3LQQnJyf2e7Ry4ACvXLliCIty6sHBgTlByGycBwEfNMx7zM7OGkKHV6ThDslEu92fUQtS4odyL/wbymhABvwOgYQUiHlAtVqtP0bg4uJCq6urNh2KuQ/hcFhXr161yga3uTcaDRWLRTMQCFi8Mg10RMV4PK6pqSkr8/GQ29vb2tjY0NzcnFKplHVRwgbDLbAIzNsAHdE5WiwWNTs7q7GxMW1vb+vg4EBra2s6OTlRpVIxXQBy5enpaU1MTBjZJ/UbsJjhQdpQq9U0PT2tfD6vmZkZg9hwKDQWUkKcm5sz6Tj8DHM24HuOjo6slIbYaXx83IRgONKjoyOLyhCrEMsY6+7urkKhkHEXOBqiBHB/c3NT6XTa1vns7MxmtpAKSH3ijWazUChkiPLg4EAbGxuan5+3WTCU5YmSICbfN0PVh2hPCoK0H24NNAKCQ1TGDXDID5ghA6qgMEDJf2pqysh8+Bi4D+yTYAZ5zDN4Xgx+IZVKmb6D547FYhofH1c+n9fR0ZFxKB4pww2iyWo2m1axQZhH+kMFBNvDTgmKviIKKkJbhHOBjgBJo0GBPIfvpJgAavEVS3ggUid61GhrgBPDKYNsIfLDuVzOau4+0vLBvixED4gvL83Pz2tpacnyzoODA8sBKSPxZRg/kYzDI0l37twx2W632zUeo91ua2Njw54lFovp+vXrmp6e1uLioi4u+lPsFxcXtbS0ZPJvPKjXV9DRC88BuQZ51263NTs7a3n4xsaGyZypFuGlib5TU1OSZOPwGo2GNjc37eKv7e1tE/XMzs5qd3dXjUb/hsGpqSlNTk6aqIgBPfARpB4cMipOyWRSv/Irv2JohE7XUChk/xtGPxqNWqObF6iheKRChxGCjqLRqDlr3u38/Fxzc3OSXs3LYF5NMpk0NILhIQ7zSl7egf8PQY0zQ2PB4SA9ooH0iy++sPIpSlqitlf9cqjhBkh1arWajo6OdHx8bJWwVqs/wpGUk8hPyoWiFwogGOw3jhL8aEFIJpPa3t7W+vr6wPCkTqdjV5agBwFFESxZc/pbEEGenJzYnGTWDU6HSgz8C+VjSdZCAiGOs4T3YP4M3A7PSZADxXQ6HePtqN6cnZ3Z+tuoRV7GC5T4QvpryFPJnVKplCYmJtTtdlUsFnXz5k1lMhmDbXg/qiK8OCU9SZYGoAileW97e1v37t0bIHUgT8fGxjQ/P69bt25Z3fzw8FCpVEpLS0vKZrO6evWqQb1IJKKHDx/q+vXrunLlijmDoaEh5XI5g9OhUEhf+9rX7HY/4Bq1/7GxMY2PjysajeqDDz7Qzs6Ovva1r1k3KH0ljx49MmcCSYVGJhaLaXNzc6DHh7QLTQwHGYNCGwLSojJz7949G/MoyeTQiOZQNmKMrVZLiUTCuq5brZY1SpLaUQ1BuzI6OqpyuazV1VUrMR8cHNhwq+HhYe3s7Ojg4EATExM6Pj7W8PCwMfuQlKRhsVhMBC2k2b4kDuknySpr8DTYp9S/26VYLJreBqdLCwDaHNKld955xzQhCLJ828Xu7q6lujQDHhwcWPry4sULjYyM2N9ls1nt7+9b1zgpMOQ9pXiKC/F4XJOTkyoUCta1zEXs1WrVdCcEDf8MTIxLJBIqFAo2h3V4eFiPHj0yDqZcLqtSqSibzdosGZ/i0GfkGwEJOAQVih9oUmZmZpROp3VycmKkPOpyP1KAMnx4cnJSmUxGvV7PGox8qZCrAVBHAtvIK5vNpp4/f24qP3osiKQcXBwSlQv6PCCX0um01tbWLLqQO4+Njek3fuM39Fd/9VcKBAK6f/++vv71r9tB++ijjyxXZQFCoZCpLL/44gs1m01TCwKvkWhDelFm5gCij2BYUbPZ1NHRkXZ2dlQsFnXnzh01m01tb2+b0ZBeTE9PK5lMmnFms1nF43E9evTI0B6Eqr8TBRjJZKpYLKbl5WXNzc3p/fff1+7urqLRqObm5kxIBnpbX183STTd0AxAQkXJ78PK03A2OjpqZUV4gna7bUIrIvv5+bmeP3+u119/Xe32q+s8Dg8PLRXi2k56oegxQu/B7yCaY6/ZF4RP0islMhwdw7R96d6XuKmIsZZ7e3u6evWqTZhHu0STI5G2UqlYKX9vb0/ZbFbdbtf0Eq1WS2+99ZY1FMKfkNonEgndvn3bnAqO31ft6LXJ5/Mql8vWzX5xcTEw6pExCiAJCF7u5h4bG7MKZT6fV6/X04sXL+x9aQ7l37daLVMY00fHoG5QRj6fV7VaVblctlTs6tWrFkibzaYVKEDicHggpDD5Ngo5LpUqFovGT+BYyC+JauRRe3t7NvkJVpu5j4FAf/jNxMSEAoGAfvazn5noCUcTDAYtf4Tou7i40OTkpLLZrJ4+farx8XGFw2FNTk5aI1Or1dLMzIzBRPp3qOHD4oOyMEiqRDgUYB05+uWcGMRRLBZtOj7OlKoAi4qeBDhN7luv143IlV4NzD4+Ptann35qnbIofSFTk8mk5ubmjL/6vd/7Pc3Pz1sK1Gj0r7NYXFw0XgQD3traMv3L6empRSbPXYA+0QwRACDeidxwYygZvd2ggsaJ7e/vW36PghiNBZCcSJnP5+3g1+t1PXv2zHRF8G1c50EKks1mdXp6apwCe0YqB9EcCoVULBY1OTlppVXPIRwdHdlhIqVLJpM2oxgOqlqtanV1VcvLy6apefHihVqtlq0fupvp6WkbcJ7NZpXP53Xt2jXrlyE4kRYzBImyO04kEunP+ikUCnZndqfTMXUxAr2zszNDTbFYTIVCYUDKwRyd4eFh22NkED6lBcmSjsGPkRZBzlKGDgQCFoza7bbCOzs7ajQa5jX9cGO4DAQusP5UEKhoBINB8+o4CTpC6SMAxmJcLCIGB0Lxwijy3fHxcSWTSRu6Qz08Fovp5s2bFn273a61PVPSvHr1qnK5nLa3t23C2pdffqnZ2Vmbl4oortd71QYORIRMJqIQCRYWFmx6FoSg75dgDeBUOLSkU6QwbC59Paenp5qenlalUrERA1RlyN/hA0BzniyEg0BQBTFGuZKuUn6XUi2cEXvlyVE6f4vFopF3Q0NDOjo6UrVaVSaT0Y0bNyyfRnUJFwTyxCCpkNBEJkn7+/sqFosGtcnHEUASARuNhpaWlkwSgPqYygKlYZAas4a9A4N/ozTNLNnDw0MrBsDroBUJh8NaXl626haBiL4UdBbXrl1TsVjUvXv3jBvE5iHgESlWq1UtLCzYd8bjcdsbql00YRI8WZ9KpaKHDx8OVOw4t6QfVBBJTagSkoYyfxb7WVxcNCTaaPTnCKMN8xJ5iF64mWazqTAkVrlcNlaXfA1NAqnN8PCwzUldW1uzKD48PKwrV65ocXFRa2trJutGbCX1lZIvX75UvV43gRbdleTRHD7q2RB+XIXA1CcgLdHfRwVJNqMjkUjoD/7gDzQyMqLPP//cYNnIyIilbKenp7p9+7alavTN8P6np6eamppSo9HQwsKC8Q78Ps4BmIyD4AeDIGViI0A/8XhcMzMzGh4e1uzsrL7//e8rlUrp7bff1oMHD8wB8flUfpC2Q7aRq9brdSuXI7lHek1fCCXmfD5v6SmlXe/Ah4eHtbm5aQ4OYwwEAjaJn0CCY8DZ+gHSXuMBSkUO0Gq9mouKapTPBMEcHh4OkKUgYRwxFYrNzU07vKToGPzY2JghEA4K6WgoFNL9+/eNzCU4eAKXA0w1h7/jvX2LhZ9R4itIVPcqlYqKxeJAiwAVT8rGaKQ6nY4KhYKWl5f1s5/9zII5ToM00Henw5dR5vcDnXq9nqFABJD0c2G3FCugF6AnoDWooMZisVeaI3JLNpSaciaT0eTkpEEYctX9/X0FAgEjdmC2Ly76d9zOz8+bHuDo6MiQjk+NqIpwpwr5t29e8hJwJpDR40N5WZL9NzoB0hzYfuZHtFotY+WpJBSLRatSkebAVtfrdT19+lSrq6vWJEXFAsKTNm9gvidS+SGNoAQNnMSREI1o6UYEBkl7cnJiGpcbN26oUCjYfnU6HX322We6ffu2RSXKh3AzHCSei7IqqRjogb3BMUYiEeXzeZsER6WK75BkeqHx8XGNj4/r5OTEiEZfbUJP4UcV7u3tmdNGhRqNRgc6ZVdWVtRuty0iY2PI0bELUhjQDSQnaRzrjI0huqOUTMoWDPYHdNGGwXvGYv1p+aurqyoUCpqZmTHZAX9H/xOE+aNHjywQLi8vKxKJGBHvp99XKhWzI0rRCCqZyHZ2dqbt7W07m6wJgYX37vV6Ojo6slaQ8fFxE3kSZCBcoQ7IKihhE/hB4laV+Yre4NngbzjvYaIoorDLRgDhghTYS+H9/AqqH4VCQaVSybwy0Ix/k0wmdeXKlYFOX0qY6DzQBUDWwctgJFQYSFXwwDxfIBCwPgWYa6IeU/Bh9RuNhl68eGFOqt3uj+MnZ47FYtYM+Omnnxo30uv19Cu/8itGQNMkBvrytX8OLB25RFqMms0EaaF8JF1iQlqlUrHhwEjec7mcRULSgUKhYCmNh/xDQ0MmJOQyKvbaX4VApKOqQKWuXC6rXq+rWCwauqORDBKZCMlIBTrCcWbk6oFAwNbJN6FBBGNnHBoCGQ6Yg5FMJjU/P6+trS1LdXhfjN/fOQRCgGynwrG/v69cLmcVGi70Gh4e1tTU1ECPDc2MPD/BDR3N+fm5peL1ev/SM4ZdE0ioMK2urprtUUlstVo2sxjZQiwW0z/7Z/9MR0dHOjk50aeffmrKYKp8oHxKuNPT01pfX9fe3p6lqyB2eqAI+IeHh4pGo6bFgTfiO0iZz8/PTWjKPvR6vX75l80ncszNzVmKwWHb3Ny0EtzU1JRtAOVX77mZqs3vY0iJRELvvfeeQV5mt9KExuEG0iFA8+w8BxVR29BQ/84RCDDKywwx8r026AswTA5SKBTS1taWwuGwxsfHNTc3p/39feNbmKNKdSIWi+nhw4fWTbm/v698Pq/FxUVTJ9K8B+/CwWZNiJb+4MKToHZdWlrSw4cP7TqGRqOhH/3oR/rmN79pqAUSs1wuW3kwm80a+95qtQwVdbuD815Bbzgi5qhSlu50OjbVa3Fx0aKn75o+OztTrVbT1tbWwEVinlvDCBGhUTHxNxpSEt7f37fUjNSEw+uRba/Xs5YLhk2zhgQs9n1jY8PKw/RtkTrTNsDngQJw+lRAQEGcE4JftVo1TY6nA5aXl61na3t721oq6BmivwjRGAJJSYYAX758aZzH5uam8X4ff/yxaTnS6bTJGvb39xUK9e9nunLligWVo6MjK+OfnZ2ZNgWhow/U9KqBiDwX6p0W62dSB7p04SEuLi5Mb4DxQgAR7VFn0jlYLpd19epVTU9Pm54E4yHSlEolbW9vm1Gi08Ab44jYJHJBDhmHAkhJOvTxxx/r7bff1vHxsT755BNDJfV63UQ85K04TKIjUHJqasoWBk0F3AOkFWVRiCkMBCf6ySef6IMPPlAul7PqzNramuLxuG7evGnltXg8rp2dHetNQeKN0TPIp9Fo2BWdvMfk5KTee+89vf/++/rud79rOW0gEBg4lKw/c1VxJiAPEBaHm/Xls4LBoBYWFmyYEGt37do14wrGxsa0sbFhEPvw8FC1Ws1QLQZL2kfaSrkXVOLTuVQqpcXFRUn9+R8gHN/3I8kGlLNuzACGcJydndX8/LzW1tZ0dnamra0t5XI53b5929AgNgGBCRqV+uSkT8mR7ZMyMicFpTedsZlMxgY8I+QDCbx48UILCwumxKXKQ+Ndo9GwOays09nZmb744gsjwh89emSVG+Tu6J4YIwkagi9MJpOWjuZyOT1+/NhQErok+DKcbyqV0uHh4QCip8ACWKC7npQrTB+AF73s7u7aYYLgAjWcn5/bjAgawXyfB3ML8NwQUeTIlO9YUPJWUhiQR7PZ1NbWlvEDs7Ozevz4sY6OjqxE12q19OWXX9rogePjY83NzVleSP7IvAqiOERVuVy2fgwOJdOmEOjgeBDg4VDn5uZshB2Qj9mnmUzG2g6okkCijY2NKZ1O6/PPP9fS0pIdLPgZ5OF+Ej+MPnCV4do4Cyo7voTteRn4H9JB9guuCXiKEyYA4KASiYSRtPAplP9x9qRopAMcQs+pwA15bQjoCzLQVwRIVXgPj2xAl2gnrAs1HNb29rYFQJpEj46O7MBWv7oTB8QAKof839vbM3EYGhxuYKTK59el2WzanNpyuWyEMilEJBLR/v6+7TNoFWVtPp+3/02ayKVVDCyfmprS7u6u2TpFBqpoOzs7xsmQltLISTsBCJZqy9DQkI0r4LzXajUtLi6a7IO15fPGxsZMTU77Sa/XU3hqasqiIoId8uDT01MTHRWLRf3gBz+wXpfl5WWbfhUOhwcGw4Bc6GqkujA3N2eT0ClNUh3ghemzQd4+OjqqH/7wh3r27JkePnxoc07m5ua0sLCgYrFo+o47d+5ofHx8oLHPR1pgK30GKB1PTk4sZ0X0RLWEKI8BE8l9p6ck07PMzs4agXrz5k2D3uTalCFnZmbsuZLJ5AAHMDk5qd3dXf3N3/yNer2erly5YldGjo+PK5vNWkkOMpNWBth+SD/SA54bB4MD7HReDcLxpCZojXLg4eGhVldXLVI+e/bM3vnp06fGLUQi/Sn3165dUzKZtE5p5N08rxfNke6hH2FYFqhneHjYnDb2FgqF7ELxiYkJC2QgVRr6mJ2DdB97aTQato7M7qU8PjExYdoixjD4vqJgsH+nTKlUMsk8FACpHemQrzKVy2Xjaxi3sbW1ZS3/vBs2i83Rl0V1khQOh0r2AGeIeAw9yPBwf2Ih0/i73a6JJNFqlUol05vs7e3Z9H7EgiiWQYQeVdZqNYWvXbumcDhs8t1arWbSaxwMbdK+L4XyInCo+tVNcxCuDLTlYemI5GWIODDDx8fHevr0qSKRiK5cuWJoolgs6tmzZ5b/UYM/PT3V2tqa7t+/r9dee01LS0smFQZxcD8J81IQfaEWJJLv7+9bVeedd94ZKLfiuPhhDYDGIC4EaHSIUjnA2SBqg2zjki+INT/1rFgsand3V+vr64pGozYAWZJVAHyZD2IRtSXVI9Il8mwcCnAdBIEIkSgKqonFYuZkifakRzMzM2o2m9rZ2VG1WtX5+bkqlYomJiaM2L569ary+bwZoCfoaKhjLaW+PHtpaUnT09N68eKFCbeazaalUQgnibJoffygHdCtn6S2t7env/u7v1MsFjOuiwvTKL+XSqUBm6cAMTIyos3NTWu+q9frRlZjx34A0+rqqql54aLQbRweHmpubk6Tk5MDeh/Iepw32hRIZxTPN2/eNPRDILp165Z2dnbMYbPvIE5skybDWCxm3Fev17MrJnBmVBDhbDqdjiGyvb29gfeiDB5mXD8w2rr5vsqtKSednp7q5s2b1odACYgN5WCMjIzYIBmgGpcTEUmIPhgXsvpUKqWFhQUlk0n96Ec/0o9+9KMBbQD9Dc1mU1NTU1paWrK+m0qlotXVVa2vr2tqasry0d3dXTNYhuBwTQPKytPTU7uRnTKkRwhEK68b4MBJfRKXHiNQDg4I/Q3pDxsJ+UZTIAeW3Prw8FBvvPGGYrFXl2BT0iVa+QjFxvrUAbKXw8umw03AB+AgiXTMs2Dw0MrKij0bV0tQiv3www/NMdLEJ/UJTqono6Ojpi6lauJRklfKksZRZUmn01pZWbHOavYcope+HhAlxClI4+nTp4YUGFIdCoWMFyPFJf3N5XID3crwAgy68j0rHHzfSkGnOkJLngf0jb3QLgCSJH2jYslF7KTYyBZIJTKZjPWXgT4uLi60v79vpXwCdyKRGOg/gndDTUtrASpkEHsulzMKAnv3IwgYO2Hdv0h3A4GAvvzyS+M9QAUebqJWBXp+8cUXmpqast4WNBy93qvLdbzykuhDnwoLgNhlfX1dP/rRj7SxsTEg0WbTTk5OND8/bzL9x48fW1T1zUUnJyd68OCBVldXdXp6aoeEZjLq5oiMIK4YPoy3h5nmwOIAqAiBVnx6MTw8bLNBcUaeQIYXgbCGbPbcwd27d5XJZJRIJLS9vW3viBjo4uJCi4uLA1oNP0KAdfecCX/nSc61tTXVajUbIcD3k4/n83kdHBzYvUfMW2Utrly5onw+b1LuFy9e2ER2SOJAIKDHjx9rYWFB09PThoYQdsEZUI1DjiDJ+knoVQKS5/N5FYtFdbtdmxXTbrf19OlTS2N8NyuqVg4dMoBCoWB828XFhQ0eoj/sO9/5jpWLfdrhB3IhfQABo9gNh8OGjEhDSYspH9MbAw1AAKLMirYDZErhg4MNamDqPM/KuAucB59N9Yq0LBAIaGZmxhwdqK7VahnVwPmkZEzXuQccYQbf0F6fy+WsjZmBOKQDdM2m02kjSa9du2ZXVyB5p6wJL0H/zenpqR4/fmxDoH2e12w2tbe3p48++kjlclmTk5MmVhsdHdXc3JyCwaDde0IUBtoDnyHETk5OdHBwYJB0eHhYX/va1+zfMaeVShBcEd9zWS4OQYXOhuhJOgfPg5aAvBmyjfybaMe/Hx8fN9KLQzU1NTUwIwJ9AaQoc1Dq9brW1tb05ptvKhAI6LPPPpMk3bx5c6C8TenXtwGwRlTBSAGR9XMTIgfnMvpBVJXL5ewybGzjww8/NP3I7OysZmZmDNWQPoNuGKAE4erHNfJDtOfKFN4DMhOU941vfEPdbtcqE6lUSvl8Xru7u3ZdJXN2cCwc3EajYUOkgsGgCoWCjZIIh8OGRiCiCbwc4GfPnimXy+nq1at6/vy5zVqlux7ZeyKRUKfTMRKZlgsi+8rKinVRI9n3fBxV0Xq9rv39fRsYRRCD/GaweDwet2ZCv/+IEuE64J9Iv3u9niEmnBlol4BDb1i9Xu9PSIOxzWazAyMTWSyqDkCcTqejycnJgdGI5KpExlarPwiaqVaffPKJwSvyPWD64eGh1tbW9OWXX2p0dFTvvPOOCWSCwf6NZ4uLi4acKN16iHlycqKPPvrIZnzy2Ui+mV9C/ZwSJddtwj2QCvgSKoecgT/wFTSW8RykDTyTV7riQEgjPU9BZyqlWyAwvA6cDcrYfD5va33lyhWT35OK4KBBhzD0IBKQDaPySBPhtur1um7evGmiLD+Ih65eeAnQJdEsEonorbfeUrvd1k9/+lP1ej3Nzs5qbm7O4PnIyIh11oJcMpmM5fblctmqI34cAY2ekgxFUj1A+Aipvb29rePjY3OCc3NzVu3i9/ickZERKwXTzf3666+rVqvp/fff1+joqG7duqVGo2FOHYJ0ZmZGOzs71jm7tLRkZwhltY/28FVwi6hqqabBt0xMTKhYLFoHNv1mx8fHlpYgnpydnTVExtlrt9uGdChe+L4dMownT55oe3tbW1tbKhQK9nzYoZ9sxyTFWCxmoxfgf8KBQP/iYUa44XV8ipLJZCwi0vG3sLAw4OUYY0/ZrFar6csvvzTD3NjYsFLrwsKCEomEzfYgPUFyy2JS2bi4uND6+rpWVlbU7XY1PT1tnp0XfPr0qfb39wccDfkgh5Zp9p6PwLDgP3gHYDb36YKC4JRwCJRqgeM4EsqofD7/Hk0H8NQjGD6v2+2acYMm4BEikYhVOnB2bHwul7NKk9dugGxwMnxXJBKxRi7mjxB9cCr5fN4OrCfWQUfsNxGMeRbsxdbWlj799FPdvXvX2v0l2f59+OGHOj091WuvvaaFhQUNDw9bZzfDlCgNJ5NJmxw3PT1t745ToBx58+ZNC3xvvfWWdnZ2tLq6amMdiN4cKvg3biKkekRFb2VlRaenpzbMyAfMYDBozZ9oWuA4/DwYngeJBI2QdGUTqDy3CJeE0I/9I2iRRpGOoB0BfZIGSa8uSQP10p3M9zDHB/tBIzU7O6udnR3rn0qn03YfEU49EAj0e20gIDF4DhI55czMjBGKKD0XFhaMOEXt2Gw2tb6+rvn5ef385z+3wcvhcFiLi4uampqyCLm+vq4HDx7o5cuXBuOHhoas/2B8fFy3b9/Ww4cP9fLlS3Mi1WpV1WpV09PTNkWdHiA6h3kPDi19BUBFcmJY9m63q9XVVSv7wuJDgPE5PCNrdnZ2Zp3Im5ubprUBEfCu8EI+t8UoLo8i2N7e1uHhoXEPwGIcjhfWYchwL3A5/DmOy8NTUizyfS5th1NqNpv67ne/q4uLCz179swk18ylABrjNL3MnfaFBw8e6LPPPjOU8fHHH2t1dVV/+Id/aGhsdLR/JSvd52tra/r4449tpko6ndby8rIR/vBC3BWDQ/UcFXv9d3/3d/b/6Q3jAHolNTwJlSi6hLPZrBG3iPOy2axVLiiXP378WNlsVslk0iaoDQ0N2cgLKpkI16R+iwaXfHEQKbWTNsBnkFrA55FaIebkOz3/h/SACXCeR/Fr5VtFsAsv9/eK8JOTE8sQsHcoDAtowH8vEGLAEV55e3tbe3t76vV6do0ncmLUk9Vq1civH//4x3a3SjKZ1PLysmKxmDUg/fjHP9bm5qbpMzqd/nyP+/fva2lpyZ6jVqvp8PBQjx49MoQBKsjn85qamrJeG2aQetjr0xFaxbnXGBXmycmJHj9+rFqtpq9//eu6evWqOQJydTgFxHq9Xr/LFYXlF198oYuLC62srFhfxLVr1wy1TUxMWCSln4jyMpEXGf7W1tZAr1ChULDSsCRzOL1ev0mR8jkzNHA85NKQjtVqVbu7u0aaUn5FV/H5559rb29P9+7dkyS7KWByctJSV08YsxcQiTjes7MzraysaGVlRVevXjVEWCwW9Rd/8RdKp9O6f/++kanLy8tqNPozgD/77DOb3IbmJ5/Pa3x83LgRD9fhWkCwiCofPXpkUfn58+caHx/XxcWFlc1BFpTpS6WSJicnNTk5aZ/J8x0fH+vq1avGG1WrVa2vrxu3APfnRXMI8UgdO52O5ufnTYF7eHioTCYzIJmgqAEiAclScmWkJ0hakr0zYjZEZ7lczpTUe3t71q1PGsfMG1Jc+rXopYK/CgaDVtE8OjpSJpPR1NSUqaN5jna7rfCNGzcMdhcKBbXbbRuuUiqV9MUXX6hYLOrKlStaXl62/gxa9VkYRtYzH0Tqk2STk5Oam5szB0KERi03Pz+vVCplF0pFo1EjxpLJpDY3NwdumUPMw+Xd8DikIL1eT3NzczbbgpF5eOXr16/bgQ4GgyYFfv31120OCkYCiQVigORkvarVqp48eaLHjx8boQUzv76+rkikf1HU3bt3DVKjCoacZvMfPHigQqGg27dvW8mPi7BRE4bDYZNAh8NhG7JDyzdCpJOTE+XzeTMI+C4iKnNjnz9/rvX1dbtjVpKeP3+u9957T2+//bYWFxctyMD50JtBZQGUySEC2Z6fn+uzzz5ToVCwvfnJT35ijXH0guAAI5H+1bHYHv1CzKABGcKrcOUGaKJSqWhubk7Xr1/XJ598YhVBDi/cBu/9xhtv6PXXX9eLFy+0srJiDhkSHLSIU2PtR0dH9fLlSyvbc38QRYObN2+asAuVdb1et9sH6/W6RXeU3XByzPOJxWI2ZgDkB6lMedzruEAwU1NTNiEQm2g0GgNDrjkj7FUoFNLS0pKlhl7SAfk6NjZmvUzYJr05oJYwG4t4hZy0UqnYfSRvvfWW7t+/P9DhSqnt5cuXRtKS2oRCIS0uLlqp6JNPPjFkAMyPRCL61re+pcXFRY2MjKharZq2n3kR5XJZW1tbkmQ8TTKZtGEyRByux2B4MuXLZrNpA4yOj4+NgGXqOikRRNbPfvYzSdLS0pIWFhZMOAckhn85ODjQ+++/r0ePHpnEnAiNcVPt2Nvbs3EFVHkCgYA++ugjdTod3blzR9/5znesJ6TVaun27dsDVy0AX0ktKBWenp5qZWVFr732mpXj9/b2VKlUtLGxYSRZNpu1lO/Ro0f667/+a6VSKd28eVPf/va39d5772l1dVWpr4YZX1xc6IMPPtA3v/nNAdWpFxDSf0QpkNSSu31InZ4/f263CUr9AUYffvihxsfHLe2ireCb3/ymzQShNL62tma9R+Tn7XZbhUJB4+Pjmp6eNge4u7tr5WJJFnx8v87du3eNaKayxJ7y+8gA6Cvzc3LQRSG6gzMLh8O2FqBO9BaMOPQ8hm+tACVQpg0Gg3ry5IkWFxet1R9eA5uElyM9oYLJbXtUZJgDE41GbZ6PH6GJchWE0u12LXDhJChdNxr9cY6Mb6A40Gg0FCZV8LNDgTvf+MY3VCqV7GJl1Kfr6+va2dkxR0F6goHNzs5a+lAqlWyD4/G4EXakHsB6ci7ILqAWHjEY7M+KoNS5sLBgpTv0JqAGIDyzXL2uhfLe8PCwPvjgA7tlbnV1Vd1uV7du3VKr1dLm5qYNBKL8CxfywQcfWB0+Go3axUtPnjwxSM4CU6nh2chngam7u7v627/9W52enioajWpyctKk0qQ9OCl+4KMgQf/3//7feu2113T79m0tLi5qdnZ2gM2ngtBqtXT9+nV997vfVTAYNLn97/7u7+r99983UWGlUtH29rZ+8pOfaHl5eWA2KQQtDrZYLGpnZ0c/+MEPdOXKFatg3b592xwXGiIEeXTyUkrnh/f+/d//fQ0NDQ3MPQ0Gg/ryyy+VyWR07do1lUolra+va21tzfaz0+nYxU2kGtKrGaPwSDjia9eu2fyR1dVVe08motFzA8o6OTmxvhRKsqFQyARcVOHoMD49PTU9B2Ma6Inx5DxCPtJmnEYsFhtI6yqVilqtlhYXF+1eHcqwTIL3UnYc5dhY/65pmvrYo263a7N6JyYmrKOYFgP2BN6KvjXElwTMbrercLPZ1Obmpl0j8e6772p+ft6ELTzERx99pMePH1vTXigUstJsKpXS9evXraemUChodXXVRvDn83lTFtK7gjwZp4E3ZtgN3g+xUr1et0umgsGgXX+RSqXUbDa1trZmpOLFxYU1KHGQ4/G4tre3dXR0pOfPnxv/AkKAULx9+7ZB2WCwf1nRD37wA3N+5JOTk5MaHx+37kcEdXBBTO1ipB73hcC/eL5nf3/fdDwbGxs6ODjQm2++KUl2IfvQ0JBu375tcy3glX77t39bn376qTY2NiT1c/pYLKbHjx+bUhPmvl6vK5PJ6Pr165YO7O3tmSgL+TcT8f7pn/5JW1tb1j/09ttv6/Dw0KocdHVvbm4qEAiY3sirLoHYINl8Pq9oNKrPPvvM0tqxsTEzeBoyEXXdu3dP09PTWltb06effmoT9tBVcP1Dt9vVnTt3jDMJhUKam5tTMpm0WwxbrZY+//xzGzsBwdnpdDQ9PW1T1JaWlqzkStSenJxUpVIxzgmtByXqcrls/V2k75lMRqVSyZSlm5ubOjo6ss5qbMmPMSTFjMVievHihcLhsKanp03IyFW6VGBQDrMmpGcobn3ZPxKJ2DUljJlgXRiFQAsMTgLEQjpLkYKyL8Eu/PjxY62srGhqakrf+c537HoCbvuq1Wr6i7/4C21tbRnMpUOW4bSTk5NKJpMmWms2myZNTiaTGh0dVbFYNIIWb39xcWH/HiILbwmZ5ic00TgGwVqtVgfGMM7NzanX6+np06dWzma2QzAYtMuzIJOJCnAe4XBYm5ubmpmZ0enpqaEtRD2USdkcSFyUlIwXBIH4hi4MF/UhkuxCoWBr1mq9GsPH3BCiRrlc1rNnz3Tz5k3rymbt/s2/+Tf68MMPdXx8rC+//FJHR0eamprSj3/8Y7vzZ3JyUkNDQ9bEhXCJNJVb6SntQ6ptbW3ZpU6S9LOf/UzHx8c2JAgy+MaNG1aRIZrRIYyjaLfb+ta3vqWVlRWb29FoNAbaJ0BuZ2dnZoMMr6aKAon52WefqVwu28X1//iP/2iIcHh4WG+++abGxsbsek/QCND+vffeM2k9PVzIwGdmZnTt2jU9fPhwoBEPqQByBSp/SNJJCTicVInYc5og0Vil02kFAgErPVNy73Q6+vTTT7W2tmZBkSD8k5/8xALJ9PT0wIhK0hl0Log1+QwUqwzoJgWEq8GpIU3wTaCcfQhl/n82m1U4k8nod3/3d9Xtdo0Aa7f7o/CePHmip0+fand313gUpNS3b9+2W+harf5QHHQjoAJ6EGZnZ80hvPPOOwoGg3rw4IFCoZBu3bplMmNSAfJjNp6y1NHRkSqViuWpoIm5uTndvn3b0NPq6qrdpk4fBWKoQqFg1zJGIhH97u/+rs2uQHz24sULyzH93Nlms2lXLbJpeGt4HohcD6fb7bb1CE1MTNimEQUov7OJvV7PeiTGx8et+SwYDOqDDz6wyk2z2TSCkQoEhNnLly91fHxs6Win0zGlJxJwbgkkCHAYqHL86q/+qsH5k5MTff/73zfVZPWrYeB0SedyOVP/YqwnJyd2w18ymVQikbCy/ebmpoLBoEVa9BalUknlctmi5j/+4z8qEonYFRL/8l/+S926dUsHBwdWKoe8xwmEQiHrmeFKWhSYflIb6xWLxbSxsWGEaaPR0J07d9Rut80BgwRLpZKRl1ABkqz8is4GshY0zf9ntAEKUu+YkKwjRKRyeX5+blP9Gb3ZbDZNrkAXLpd8pVIpuxbETyuMRqOm9KaYgmBT0kALAAEd5AFxTQqJSjidTveDLMOI0EdUKhV99NFH2tzc1Pz8vCYnJ01YMz4+rm9/+9vmRelQbLVa+vTTT9VsNnXz5k2rm1erVe3t7Rkcisfjeu+99wwmLS0tKRKJ6Cc/+YkqlYrlzteuXVMul7N7WWH9URbeuHFD7XZb6+vryufzNlSXejedzIiEvK5jbGxMmUzGLuLmwi16dzY2Nkw8hGyfz2DEgR+4xLhB0jFQG2XB4+PjgZGUkkySTORlHANcD/sBvIccJCdnLgzVlydPnpi+A4EVBB05NyQ2RODExIRVit544w27L5c1oDI0MjKiw8NDLS0tWTQdGhrSycmJXbURi8X04YcfamJiQnNzczYLhqoLqAX7ikajmp+ftwY0EBsOmL1eWloyAv8f/uEfbNAWk/W++93van9/32aNcGGV1K8qfPjhh+aUOOh+LyBXWd/l5WWtr6/rzTffVLfbn4C2sLBgh4l0DnU2do0zIH0EMeMMPCkKn1gul41nIyjQ8EhTJ63/ZAbRaP+q0VqtZkJIOq+xb96NHhnKwpLsbhwaZEk7cXIEPfg4UkTK/WQGvppD9SnsO0VPTk60u7urly9fam5uzmrawPn79+8rmUzaBzPMh65aUiJq18lkUqenp/r4449NToxxw3wzzZ1SpSRNT08bE3779m3Nz8/r6dOn2tvb0/z8vCYmJmyT0Hg0m6+un0RJSJRDbk1E8c1hP/3pT+0ulaGhIevg9ToSRGAQg7T+t9ttG1Xoqzvdbtda1XG09ADRcYzykJ9wOGxrS2THQCAOEXLhMEBFnoilt4kUi1waQ8hkMnrttdcsalF2ZC4Fz4qjDIVCWlhYMA0QFYFms6mlpSXjH9bX1w3JcJCYHodhV6tVGxk4Pz+vdDptA3+uXbtmPUysOVWd8/NzLSwsqNvt6s///M8ViUR0584dE28FAgHduXNHS0tLNmkduTnOEzL/7OzMUAcQvtfrX3QfCoXsBj+0JTTn4Rg4lL6XifXvdDqanZ21O4p93wpXsDSbTa2srGh5edm0Tb63KxTqj+FgBgspBTcrok+hFM9tDiMjI5qdnVUoFLKxGHA9FDRo0CQgXR5HgSQeJITupNfrGdqmDC3Jgna32+3ftEfZ7uDgQA8ePND5+blKpZIdpLfeekuzs7PmlZvNpjV7cVscEuOnT5/qtddeM+9eLpetpZub4Y+Ojkz6S6ci96cGAgFzQJCb+Xxem5ubNjaf1CaRSGhzc1Off/65ka7kyLlczgRiOELfHMZhePnypTY3N61XhTtPiDKUwvlMf4gxcvqM4C4oX3OXMdGF0hviPtSylN1wWL7rEqeG7B9DHh4e1vT0tPE4yWRSpVJJ2WzWhHKkmDyzNxCmyWUyGd26dcv6OCKR/mR40pNOp2Np2ZUrV+yi87m5OUsxnj9/rnq9ri+//FKnp6e6e/euRWjvSKgmQBhWv5r7SppDMyeHivRwYWFB+XxetVpNz58/1+bmpnZ2drS7u6vd3V1ls1l97WtfUyKR0KNHj/Srv/qrymQyRvb7eSg4ZJ7J34R4dnY20C3MM4CU4JBAk3BCBBfWGomDd1QgDeQBOAVJA0pVUCh7yjqC1pnaRlOtJJtvm8vlJElPnz6VJCNhG42GVldXLUAgrqPiQrDl38BdghJLpZKNa4CiIMVhXcP0xEiyfzg5Oamvfe1r5oG5JQ8oxFCh9fV1q26Qi33zm9+0KwARO42Ojmpqakr5fF5DQ/2J5KVSSVeuXDE+xkMqCDGupuQlEXaBAKilk48nk0l973vf0/r6uoLBoFZXV01BygsT5SDBkIkDc5m3QKpH+sb9KZTJ8dyQhEdHR4YYGJVHVYBbB7lzBnI2FArZoSXNuUzO+gnwiNoo0QM9GYDtkeLS0pKJr4jAUp/Efv/993Xnzh1NT09rfn5e4+PjA+tArry6uqrR0dEBo2LQMGVBSUZEg37QsNTrde3u7urKlSsaGRnRj3/8Y21sbNhaLi8va2FhQZlMRg8ePFCxWNT8/LzxZJC0QHbKpYuLi+r1elpbWzNk8Pz5cwtK165dUywW07Nnz4xny+Vyuri4MEKfKglEKUGMEYgoewk+oJCRkRHdvn3bJreR0vKcXidCkMD50H/E2ANKw9jK+fm5kbSUWRFj7u3t2SQ4Ph8ki1jv448/NuEcez81NWWoCW6IwDQ2Nmb2nEwmbcLa+vq6ieCoeIJgGcmBEl76Stn6n/7Tf1KpVNLXv/513b17V6+99pp5z3fffdcgabvdVrlc1sbGhk3vunv3rpWUUqmUrl69akRfu92/MvLg4EALCwuSXs0gWV1dtVIXYh9IOtquKT0TwWlIo9qyvr6u999/3w5Ir9ef3/nxxx+bA4O5plsTtSepkE/TMAS8LSw5g5qYlJVKpXR6emrPQiWIaerkkRgmXb8PHz60tnzf+zI9Pa3f+I3f0AcffGCHHmcKgoCM9HMzueSKv6c5Ehk5Mu+rV68qk8lY1QzuAv3M+fm5Hj16pJWVFS0tLdk82lAoZDqKq1evWqRm4A0isVKpZGV2dBhUjnDAs7OzVrInxfj4449VLBb17rvvKpPJ6N1337Wxg0ReqligAUYGghguLi508+ZNvfPOO3r+/LndKVytVpVOp5XL5eyZ3n33XZ2fn+vnP/+5OZaDgwOVSiWtrq4qFovZ/UVSX3vClDZv46Tlf/AHf6CPPvpIT58+tWCCmI0yLCk0RLA/0DzL22+/beklgZvvY1QH6QhpGu+PA8GhwQUx8uH09FTFYtGEoAQk3w4Ti8V0+/ZtG4KNmhbBGkGTYgi2zdkg+IeZaP7ixQu98847mpmZsdwMxAGkPDo60t7eng4PDxUMBvXo0SPrfkT38OjRI1WrVYPKp6enevr0qZX7GOjCICReEFIJB1Qul03nsbi4aNr/Uqmkhw8famtry0g3cradnR19//vfH1CZUoaF8wG6z87OmkfnBjYgHKo9SM3XX3/deIt8Pm9T2BGUMYENaCvJHALQFRETepG9vT3r6r13756+973v6S//8i/13nvvGeqg5ApBRrRsNF6NdgSe0saeTCZ19epVNZtN00QkEgmrmhwfH1tAQKcAD8ON9isrKwNS7JWVFRsbsbe3Z0b28OFDI62JTDs7OzZEmAYvrvo4Pj7W7OyslbS3trb0/PlzQ0ZbW1uGgP1VnuFw2JSsjDAgDfm93/s9tVot3bp1yxr7qHAcHBxYWkfD2RtvvDFw702tVjPydHJy0gZ30ZWOHKJarSqfz9uEejgwbGp+ft5K6Ht7e9YBzzWnqKwRfG1ubmp7e9vK5rSG+C7hSKQ/7pByNeparzr1JDXIk5QMZ8EgIypsfB9qXnp2INtBapLsOynpc97C4bDxlNFoVOF79+7pzTff1MTEhF3vB8yv1WpaXV21TS8Wi+p0Orp165b++I//WP/v//0/PX78WMFgUF988YX29vasrs0sC6/JhzxcWlqy7lxGzq2urtr3v3z50i5pvn//vkHBjY0NffHFF9YcRo4GxPcQlR/6cyYnJ22oLUN56MOZn583Off3v/99FQoFRaNRGx8Ih1Gv1/X8+XN7blIl8kre1Q8hgsj2/5/J4MDi//pf/6v+1b/6V/qjP/oj/fqv/7r+8i//0vQDoEHKlrw3ykmEg/RHMBwH0RtqRWA7bD36F8qn5O+JRMJ4nUgkounpaT18+FAffvihJicnLe0j4nY6HQssDDiqVCoWdJLJpA0Warf797dQldjb29PR0ZENG6f1nsiXzWatpLuxsaFEIqG5uTm9+eab1o0LWqNPDGRLEHn+/Lna7f7cjmg0qtPTU01MTNgYgocPH5riE57mxo0bunPnjnZ2dmz9UK9OTk5qf39fL168sLt5aMOAJKVru9Fo6P/+3/9rFSWGTMM3DQ0NqVQqaXp62vrLTk9PbTYQ/WKgmU6nPweoWq1aWufbM0jzaAD0+g8U4+h6KpWKSf6p/DC1z4vkSIEk2QjOYDBoRDLoJPz7v//7RuCtrq5anXx/f18rKys2ZnFvb08HBwemNwCiMvOUqDM5OWmSY5jzfD5vOSZjGumtQWHKXITHjx9re3tbQ0NDVjbc29vT2trawMQuYJwnmSQZ+mg0Gnr27JmhohcvXmhqasoa+j744ANNTU3pnXfeUTjcn4T+4sULayPnEjBq+J4MRAfQbrcNSnuugvXB4VGG85JinBkVqP/yX/6LRkdH9cYbb+hP//RP9Vd/9Vf627/9WxNtQZKCjEBztVrNSDcvQIIEBsn4ayxCoZARtRgwkZvOU8qfs7Ozevr0qZ49e2YT4WH4E4mEGSWRj/9OpVImFON5gNVU6CiPt9ttTU1NGZIhmkKIP3z40HqaHj58qOfPn9td02hg6HUBxrdary6rx3Gcnp7qwYMHNgozk8lobGzMBiBBkl9c9GefctF4s9mfZ3p6emrE8NnZmd566y2bQib1iUraBzjQVPNIldFiocymNYJb+Sjf0yIB4qfqxsVaPlDCawWDQdOE4FARX4I6Cb7YdDwet2tgffcye3BxcWH8H0ibQMI6d7tdhfHSa2tr+uyzz8wbPX361IYM+crB+fm5fvzjH+ujjz5SIpFQLpczkqjb7Wpzc1OHh4eanp5Wq9XS4eGhlXqpf/d6PT1//tzgE/n/+++/r+PjY5tolkgktLKyYo1HHFZKtZTOGEIrydrM6WhlfCSw7+c//7lF+Gq1qn/8x39Ut9tVsVjU/v6+zbTE2Hd2duzPyB3RlBABMGQgLNCZagAQEu6FXgzfaX1xcaF//+//vf74j/9Yf/RHf6Tvfe97KpfL+vDDD5VOpzU6OqrNzU3TtOBEQSOsCxxDNBo1FIKUnZvhmEeBE4bsY6RCKBQywtxPMye1owOW0i0VDqA2To2SJbBakjkjoimT17CzXq9/493du3fV7XZtrABy9FarpSdPnujo6EgvX77UwsKC5ufn7c5gBHWI7+CT4FNSqZR2d3fNhihBg4Q6nY5WVla0tramubk5vfHGG6Y+9vNBtra29OLFCzWbzQHpgiSL4JI0Pj5uYw+RISDuDIVC1vSay+Vs8vzQ0JBmZma0vb1tRK2vsJCytNvtgTYQkAnriFP1amAIafi4i4sLra2t6caNG0qn09rZ2ZEkC5AgDmQWfBc/1hu3vb2t09NTffTRR1pbW9OtW7fsxq9IJGIdmAw6oqaO6hLSlAYsSFn6FDqd/s1gbB48CJ6XBcBrEi3Gxsas6Y/fB6aRl/FieH16bihtZrNZMyI6IG/cuGG9Kvv7+8YD3blzR8vLy+r1etrd3dXDhw/twjA4GIgnSdbtTCrD4QGFML8DqAsHxDNjTL43o1ar6Qc/+IF2dnb0zjvvqFwuWxcwcnyuQaByxX/YF0qPaID43kgkYtAZZ8MkNPqD/LAifhBJIVjDETAM53IqGQi8mjSH8AwhFbICRh8uLi6ac3z48KFpIb7xjW8ol8vpk08+sSDh4T29WrVazZpESZG5dQCURsPcysqK3eZHAyf6ESqDtEpI/dLt6uqqvv3tb9vIAnRSpAEff/yxrTuBAhRIusjIxFQqZfqaer1ueijQFirR4+NjZTIZlctlc7SUfknfpVdT5ylvQ87z/KAabJCJ/DgmKkpwStevX7egSCmbmxY4n770zXdQhg5vbGzo5cuXqlar1jFLZQE9PjAZBMDoAVr9KXHOz8/bAaLmDvuP+AqoSw0e58HwHIbzHh0d2cXlkDsInvi+g4MD8/QYNfX3QqGg9fV1nZ2dKZ1O6+rVq7p+/bqSyaS++OILq+zwvVR16EngHh0OKSQXB5F0sNVqGbTl84i+EFcIfZAms9l+Fi68wNnZmR48eKAHDx5I6hOt6+vrNhIAGEvrN/+ejaUixOfh9JCCLywsmPKYgUDj4+PGv6A+3d/ftx4U9guNDiMwkZWj3mU6l3dqSPFjsZjW19eNUKzVataHBTogku/v7+vJkyd6+PChpVikQjSKTk9P69atW4pEIjo4ONDs7KwePXqkqakpHR8fa3t7W/v7+zo7O9P4+LiVUlOplHE3nneKRqPKZrNWKQEtb25uKpPJqNvtWrvE+++/P8DPnZ2dmYYG5IpQkIB6cnKit99+25wFKdE777xjKIBZIPBOcGAgx0ajP9+VP/fVP48KcTre4aD8LpVKpsplr5DYh0L9CW37+/s6OTkxXQvlaH4Hx05A63Q6Cv+v//W/NDw8bOMF6R/BK5EzsujAfob+IOpJpVIKBPqzSJn/SGOe7xQEkuNtvXaEmQw04uFYgGVjY2M2pq7X6w10C3Owu91+R+2jR4+M+KXPpFQq6fnz5/r000/V6XRMaUhEpkvTz+70XbpeiQosxMF4QRJcgC+XeeQCv8OBAob6ua6gBv49zlKS8TA4FEi0y6kNlbK5uTkdHx9bGkI6wWFi4j6VCNrT6RGBeCed9FeagiC93N3Px+h0OlYxQRZfr9e1tbVlKBMHyi33z549s4OKIE3qjyz4rd/6LbtZMZlM6sWLF/rxj39sqV8ymbT1RpsDCtjd3TW+hkFI8CrZbFa/9mu/pq2tLWsOTSaTWl1d1cTEhL2XJKtwVKtV3b9/3yqcW1tbSqfT1tDI5LpYLKbPP//cZo+wp1SCGJXAvFr6iEBb6HeQYtATRQbgbQHuzldXGo2G8VXtdn8iG88INwJ4CAaDRgpLGugQxpH4QVaIKsMcYBbdD09hhBwP4O+0AcLBSAcCAW1sbJiIiLFt3OgFR0EDHi8OFKfjES4FUo7Rca+//roymYxevnypjY0NuzaQyIqzwuEkEgm9/vrrCofD+uu//murHGD8qVTKjI6Gs/39fSOAIaZAZOFw2JoCaaoCXaDa9AuLA8Z5ehITmAxDjtQfQ+DPiPBesYvkmTKeJM3NzRkEJoeFO+EqVTgOGuUWFhasLbxarVo15ujoyJAK+4PTp+z60UcfDcxMQbgEAcea+AYwLjnnJj4Q58zMjDVL4gAgo0llMOpcLmdo6cWLF3r77betebPX62l5eVlHR0f68ssvFY/HDUFEo1FrYsRxPXz4UB999JHt1/j4uF2xWiqVbDxANBrVD37wAwWDQeNCvMZiZ2dHN2/e1MLCgl28BipHagBfxXni3arVqra3t9XtdgfuagoGg3a5G9IEzg7Ihc9HqU3GQNqPM8BREGi4yaHVahmnRKn64uJCiUTCNDifffbZQKsCDoeiQbPZtEARppmK+QQMhWEQ0cbGxoCcGxabTe50Orpy5YoeP36sFy9eqFAoWJXG17ETiYTW19cH/hwD5boJZqJIsmFBiUTCWOuVlRV9+OGHOjw81MzMjGZmZmyCGgvInNTJyUm1220dHR3Z5DQqTUzkYlI6EZdFZ3PgVnhWpMugFEq6eGq4AiA4E+Uut9PDs1A6JrLwQ2QAWWQyGd28edMg7BdffGFqYdrHj46OrFfIS9xbrZaKxaI5e6pJXH7FNZLcRUsJljXFOWcyGUsdGd9Acx6IyJN9PtWkXI0zYlrb4eGh8QhockBjfG6j0dAXX3xhRPX+/r7a7bY1dvLMzNDIZDJ69uyZxsbGdOXKFbNhIDitCyMjry7zRnX6N3/zNyZWhGBF6CXJ7m2CQ2q323rw4IE1/BFgqPCsra0ZYc08mitXrtjAb4IBlUVIfXqxKpWKjTD1wkSuBUEDAk3Q6XTszCwuLprTBQWRErGulMD9bZuQwdzzTFoMBUCFEuFboVDoj0vgQ71w6+DgwHJXPNLIyIimp6cNChM1id6QOnNzc0a4JpNJffnll9a7QsUBZ0IPztDQkPb29rS3t2dCqOnpaRsYs7q6qocPH5pHhkBDU5HL5TQ9PW3OZ2VlxXJkhDQ4P8qF9+7ds7ZqSqA4Bu5CBQIC59CHEKU5bJ4s5hDRug1k913MwGQ23jdCkcbQIEVaxXoi8KLEyrxcWuUl6dmzZwaDE4mEHV5SGHqmGDPApDkiJ5FtcXHRUCJcQK/Xv6dmb2/P5nYEg/3pdV5bQOnWKzr5XA483dTj4+Pm6F6+fGnpIfuNEZ+dnRnxTFt7uVy2AMXdvffu3dPVq1dNE0N+D/KjHwqZPnwNCI2Lut5991395Cc/MaUwhxByv1wum+iMAgFKWgLJw4cPrQeLqgwOzO8955AuYFTAvtoTCARsEDh31TClkJSV+TpkBBQLGMuBjZMGw+HRwMl70fWOvTKKkX/Pj6FsYEsikdDExISWl5eVSqU0NTWlzc1NU+kR6RDvUH2p1Wr67LPPjLSBELq4uNC9e/e0urpqD9dsvroxLBwOW3kOFpzIB+QCTQAHITXJwYeG+sODf+3Xfk3T09O2CdzZQc8EB5NU6eKif29tsVjUF198YZFkeHjYxtrBUvvGKzYLIosKDMaAk/ElYjQXVBt8Pd+3fcfjcd25c0e9Xk8vX760fB7idmNjw67R6PX69/OiLIVdj8ViOjo6skoNVaRgMGgCJuCzJIPbiLHQU0gy1SwckFecBoNBTU1NKZvN6u7du8ZpodYFUZGmkPrwZ1KfY+J91tbWDJlNT0+rXC4baVn9ajYqOpzR0VGr2Hz44YfW5JlOp3X37l31er2BC8QkWeparVa1s7NjhHk6nbZuWy5M90ppRoz61DwSiWh5eVn5fF7vv/++Li4utLS0pEwmY5wXEwGpyhweHqpWq+nZs2caHh7Wb/7mb1rPElUQHPrJyYndAIBsAjvDwZId0JXrSVBmrGC/ExMThrY5ewR2OJp3333Xrn1hFEetVrPCCIJPZPS+eosKPtzpdJRMJjU7O6twOGx3n+IhuZGLjtuXL1+aLkKSeT9mRqIcHB0d1czMjMbHx626wssBJ0klQA3vvvuuksmk9vb29OzZM21vb1vUp9+i3e5P87px44Y1E3LH8LNnz3RwcGAzG7ixzZdC+f79/X0zcHoikJ9z+JrNphGUlLfx2h62M+eE9ZBeydo7nY6+/vWva3l5WWdnZ9ZjAorjgOVyOf2Lf/EvLH388MMP9ed//ucDykKiFM+KBgCOi2cjDYhEItaQ12w2TYHLxDWMNBwOW0SGwwFSx2IxQzp8B9wNKllsARTrZ3WAKCiNsoeSzCGzB/F4XLOzs2Yz5Pb8/ujoqKHgy5wSxD38FAeUzvS7d++q0Wjo+9//vu0xcnaugWUcxvDwsA4ODvQf/+N/VDQa1b1795TP5/Xzn//cpp6Nj49btKd8DFHKlbNzc3O6du2a6atAEdgeCMR3m1OqZY+pXIKoaZNIfXWJGO9BPw6oi9+h7wbeB46TNSAgra6uWupCsQHtiCRDkNgtQZC0MjwxMaHFxUWlUikrg7Xbba2srOjx48c2zIUUhB6Per1ufRcnJydGmnnSEUFNp9Ox3ggIw1qtpu3tbeVyOd2/f19TU1PWBPbll18aLOOH1GJhYUFXrlzR17/+dUUiEb18+VJPnjzRzs6Otra2bNF9NWRoaMhUtkzlRvuSyWR0dnZmnc3wNxDJODKv/qSi439I/xBNgbBGR0f1p3/6p5qcnLSoioPgvRC28V25XE63bt3SgwcPrCRLmgV3Q0WF0YmFQsHSAkRvwWBQd+7c0fn5ubUcwH/49va5uTl7L0i5o6MjU3By2H1DGJwDpXCuyWDNIMJxbvzgOOGKQJc4+tRXV5NcXPQnr5My+u5nnAopz+7urgkZIRp9oxlzNaR+xQshIGnD6empZmdnlcvlVCgU9OTJE3N+4XDYhnPxngxlzuVy1gvkS/hcR0HTJM4nl8tpfX1dH3/8sc0smZ+ft2tC4MUgy8fHx/XGG2/o6OhIx8fHVk6nqkY6HggENDk5qVgsZldZDA8PWxDIZDI2tnJ0dFS3b9+20ni32x9RGQ6H9cYbb2hnZ8f2x9u9r2J6ng8CNlwoFDQ1NTWgzd/d3bXaMXAfAVqhUNCLFy8GLpkOBoPWuRkOhzUzM6NqtWopD4bALBOpz3PcvXtXCwsLxgJ/8MEHOjo6Mp6E9AmZ8NTUlK5fv65IJKKPPvrIxgc8ffrUyngeVpOTp1IpFQoFa5Mn6pKDkuqwUUC2W7du6d69e/r8888HFKUcFA4GlRVJ5rWJohcXF/oP/+E/WDs3fTCsAcZD0x2/J8maqEZGRhSLxUw0lMlk7M5WHDyRgtycVnwa0siBWQ9SFg4qlQCPtPw7w6FwdaPXNJCiSq80DGdnZ9Zt7HuPCDI4bEhyKl/lctl6fPL5vF0jCtSn14XeolwuZ/oIJudTbp6entYPf/hDU/Oiz6CwwB5R3u31elpZWTFCt9vtanJy0myFtBQbuHr1qpG8lUpFjx8/1q//+q9rbGxM6+vrNqKRIAbqgHzGxnyp20swIpGIEbCHh4daWFjQwcGBydvZL6pcODgcTbPZNDEcKAQUF4/HTVNEvxMOGh6Jz8aO4WmwLVBfrVbrzyPZ2dnR9PS03Xp2cXFhcN9fGwmPUiqVTHwzNNSfLl6pVLSzs2NlYzYXgRft3zTizc7OGjR89OiRNjc3Bw4yTmBqakq/+Zu/qTfeeMNmyGazWdVqNZtFGgj07y+GACTCBwL9ea4MSMJgye+AgBCfPt2CIeeeYAwBZ0WPCLoIavKkOpJMCQiR3G6/GpnI3/mc/L333lM2m9XMzIyuXr2qf/2v/7X+83/+zxoeHrYp5LD83W7XrsNoNBomsgqHX7Wth0Ihm3I/NTVl6ALuBh6BHBr5N6IoSfZeDKEC7jI3IxAIqFKpWMQHtaVSKasGeJk1CIQStm8WxPbgYSi5g/ja7bYePXpk4jEaB0kRIBARlVW/ul2Q90AjxJoHg0G7YQ+IjpaFvw+FQtZouL29belF9atbEb1Aq1gsam1tTdls1lKWRqOhnZ0d0zvF43ET+FHJ9LyOV45Go1Fz6KCpSCSijY0N4ybgdvyaEaiosLVaLd27d89kAisrK/Z88HqgaGwZmQNrhzNMJBLWTEj685WINKzZ2VmrMLRaLbuPleiFhuH09NTumpFkTDYVmFgsZpdqsZmQWpQaJycn9dZbbykWi2lnZ0fvvfeeXf/HZkJKXrlyRV/72tc0NTVlLecgiCdPnlhJkcYxKkjoAkgHqNtLMv0J0JgpUuScVCmCwf4dq+vr6/r2t79tN8b5aIqe4IsvvtCjR4+MY6Engx8OmZd7k7a1220lEgndu3dP9Xpd/+N//A/94R/+oZaXl434XltbU7fbValU0tTUlMFUtA4Mb4KMwwDa7f5ogLffflvZbFZ///d/b84TuI/R4Di4g4YgwpwV1paqCdCdgEOUp/JGigN/QpoJHCf9xLnC54AGi8WiRWSISdIRiHNSbKofXHxfLpdtCA+oq1Ao2Lp3u13t7e0plUppbm7OUDcomDES09PTmp6eNrElBx1EVy6XDVE/fPjQKnTpdNr0JkzW8234EJYjIyPa29szNDs3NzfQ3Amhio0yrJmBRBQDWOPz83NtbW1ZVS6dTtu8GK4bYeRFKBTSysqKisWiPRvELTziwcGBCVARKiJVoCcI9BSORCJ2raDU7wBGR0IKIMmiHKwuEPvly5f64Q9/aGjDl0UxGAxpfHzc7jz99NNP9eTJE0l9zcjc3JxyuZzNM1laWtLVq1cVDAb113/913r27Jk5L99mTmrgm5NSqZTu37+vcDhsnam+Dk8UwWt7GTEkHmTh8vKyvv71rw9cLhSLxWz6Oa0Bv/M7v2Me+uDgQD/72c/005/+VIFAwAgzhvUAs325WJJu3bqlcrmslZUV1et1mxDP+AZ6oEjDWFeQ297enlViqIJ0u12trKxoY2ND2WzWurM/+eQTuxbTD+ABjXW7Xe3u7lqZkgaww8NDew/f58TsXZAHNkBq47Ux2BK9ItjIxcXFQCkdIp4qBc2XfpQl5DZBr1gsKpPJ6I033rAbEScmJjQ1NWV8XbFYNGUvTjifzxtKGx0dVTqd1szMjK5fvz5QXr9x44Zde5JMJg1V3b59W+l02gaa0/DG9ZyUlLFV1hN0t729re3tbc3Pz5vqFAEkJfednR2Fw2HdvHnTiGE0OFtbWyZv4E6l09NTTU9P65vf/KYJ7Tg7IyMjlsKBTBnMTYkZ4hyOkbJ5Mpk0KcD09HR/P9PptM7OzvTFF1/YIjOZHSFL9as7ZbkRbHt7ewBGc+harZZVb8gDOcydTv8Sot3dXT169Mhy8lQqpRs3bljX59DQkL75zW8qHo9rZ2dHT58+NWNHxUgpijmXwEQILU92kWezCAxrBmGhPoV4QjRFynT16lW7RhEHQq4I4QgHQF67vLxsV4hCwh0eHtp6+TIoCuGPP/5YExMT+ta3vmXMObf9oWBkLgaGMzQ0pGQyqVarZarWXC5nUBTkQZVoYWHBUq9cLqeZmRkjhUEkaBJ8GkhzG9UM0CZlb2AufBgOkjUEavNc/PiqF5wNawSxDAkLJxWLxTQzM2Pl5nQ6bbwAV4WEQiEVi0WdnJyYynZ7e1vtdtsuUWfSHAGvWq3q+fPnqlar1rXdbDZ1eHgoSVatYh3K5bJxY2dnZ7py5YqJuRhdiJPY3NzU48ePjUg+Pz+3u2impqas+XVvb89u4oPLw1ETeBAdLi4uqtvt3wxJhTAcDtt5oHDCbB0m/VF5gzdD9wNv0mw2bXoegQA1rK/m9Xo9I9iDwWD/7l96Q5gKRgs4MudEIqGZmRmtra1pe3vbpkpRBuQw8TlECOAxpdRms6lUKmVdxaenp7p165aCwf58VdR2wWBQxWLRZpp4+TeeEfJrYWHBoBxzHVAOxuNxu4dnY2NDhULB2v+npqb0xRdfDEjAuQaC6k0wGLQqCfC4UCjYYYOsIwKT6pAqMOOVngmGyGAU/IdD/NFHHw3cUndycqL79+9rb29PDx8+NK6q2+2PUwRKQ6IVCgU1m02rEngBIKK/9fV1q7SEQv07b3EYGAWj/nAIdJfibAOBgPVaQeph8JRxWR/UkQQaryvBgZCnS68m5mFPRFAqTjg5omS73R9a5JWwOB40NQQyxhX4cjYIBFV1Mpk0ToSAglyBZyJVhhhnMFChUDDUg036MQ8vX75Uo9EwVXUkErEyPAH44uJCGxsbun79uqWqKLRJQyGBqe4EAgG9++67lkJXvxrJySiFcrms1FcT/Rk6fX5+rkQioRs3buj58+daWVmxVBIHeHZ2Zpd6cW5wNgQYBn+HEUDBbFPflmQkH3dqsDnkWNzxQj6OdwcWwcgjYANFbG1tqVKp2GXglKiA0xsbG4rH4yZFRoQjvZqMzcZR6iRysWgcAiacMbeh2+1fFUHExOH5Q03lRZKVzNhMZncMDQ1ZAyH9OERoDgeoLp/P69mzZ1pYWNCXX35pehYk6JTw9vf39X/+z//RN7/5TX3jG9+w3Pz111+31I4fKmO00iMInJqa0tOnT1UsFl81VH0FZWHYKVG/fPlSZ2dnliL4cju6HX5Iq0BI/PAe6B6Oj48HVKRwQvwu6wwi8WSsT/X4d2hTJJmeCSeEo/dCR1KnkZH+DXB++hfvBdnNPgWD/RmxV65cMQSFPoZ3A3HhpL3NzM7ODsybRfDGu42OjmpiYkIvXrywKzwhuB88eGDtHDzfzs6OxsbGzH7gZUgB4QE7nY6Ojo7M8aS+miecSCSs1QXHTAVveXnZ2izotKfAMTY2punpaev/8XvhnSqcD0UXSQovLi5qdXXVvCZzJ374wx9am3qtVtPa2poZBIhDeqUv8JEPKIbgRerD2ufPn5vxFAoFSf37UK5fv25t4nRQMjEKgjESiejGjRt644031O12tbOzYzLvkZERXb9+3eTiKPGQ/kJyehKP0XlI0nlGjIWZF/fu3VOz2dQnn3yiTz/91CL1tWvX9G//7b+1w8LhoBqzs7Nj/AwVG27/m5qasnF4pHg8bygU0j/90z9peXlZ09PTikQimp2dVSqV0s7OjjmedDptJUScKZUKSrXk3iAFDgBOf3R01KT2fjASUZ99JLXCoEFePDM20Gz2Z9IyqdwrhL3zoS+JFI8qhlcTEzhAN5Ks1MqzgijggnA4vMfo6Kjd1UO/k1eI8pyBQMCmm3H44aE4hPAZpHHcFsAB4+DBf5A6BIPBgW5t1KTciuenzEuy+3s++OADTU9P6xvf+MZAUOQwM6UMm2NGLmeWoN5oNKyQEgwG7d+AirgDJxLp3/ZYLpctsKdSKW1vb5uNUnEEgbIvQ0NDCr948ULFYtFETqenpwMj9TGgUKg/WIcoTTrgr87EeLxjOT4+NmNgohpwkO9gdBxzPT2yODw81MXFhWZmZvTtb3/bIO7i4qJBbchS0A9CKcpZKDA3NjYMKgLbaGyjlMbiYBT/7b/9NysbUq3w/A8HAiQH1ARhMciHeaesRafTsdZu0gzgP9ecgvYikYj+5E/+RP/zf/5Pm85OyRSOhWs9mSESDAZNE1AsFm04DpEHnoiDw8FiXAERF2P0XAfkKT9ItZkMh9K33W6bRoN+HhwJhxMHgmNifUAQ6BlAGyAV0CTjKbzd8b99dzi6B/gXfocKE1dj8hk4LNAeOg0CRyTSHzVJiReVda1W0wcffKButzuAKEZGRux6S+yN//jKTigUsgFMzWbTzgFZAI6S6prvXmdNaPnIZDKq1WoDs1YpJ2ezWUtnZ2ZmBmytVquZVocKreclGcWAnQSDQYU/+OADEysBE1ksPB/Qm+gEj8Lt8YiGyIl5SXJcNoDGn62tLau+4EhyuZyVnxDxoOPodDp6++23lUgkBlIrSbYpbBCHgRmh3W7X1IfT09OSZM/+4YcfqlQqWYRhcBFNVQwVYoM4wBwE4KgX7kBSXb16Vb/927+tP/uzP9PVq1ctSpZKJYPNIBE2lxTMT0mPx+MKBoPKZDL6kz/5E/33//7fTekYCAQ0Pj5uFSXQFX1JwWC/HZ1L0Hk2ynkcbPbIV5TYGwzUO0tQCxGdYVPM16XC8q1vfUvXrl3TyMiImMRXLpdVKBTsyoterzcwf4abGXEwkKUcHi/EArqDivy8G4wfx4A9JpNJu/DLR/STkxMLCv59SQ859ChmcY48A2T8ycmJ8vm8lpaW7KDXajXlcjkbPYnGyg+Dgr9bXV01Yj4Sieizzz5TPp/XtWvXDG3GYjFTlYMmCUTI1k9OTrS9vW0DwYeGhoy/gRekAzkc7vcFkdI1Gv2JdUwDKBQKhmyxWVTh9LKFLzsRaXDups/5gczxeNymVjHImY1GF8BBWV5e1vj4uLa3t7W5uWmdsED2ZDKparWqFy9eWJcj6VE0GtW1a9esrXtjY8OiD5HJS3ZRRdJ4x/PRRIgWgGpUIpHQ1NSUwUGEQehpgO4YGwspyQZTc6g8vMfZ0nVbKpUGmv1YZxyHJOtNQnPDeASmi0n9q0x/67d+S3/2Z39mxgu0J02jYpHJZNTr9ZTNZpX6asRfrVazw8jz4shIJ7hNDXK8Xq8bsuFw0Qrh+3iIVEDdTqej+/fvG2K9cuWKvTtGDXpAAQrP9emnn5odemKXCe+rq6uGEEHDHH6f3oCa+ByqI+fn5wMHh2s/UOzyORw4uD5UvThsEDGqz1gsptPTU9OmcN8R1Y3p6WltbGyYQ4UwZmYMbSo03aErKZVK6na7Zsf379+3UZ2Hh4c2E7dYLGp8fNzOHqko7wwA4DzjcMkw0um0VeHu37+vL7/80nRbqVTKkL4kS42RAoSJMqQwRCk8O6QnzHU6nVbqq/tKfHrAYvOQCwsLli83m03dvn1bW1tbevz4sW7duqXXXnvNrlykPDk/P6/FxcUBHT/XP7JwMPcw10RiPCMeeGlpyQjQQqFg11jm83mD+9PT08a/rK+vW5mXKETzIfV2EBdlM+9EQCus4c7Ojv7qr/5Ke3t75hSpXhEtk8mkxsfH9c//+T/X4uKibQoOFeIOQVYgENAbb7yh3d1d/c3f/I1dKcAkf0l26Gg1gNOgl4m8nalz4XB/8j+OhvyaaAyyCQQCunLligUd31kMTD44OLDnZIiPr+KRblEFw5BRDe/u7ioQCOjatWs6OTmxQ8gIhrt372pmZkZjY2N68OCBIUUcOKm4R3k4FCA7z4e4y496TCQS9u+8lgUylxQBJM66gNz8pWNUOzhf0AVcNUEpeGVlReVyWT/96U9148YNJRIJG1zebDY1Pz8vqc8lwoktLi6aSLT21XWfx8fHKpVKNh4hn88r9dUAZ2yJtEeScaLYIoGS4BcK9QeAQ3dQBSXQAzxarf6o0TBaAw4DaARvifYf/cTCwoISiYS2t7etrAY8A4bSpRkIBPT555/b2P/h4WFNTU1ZCXhnZ0erq6vKZrO6d++escgQaaQOsPPcft7r9SydYMgLL4RRjoyMGISExcZBNZtNZbNZ0y2gpOU6QvJqHCXOig7mZrOpx48f6+OPP9brr79um8B6JRIJ0xYAZeEPcGTNZn/a+dTUlAqFgkFUIn4k0m+Zf/r0qYaGhrS2tqbZ2Vndvn1bb7/9tj799FOT6fu0inIpKQMq0GQyac4VWTkowytUfZ8QaAfER8CIxWImSOr1etbqwIVU3EQ4OTlpKlHgNheyXbt2TYFAwO5ufvz4sVZXV/X666/rt37rt4zjwA4o04ZCIc3MzNh8XTiUx48fWwUKRS+2jXNHNYvIjlYDtFB7e3vGixBMadyDzAbue76INFqSjVzw5C8VFv4O9CL1xzUcHh4ql8tZ5Q4bBG2RliGs/PzzzyXJgjWcHWgb54/8gCyCs+qrPqxPMpk08Rx+gF6ccrmsqakpjY6O2gCt6elplUolGwERxonAhxAlIJdQNULQoRsgZUArEo/H9fjxY4vaVHmYOk75qdPp6LPPPtM//MM/KB6P6zvf+Y7pH5rNpvEUMO3kvTgL3ziE6AakBIRDZs/NckDQQqGgUChkk9g9JKZ9m6iKqAdSWJI5MpwOiICIy8EE0fzO7/yO7ty5oxcvXujly5c2MIlDenZ2pvX1da2vr+t73/uelpeXLVKfnZ3p2bNn+vu//3ttbm4a1N3e3tZrr72m119/Xc+fPx/od2B9icAolsfHx400pEOXdgAQEhESdEikDQQCdnk7DhAyEJQD1Ieopoz85MkTffjhh/r5z39u6UapVNJrr72mkZERmyAPV4GNHR0dqVAoGOIEMdBwxvOyTlSfQM3oHp4+fWr6CzgUJuJh96RrFBuYg0LAgRMDUR0cHBgxTHsGzpk+HVo24IuQ7iMfGB8ft5skh4aG7I6diYkJra6umkMAWQcC/Q5n5Bhra2uKRqNKJpOanJy0wdB+rCl8HH8O+vT2MTY2Zo2v8D44l6GhIbuc/eXLl5qfn1c6ndZPf/pTNRoN60+anp5mjkvYFo6SH/kV0VF61caPog+Dp+TH/wYio4xEFUe+yAChO3fuaH5+XlNTU7bReHyfw3mh0d7enonGuDEPptvP5IBIpHcHhwEZCzpiCMzZ2ZnGxsbMKPhpNBqWVhSLRetxwEmNj4/bhgDzUP/BIeXzeb3++ut677339Pd///cWEYDOlMe3trZ09+5d64L+/PPPraKEgZyf9++LjcVi+sY3vqGtrS39wz/8g0VHyGXKmyMjI1peXtY777yjtbU1k0DTrYpzZc8ikYh1u9KzEolE7EpOyoJoM0Cr+/v7AzIAZp78u3/378wmQAXNZlM/+tGPzLEhMsQ2UEDD5YAOcBIgXaT1ELL00ADfh4aG9Oabb5p8AU4CR4UM4OzszFAWThE7wangeCB5ieCdTkeVSsXsjmZHxjkEg/2mQFLUk5MT3blzR/fv37d7pObn5wcuz+I7Jycnbc4tadfw8LAFxl6vP0sF4pzL2+CesNdAoD917tq1a1YyJrDzLpx7HDkBCSJ7enpak5OTikajevPNNweKD1ZVi8fjSiaT5rHYFIxxZmbGRq/Vav9fc2+2HOd1nX+vbjQGNgZiHgiABDiAM0Wamp3YiezKmXOQSnKQVOUKci25ghzlJOWKT5yK7bJiJ5Ysy7aKFGVS4kwRAyESI0nMQAPd/wPot/j04n4boKKv6ttVKADd77CHtdd61rhX7LXXXvMiR5z6tbKyYvPz81UwkvBmOBuGvaNHj3rh4YaGBo/9UOMYEgDixcBKQh0Rg/j4iVmB+aHb3rt3rwpJNDU1eXkEDMbEmODS7Orqcq5NQWQt0oPX4x//8R/t4sWLnnAGo2UeYYRTU1NuxIRhg14gzJmZGbt27Zp997vftZmZGfvlL39ppVLJLfl4Urjn1q1b9tZbb9mPfvQju3fvnnvNisWix3yQlEgk4tOnT93ois5OxDLMHaaMSkF8A8QH5CU68tq1a45YsEvAaMjuhcHg4saDAQoguYwzlBsbd6vSb21t+VnG6nFgw21ubno+EdIUhAHtgjpaW1u9BAPI4sGDB/b555/7UaAkQFJO4/Dhw9bUtFsr9ebNm26LgD6gh2dfH9+ysLDgpUbJjG5ra3Nj++eff27Pnz+3d99914aGhuxnP/uZFzrK5XI2PDzsbvSenh7r7e31kwe3t7dtbGzMHjx44Datnp4em52dtYmJCevo6LCRkREbGxtzGxYMnShwjiNRhq4IUm2euv9R83E+EHIAWkPwF9BvcW9997vftbfeesvGx8ft0aNHNjQ05OfbYN1l0s3MD3EC7mFHIQ6DcgOEr3d2dlqxWPT7qO8AEcBENG4BxoBOWqnsJsYRCgyjAK5jUceliDuX5Kvt7W2v6gbhmO0mnh0/ftz1Rya4rq7Oent7PbEJFxk1Uf/7v//bSqWSvfXWWy8V4719+7ZduXKlyqsA40Oy9vT0OFQ+ffq0fe9737MPPvjAjYPMi6IsErIuXbpkH374YVXG8dLSkvX391u5XLbbt2/bl19+aVtbW3bmzBl3lTNPk5OTjg74YYMTyIQhd3t72w86g1lhW2NOUH+QaNhtYgwGa1lXV+fCqL6+3kZHRz0WCJVhYGDAvV6oNuj8eOIwoqK2oRLB0PFqkIF++vRp6+3ttZ///Oe2tbVljY2N9tZbb1mlUvEEPZgjyJwiWIuLi/bw4UNXDUnfgF5WVnbPZeZ8X4yn29vb9sUXX9jExIQbQanYrugbTx2b+N69e77nXnvtNReaH330kecbLS4ues1ict5mZ2ftxo0bnpFMrBECGTsKBmGM8aB6hNjAwIAju0ql4loKaQC5XG43RB6pC7HCnYBPwMLNzU2bmpqygwcP2vT0tN25c8dhEi88fPiwtba22sLCgj169Mjq6urs7Nmz1tXV5W7ExcXFqhO9eC9cHq4J00AaIwnggrjEisWinT9/3iNFgcCNjY0vRXRS14KizqgZHARN3Uzcu2QNk/RHfsR//Md/2NLSkv393/+9/e53v7MrV65Ye3u7vfHGG1VRlBcvXjSC/lSNRGIi+Uulkl25csU6OztteXnZuru7vRhNpVLxeB3iF37yk59YLpfzRDUkNgIBNyuGPfrT2NhoFy5c8HOOt7a2HNZjxMY9rkFnxP0Q38F8EoSFQZkMZIzYBw4ccCRULpe9yhkIlNq6qAcPHz50ZvjFF19YpVKxf/qnf/IasmYvCkJpoNz09LQX9gFFoRYcPHjQnj59aj/+8Y9teXnZ+vr67Pz58354PMyJGCXU+0Kh4MZyPCRTU1MuLHC5wxAxHrNPxsbGrKmpyauRNTU12ZUrVxxBcbxFT0+PlUol95qBsjo7O12dJBEVhL+1teX0SpzQT37yE+vt7bXjx4/biRMn7OnTpx7SPzs7a3fu3PGTJsn4JVdrYmLC7ty5Y2NjY4706Af1Zth7NJwLGxsbVuC4B7PdU8Wmpqa84+j6pVLJ9b+uri67du2au7rwrff399uZM2esv7/fE91OnDhhQ0NDXhMTwxoqCf5uJSxlGPqDNCN+Asi8vb1tS0tLdu3aNTt+/LirUzATYh6A152dnVUHfyE5eC8uWH0n9SoXFhas/esCuEtLS/aHP/zBTp8+bcvLy3b58mUbGhqy8fFxu3Hjho2MjNi7775r3d3d9s4779gvfvELe/78eVUcB5sA9PLrX//aY2xOnDhhR44csWvXrvm7y+XdM4pBBNgpqOqOv7+lpcUPu0KyYsEvlUo2MjJid+/e9XgFTe4rFHYr3BGTQN5Id3e3e3tAfqzB3NycPfv6bBwNbceTgMcFTwRh4aOjoy64WKuf/vSnHpDY0tJi//zP/2xHjhyxUqlkv/nNb2xmZsaOHj3qSXCDg4NeRvJv/uZvzMw8SpWC2NjfDh065Kr05OSkXbx40Xp7e218fLwqsIyNhfBAHUKN0TnY2tqyzs5Or8jPswqFgntgcJ9yPjCMncQ6hCjrha0NVEY1fFRKav9Ar4cPH7YHDx7Y3Nycra+ve8wWG50o6kKh4LWZEaBkRT9+/Nju379vTU1NnvvDuPEMojabmdumQLMFNjn66fDwsG8cjn0oFAp248YND7TCDTg2NuZnuyKFFxYW7PHjxzY8PGxDQ0O+iBArkC0yjdiAxjoA3FdNTU0vMaB8Pm+PHj1yqzleCzPzM0OIusWoSz+QBiAg3IHlctl6enocPczNzdnW1paNjo7a8ePHbWJiwsbHx+1HP/qRnTx50srlsn388cd28+ZNl7z5fN7Onz9v29vb9sc//rFqjEhL0EM+n/dgOAo7E3PB3CO9u7q67MmTJ171DJczRlYMiTAHVMj6+nr79NNPHY5jqyCsvbe313Z2drzu6crKih09etQaG3dPY1xbW7MHDx54bAXEiLCBANGhURs5zhSVqK2tzfr6+txlfPbsWc95AkJDyGtra/brX//a/u3f/s3LEx44cMDOnTtnDx488DVobm62hYUFtweZ7Qb9Xbt2zWvoNDc3u4fll7/8pQfTYVg+cuSIw3rsRUhfXOMEYBL0R9gDaAi748LCgnV1ddnY2Jh7ZXZ2duzTTz+11tZWD8KDyXJIGLEaqOUHDhywnp4eD0grlUpeNmF4eNjPflJkZWZexxUGSMAbWkBDQ4M9evTInj9/7kwK5s+eIcgO7xMokD0KyiygMy0sLNjRo0etubnZxsfH3Z2Kaw7bwueff25tbW02MDBg58+ft8bGRpdG9+/f98N5OHwHSUdgkpk5EqEjXIfxB8aiyV4gCIhR4ydgJjxvfn7e3bw0DInANHTuUqnkRz1sbW153g/wT3Xtc+fO2d/+7d/azMyMXblyxfL53XIHf/d3f2ddXV02NzfniWRPnjyxDz/80Kanp+373/++jYyMOBEAdbEFUV4QuwSSu1KpOMpBBcVtiKsRBsBxIWTgYrfC2Ig6qB4jNW7j0cBzgTGdM1tWVla8TgouV9yaHR0dXioTW1dXV5fnG5VKJRsfH3d7EBsIdYj1xfP19ttv2+PHj+3jjz+2f/mXf7H+/n4bHx+3UqnkaAR1d2Zmxjo6OhwZotKQk9Td3W1zc3N+iDjV32G4hULBFhcX3ZU/NTXlHhPojEBHij+TZAiz3NjYcFvBhQsXbGlpyQ3V5MJo7BNMDu+QBlgeO3bMC28TAIj3pbW11X75y196egJz19PTY21tbbawsGDz8/PuQZqZmfE+nDlzxmuTlMu7Sa/k8ZRKJbt//77lcjmbm5uzX/3qV9bW1mbvvfdeVZQsqrkWH+dArgJGuCNHjlh7e7sNDAzY4uKiR8nNzMzY1NSUQ0U4HXUWbt68aWZmx44ds6NHj3qyFpZdiB1IpHo3thGiadEzuY4fpLca21hAfZ4+g8A1UIHZi6MOcQmTM0DFcmJd8HhgZCQRr1Ao2L/+67+6S/S9995za/vjx4/t008/9UroLS0tduPGDbtx44bduXPH3nnnHd8w5MZQMQuDHMY1GNrBgwc9IAgJyVxg0+JkN6JNqWNCXQlSBQjAwuhcV1fnVd5g5sTP7Ozs2Pj4uB0/ftwuX77s79nZ2bGpqSl37+fzeT+ikjAAyiUSa9LS0uLnxbCxDx8+bBMTE66CbG3tFhDq6uqyhoYGL5/w+PFjKxR2yzgSG0SFvnPnzllfX58NDg7a6OioPX/+3D799FO3FX366ad2/vx5+973vmddXV1ehoF6IKCnhoYGRyVdXV0eHsCxEo8ePbLh4WEXLEeOHHH0R5wR7lCQDkZNAi1PnDhhU1NT9rOf/ayqLAUqLe/v7++33t5eNxZvbGx4cehCoWCdnZ1WX19vN27csHv37rmhenJy0np6euzkyZNuR8NLubW1ZUNDQ9be3u4GeOwcqDvYsmB2nKGMswKbG8JrbW3NY1N2dnbr1BRIxacaOV8uLy/bgwcPnHAINe/u7naX1uLioo2OjtrIyIhzeYxX6nPXsHsmhc+0qbEVyKiqD0yGa3iORhEqg2LjAelhRtwL8iAHpbm52SYmJqoCjqhsznObmprsBz/4gb3++uvu0sSfzmHquN6QJhsbG3b9+nU7dOiQq1W4g0k/AB2RkFUqldytOjg46BG2uVzOY2mmp6fdaj89PW2zs7N2/PhxtzewcVZXVz3uxmy3ajoRinV1dR4ujgqJjeaNN95wHZjDymDMFF7Ww8cvXLjgBkqqci0tLXltjSdPntjOzo5H5KKfg3BbWlqsubnZnjx54mrBgQMH/OhJEA+RyLlczt59911bWlqy69ev29OnT+1//ud/rKury44dO+YHgcPEsDnMzs56oujGxoYHt6G+zM/P26NHj/xkv1wu554yJPjW1pYfKUGeyszMjM8XiaYXL150+wruVNz6xNgQaYtA6+zstJGREbt3757du3fP9wDRzxwJi30EF/7Q0JCdPn3abt26Zfl83msor6ys2BtvvGFdXV0e2Ea1/Y8//thLgRIzgxfu5s2bHn/C/GHnQ6AR7FlobW1111Fra6tzOLL94F54ZDjMp7Oz086cOeOnpaG7q+0D5qARn+rrB57i/uVv3IYEkmnEJkyDZ0WmxHt4vwbPATeVKWGQguH19/d7PdDt7W0/VJ0NYbZbZeqjjz6yq1ev2sDAgP3oRz/yPJ1isWhfffWVIxxcpNQ/GRgY8HnFwAdBgZZgTDATYD92DWA52Z+qInAI9MTEhCOMSqXiEiSX2z2Zbn5+3u0cpVLJD0Xa2dmx/v5+GxkZ8VML8U5wZAZp76urq1VGeSJRFxcX3T0/PDzs3x89etTm5uaso6OjKmcH20Z3d7cVi0Wbnp62tbU1+/M//3Pb2tqyqakpW1hYsBMnTvjRKdTt+Pd//3f3AjJmEkkXFhbsjTfecAEA8sLoj10MBIQBmdKcZIKDDjU14ODBg9be3m7Dw8OuUmHTIo+K9A3shv39/VZfX++Jqkh3hAMODQQIagX9ILmwWCw6wsU2OT8/b0NDQ3bhwgUvTATDRTWhsh/R6F1dXTYxMWFm5kyXcPsDBw44ShwaGnLEBcMh9gimWejo6PDktPX1dded7t+/7wSPdZlakRhhzMw9IOh/QCFFCBFJgBJYPE2IU4+NuoQ1/wGmgoeGQCkN61YmwntU1YFx4W5j0fCaEMVKOj+RnlNTUx4/sr6+bg8fPrSrV6+6K5OALwoQVSoV6+vrc4n0ve99z371q1+5Lkt1Ms6oxVtRLu8eO4GNxMzcZa55LqAOkriYS7xP9fW7RZw+++wzGx4e9pwXIH5zc7M1NDQ4wiyVSi5lySlpaGjwYsbf//73vZrYL37xC3fb5vN5u3v3rm1sbHjhnt///veuZu3s7HihIa3BeujQIV9zZaDEIi0uLtr09LQ1NzfbmTNnrP3r8oEYfzlNkTnp6enxMpQgYzPzcVPtnmhTooF1U8CokeoYoc3M6QFaxMsDamtsbLQTJ07YyMiIffLJJ/bHP/7RGQOCq1wu2+DgoO3s7Njdu3c9Dgrvzv37921hYcFtUNiEYHzUQSHYkEA/SgtgjGYdiaBeW1uzQ4cO2bNnz+zWrVu+rsSUkOTKfsN2Sp1ZUCZ2L1z9S0tLVtDalLOzs16UhZwWIg2/853veMUuiFcZAwyDzaOfQ/SqasBxiXtAP8NmQHCR2lFUxVHmxN/KTPifvzE6KfphA0DIBMM9ffrUNy85Gh0dHU7gIC8C3N5//32PhMSyToBRsVj03A+MYMwDxjp0WZIDcZlinCU8enJysqrS1enTp92oDCPmHBciMEdGRvxsm3x+tz4JjBomAaHiYi6Xdwv+1tXV2cDAgDOChoYGO3XqlG1tbdnt27ft3r17buOAyJqamtytizGPWAeMrsw9EdGFwu4RmK2trV4DtLOz013c3d3dNjw8bI2NjZ7j88UXX9jOzo7bzPL5vOds9ff32+zsrJ+fTL/wHOFVYg3UCE1MEWcRzc7OWltbm5/Hy/ER0BqBXxRt7u3ttaGhIQ9c03AFzUq+ceOGx/YMDQ25+xibBWouSAS7ByUJCAAkOvvUqVO2tLRkd+7csf7+fjty5Ih1dXXZ5OSkTU9P2+PHj+3MmTO2sbFhDx8+tIWFBRsfH7f19XXPat7c3HTD8NjYmNtJOP3y/PnzXu2NwD2P+J6ZmbFDhw7ZJ5984vkHpEgDIU+fPu0JYHBf3axIRt3c2rhGVRJFDWx4jLnKkPSZMJXISJRZKZMC4ZhV21/UKxQNvmTKTk1NueV/cXHR8yFQyyji09nZ6ceVwkRAL9ggyKocHBy0hw8fVlXewnuDmzeXy3nSFJKWIDECqzASoqp1dXVV5ZCsrKy4SgGz4PAn7DMDAwMuxUlZIOnSzByl4H4kh+jHP/6xG94mJyedgXFcJlnLa2trdunSJbeVHTlyxO7cueOxCqiJ2EI2Njbs8ePHls/n7dSpU14/tVQqWX9/v4cbnDhxwj788ENPfgN5UGS8XC7bs2fPvAwBCA0XP25OjMUwIqKfOzs73XZi9iL/DKkN8wJZzMzMeJY1z3z+/LkXc56bm/PUAfU2zc3NuUufuiIPHz70A+Wo6Idqi1con8972AIepI2NDRsbG7OGhgb77LPPbG1tzQUI6PTcuXO2trZmX331lT179sxd2+p9MTN39e7s7JbLePLkiU1OTjp6O3XqlPX09Pi5Qbnc7sF5hcnJSZudnbWFhQU30hG8deHCBTtz5oy7yICKEW3oplbIHZkJ3+vG1RwJvufz+A794XtsAPo3GcMwDFAPMQ36/MiUYHaHDh1yDxauzbW1Nevp6bE33njDent7rVDYPSWwo6PDOjs7bXFx0RkBkg/ixADY2dlpf/jDH/xoi9bWVg8A5DwSGHZLS4tHofJMYmTMzB4+fOhqCtZzAqY4twVdvFzerRdy/fp1O3HihPX29npKPQdK9fX1uceru7vb5ufn/TBvIoWLxaI9+/oEu83NTTt06JBdunTJT68vFAr28OFDe/DggdvSLl68aKOjo/bzn//cXb/kZbG+WqLgH/7hH+zIkSO2urpqIyMj9pvf/Ma2t7ftyy+/tOXlZfvss8/cy9XS0mLHjh3zcPrBwUE3jr/zzjtWKBQcvoMUzV4cVgaNYGhcWlqy3//+91Yul72cw9bWlruZqe/CBgctdHd3m5l5RnIul/O5L5VKrsriKUMlWV5ett/+9re+t+gDzBzjp8YBkZ+libJPnz718XV2drrAOXLkiKvmMD1NqKWvGH2JQUIdQ2BS22R6eto6OzvdwM78FKampmxkZMSjGIleffvtt62/v9+P72TTqQ0ibsQsBhIZjX4X7RZw7MhEUAd0w/O9GmzjezHIYpRNqUQwR0UyGE5bWlpsYGDAz1wtl8tewq6np8dLE2xsbHg92rNnz7od4ejRo06wd+7csefPn7vOjdTD+NXQ0GC3b9/2rOOOjg6PiWFRQR4wDvT6zc1NR0NPnjyxTz75xA4cOOCetEJh98yftbU1u379unV0dHjEL9G6VBADqmMQpgJXW1tbVSIn9TwmJyfdeIkr+KuvvrLR0VE3NH/00Uc2OTlpfX19rmpgT0DqE/49NDTk6AzVZ3Jy0iU0zMHMvOYJSXGohL29vXb48GFHIzBnrZAHYiOXho1M1Can08HAUDlQM/AmETynQYPkD+kpB5Rj0MBDdS7gVABxbG9vu/GWQkQ4Bsx2c58IsJyYmPD+41qvq6vz3Lb6+npbWFjwwLgnT57YtWvXfC+QNUygH94s9SiSY0TRLxDW8vLybog8bs7W1lYbHh62d9991yu04w1IMYHU59E+YmYvoY2oDqntg88jColNv9dnpVQfmIjGqaiaxefaT6Aj0p9yApXKbsLgf/7nf1outxtgRSU4Yg2OHTvmlfFJ+sMmQclHJCCWcFQdiIPQ7lu3bjlCBAaTW0HuBSpKsVj0GiFzc3OOaL766itHgRDozMyMtbe3W3d3t3V2dtrJkydtenraPvnkE9vY2PAwbCIjsfMQmMU5R0+fPnWojGTGIGpmbiOZnJy0o0eP2uuvv+6u0vavD/p+/PixGxdfe+01e/bsmd2/f9+zi6mYj/GVUHLuMzN3jWMjIYgLyU+YuXoRCTpj3jEkmr1IqSfsnLgTVZmptZPL5VzFI3S+Uql4VnFnZ6cjB851hlkTE6Tza2Z+UF1nZ6ctLS1ZR0eHV7bHOKuq9vT0tHV1dVl/f79NT0+7fY6o6WKxaF9++aWdPn3aisWiCw0t3l6pVFxVx+kCOv3ud79rV69etQ8++MCeP3/uiYasRWFlZcXzKv7sz/7M9VEiIzUiNW5iNm8WQslqyiwiE1LPjzKHiCa0aa5CZFpm1XElPEOZHe+CyJBiEKJa8xsaGrxQNUhtcnLSN2Vd3e4Zqe+//76ZmV24cMFGRkY86vDtt9+2999/3yv3Q8AbGxsOPbHGb2xseCEdMpXffPNNu3r1qhtlzcwNZBhpMfqSoYwEhNn19fXZ06dPPX6ISEcq9sMsCJijyhnRxWy0zs5O6+3ttZMnT1pLS4tduXLF0V9LS4uNj497ktvZs2ft0qVLvvkbGxvt+PHj7i5G0n/xxRd27949+/LLL21+ft7DzVH1SHQk6ZKEx7a2tqqD6cmjApGSQbywsGCVSsVtOhwVMjAw4OhgY2PD+vr6vNBTpVJx9bG5udkRjpZTHB0ddWM6dhpsWBjeKbGI4f7JkydeD2ZiYsKZTqlU8lwi1DUOftPC4YVCwU6dOuVeFDygnHv99OlTe/z4sScHIrwePXpka2trLgy0BtDi4qLdvXvXg9BwYxNISIkHGBemkALEeOnSJRsZGXE4hZGyFlOohRhSjAOmAMdWBqHP0XdnMaxUP1ABFKXU6qfaVriHSm0slFulCy/O8WlpabFTp055UR9Og9daDU+ePLGNjd1q9levXrXZ2Vk7ffq0w28C9yqVik1OTnpfKBrc2Njox0OS+Tk4OOh9Ze40x+X48eN27Ngxz8omJqijo8NjaWCaSCL0bKppkanLZuzt7fWKXl9++aXNzs66reCHP/yhHTx40L7zne/Yn/70J4/n4BS5o0ePumTkCE7OFpqYmLBPP/3UOjo6bGxszCYmJuz27dtVxmk8WrjQt7e3vc6Hpjm0tbX5iYta0xdBhWDQ+ihtbW1eyErPQ8IWtLy87CVCQaVEhaLKXrp0yQ4fPuznZe/s7JYcwH7DXqK4F2UwSXpdXFz0xD7crCQ1Pnv2zIrFop07d87tI7ij9Qxf6L23t9ftHhwejopDEiTqMx4rYmEwFpO8t7S0ZJcvX7aRkRGPq6qr2z0OVg3lILXNzU0rYFQ9efKkf6jG0JQKEzd4Vovf6YaPzEWvZ9OqMSzaQOJne6EiUEXWZ1wP1EU6KXLRokmFQsHdcDs7u2fpbm/v1kflyAWkfqlUsmPHjlmxWPTiNK2trU70FA4iPgIGQx1PGAZqBHO0s7PjEBVYPTMz4yH1QPm2traqc5O1HED716ezEVBIRa+mpiZPCMNuls/v5hZh1KXGxZdffmkffvihnT9/3nO0CPNng66vr9vNmzdtenravQl4paampqxc3q3W1tLSYmNjY953iotTC3dwcNCREclqJLlhY4ARakEqNp6qSdQ9we176NAh++qrr2xra8vm5+dtcHDQmYuZeQFys133+rlz56ylpcWmpqZeCi4cHh72kHWQIfaf5eVlO3r0qI2Njdmf/vQnN8aDzmA+fX19durUKfvggw88bN7M3GNSLBbt1q1bPk5oUgt7b29vOyp87bXXPNmT8hGg4Z2dF4eicRb43bt37eLFi15uAUYOqu3q6rIbN27sGsrHxsbsL/7iL9xthb7ERq21ObM2uLaIKLKeHVu0W2S9O36nXhy9TgPdtMXwe96pahdjxChm9iJEn9qiZNvyLsoW5vN5l2LEgJDngoEPFx7HJPT29voRkDxvaWnJa2OYmW8uzdhE0mMUnJmZcTWMnCDUAcoD4LFB38Yu0tDQYGfPnq1yBd67d8+9MwTQzc3N2eLiomfNguiamprs+fPn9uTJE/vqq6+8EFNra6u98cYb9vjxY5ufn7fu7m6vWQI6Rn2gzsng4KCdOnXK1wCXpSYFquHZzJwZRzrR7O/5+XkPlafUAZmyRIaS8AgTNjP3EP3Xf/2XLS0tWaVS8ahQjOOXL1+2119/3W7fvu0IhVMNOSeGGq6cd80hYyCf7e1t++lPf+pVy06ePGmrq6t2/fr1qkBLQhQw2hPde+zYMVtZWXE7HPFh5C1hG2I91auJykcYQnNzs9eHWVvbPXSORMAbN25Y4b333vPIOA3Wiq2WZya1wbM8KPpZNMrqJsd9qveqSzf1TlVRtJ/xnizP0auMkeeqSoQurf1lHEDfXC7nlcmp2YGbWAPFyK9RbxPGXK4lJ4VEscOHD5uZuTA4fPiwh14ToYylnahJmBuSF6laV1dnU1NTHpRFfkoul3PjHaHoQHe8R5wwR3g9hmI8D9RHOXLkSJWblQPSmLuNjQ0bGhryGhrYAShvmcvlHF0x1+rFiw07F0hybm7O8vm8nTx50pPVOLqEynB4Mpqbm21qasq9eQTLLS0t+REbbMxCoWAPHjzwjPPR0VEzM/viiy/cUPn555979fm7d+9afX29BwFWKpUq+w61fJaXl21mZsbPbaIwFYZXPFMEk5K4B03PzMxYf3+/F5FWI682ECRqXmdnp925c6eKWfX19dnz5889PqpANXMtYpLadHFhshgO38X/42cxoE0Dxtik8flaOiA+S5lAVGFURYrj0vtSkbNKlDoGomD5bmdnp8qYq/dGhomBjqQ93otkZWOXSiVPqEOfR+3EwPr06VMPC6coUVtbm5cqIEqY2AXWGNej1psFTSC9/vd//7cqjV6TB2GGeDpgAupiPXTokEtFKuHT/+bmZi+tgCeLAk4wDexCZuYMAwQCLSjKjB48bTDxra0tD7rUDNednR0/uvLq1asuJKhvi6pAvzQ0gLyc7e1tO3HihGcR616iZmp9fb2fAa0qPmsBcsV4TumCx48fW11dnXsCNzc3bX5+3o+KwUays7NjR44csdnZWTt8+LDdv3/fAyQfPXrkOXN4v4jnwSWOusdcEjhHjZzNzU0bHx+3ixcvWkNDwwv3t9bbSDGGuElTi7SXsTXVUipGtIkoQ6jFtJDiOobY1/jsWqgjoqAUM1AElEJcERHRT83zMTOvmsW5x2a7RKclBrDGm5nHoWjOSWdnpxMB8B/pTGLZxMSEM7uVlRU3PoKWyM1AB6YsJm7pwcFBtw/hbdre3rahoSEv9qNxCvl83o4cOeK1K06dOlWVHrC0tORlAlZWVuzu3bte5gCENjg4aJVKxdUUFTog2iyEqk2FE8wE7xJHMhCfsb29bcPDwzY4OOj2D9QdUhUGBwc9e7u+frciP4mGZ8+etfr6epucnLT19XUbGBjwUhCgyJGREbtw4YI9fPjQKw1SApJsXfpGuQIS6MgcpuAQqjLzgpF9e3vbRkZG7Ac/+IHduXPHBQB0QHkGghcPHTpkra2tdvv2bZ83wufn5ubcCK8lLMmLyufzVoiwJtoM4gbbaxPGe1NQM+v+GIyW9Uxt6nmJn6vKkmWf2cu7w/9KjPRVUVRkNLX6idUcVNPb22s9PT1VB3U9ffrUmpubra+vz4N+kJwQPMgEF/L29rbHjJi98Mysr6/76fLYcpCY1FyBGIn4pKQfatKdO3dse3vbA5zOnj1r+fxuoh7jmpubM2xu/f39NjMzYzMzM/bFF1/Y1NSUra6u2ujoqC0tLfnphc+ePfMC4+3t7Xb8+HHPAm5tbfV6H/tt0b6lTWkExowAwt3PWhNVinrd399vHR0dfoIB6h/RuNTexcNG+clyuVxVLLpS2Y1DGh0d9WA7s10B8fjxY0c3RNBqBvf4+LhHmWPjwZ5DTdutrS27ceOG54cdPnzYM7+JE1pYWLBLly75/G5sbNjZs2fdNa6G2q2tLfvjH/9oly9f9pP3iKClDGUu93Xx59iyDKvfpEWks9ezU0wnS+9VJpH1nMhIIrOITENbDG5TRKPvR9LVmoOssWJtpyRALrcbAdnd3e2lFIl54Dl68h+Jfffv3/esYULT+/r6quIYiJFYX1931zWJfHoEI8GJY2NjfpQBxIUeT9FfLcg0NjZm9fX1Hk9CdjQbqq+vz+vGgoa6u7v9LJ3GxkZ78803vWCPnoSnc7ZX0/WodX1Mw2CtYNjEfrz55ptul8B7orTR0dFh586dsydPnjhyGB4e9uRGTRI0M49BwVNHUCHo4PXXX7cLFy5YPp/3ExxwzaJWcrYQ9V3J5CVHDiPrwYMHXY2FdsbHx+3QoUMeZNnV1WXPnj3z3DKKZqF2U3jp0qVL1t3d7Umi0EG5XLZCFhzfq2VtjtTGrrVZs56bYiba+CxLLdPvzaqZAlInqhn6HZKKH9XHYwQshKdNiTQ1foXpSH3tK/ERt2/ftufPn3swETlDJImh07a2tlpfX59DdJK/6FulUnGDL/ejIyNdseoj2bD24zVgQ5dKJT82kjIFw8PDVldXZ++//75dv37dKpWK6/eNjY02MjLiHpre3l5bWVlxqcu12HMYk65bXNusuY1qaMrWFukhfo7KxLNIJkVl1D4wj+p14rC19vZ2j7zd3Ny0ubk5m5+fd8P5wsKCh9GT7dzX12eXL182M/MI4+7ubs+dKZVKXvM2n887EjIzF0hEs+7s7FblV9tUubyb2f2nP/3JOjo6rKurywYHB217e9t+97vf+bNgJsSfLC8v2+3bt21wcNDOnj1r9+/f93EPDw9bQSdxr02eZSNJtf0imixEpE3LD+h9yiji9yk4nFJxUsZUGAbwV/uTUmHU40NTSVqLsfJ+TeQCpTQ3N9vZs2f9AGmYBFmf2CrIwQChHDx40OtpqJsPNzMEd/jwYVteXvYjCwjVJ6x9fn7eIzErlYqjESrhE6Q0NzdnH3/8sVdKHxwctJmZGT+fl9wiDrWC0Kenpz0nh5PcyGlRhs2mj+rrfmksC2mm1pJ3QAPYp1gjmH4ul3MjMXVfYDzYI8rlsjPzlpYWL3+gHi6kOkfjoj5Ak52dnbawsOBZue3t7V7JjbOu6SdrToNJl0olr/QGfS0sLPhRJaAtghaxIcEMUYNBwRyfQdRxZ2dnNSPJWpxXQSp7tdSmi4hgP/2JSARCU+NotGHgmYpSJfaD59NX7o/h91mSsdZYU9fAsFh0PiPknQAtygCQFLa1teXXcBZzc3OzdXR0mJl5bViQCJ4OCvbmcjmvc0KCF/UyKJtQqVSqYik2NzddNcI2sL6+7oTe1tZmJ06csB/+8IdWKOyePqCGYo4o5RjQc+fOuVFVjcRmLwzwKTU09b+qsTwjZZBVJpIykqsqYGZVgW0RybBWuob6LLU55PN5z8xdWVnxQ8CpnMazqXeSz+dtamrK7t27Z6dOnfKQdNQW6JxoWE3QRFiQ0kAOT3t7u6ckYJzHiA6jIC2ip6fHvvOd79jCwoKjUlTs9vZ2KxaL9vz5c7t3797eiOTbZCKplqX2qJU+fp/ayPGZUeLUgsf77Y+il3i/EquqQ1kIJtVfksG4B+s6wVLkYSwsLNjCwoKn+GOjOHXqlLuk1V2qjBeVjRq2SDiO8MSLNDEx4dXVOzs7PXlMc7DY+NhkXnvtNRsaGrITJ07YxMSEXb9+3dPNMQwT7DY/P++RoVq/NDLf1EbfL2PBjRnXQO/fL7pWdJQSKqnGvEMbqAL9/f3OEMrlshdSV9sMaLZYLHoB6Jj9S2kE1F2EJUZgUKNGZJ84ccIaGxvt4cOHNjc3Z9euXfPQAegVzxn3jI6O2tmzZ93ljNp78+bNF6kF+7VZ/F9aRA7xu/g9nDbL+q5qTVRtINqo9phZ1cZS+0Y0niqBxXiXKHFSf6sUVdd07Hu8FoJVRqRxFgRzsfnb2tq8+DOl+wh3JgIXAoGYcrmc16fgOohTa9qqwW5lZcVD8SlOTbAV5RJ4z927d937NDw87Pr8O++8Y01NTXb16lVramry2ieoaaqKpuY/GtZTTCCuT4rudH0jQ4qCS7/L6kNs8f2saaVScW/H9va2R8TmcjmP/4B+FV0TvAejIQ5maGjIent7bXZ21lZXV90DgxcFFYbaIhSAev31170UBSrrxx9/bPl83ksPYAgnyfD8+fP25ptv+vGf5XLZjh49aqOjo3bt2jX76KOPXlZtvq1Wy56yX5ShGz/ei84a3dXKJFJElWV8U0jNQtTSobPUljge7lGGCaOMENnshV6r/YpV3sx2NxhJV7gJQQra91wu5/YPmtYyhXCQikg5DqI2Mw9VX1pasunpaVehDh065Pr+9va2TU9P+9ENPT09vmEKhd3D1GdmZlxaqt1B1zHOo7b92NPid1E4pJhHah32everIHUdG7YRsxeuZx2Dqt1Kjxhy+Q6mxKHlVH7DuAvzwmaDivfZZ59ZuVy2119/3Y4dO2Zzc3P2wQcfVCEbDTF49OiRF0Xi/Krh4WGvYdva2mojIyP/N0aSYhZZExxdpCywbkxFCxiQov2Eiea7SAQpIytwP/V9Ct0AC/V7ZWCKZlRypjxBZlZltFVXZkRjOpeqktBU7YFIiENANYg5SvrMyEiZTwhbP8MIS8Sm5mjk83k7dOiQHT161KuVDQ0N2cGDB92VSOU2vBrPnj3zw78wLLOGsU+1JL62vVQbPov2kIhU9ooB+qZNEUnKKQAtKkNRIRPnRe/FgF5XV+dHblBLmLwZaA20SYoFhZwwyv/VX/2Vra6u2u9+9zt/F2769fV1u3z5sgfKtba22sDAgGdFDw4O2s2bN78dRLKXnsikpDYOHVfppIwEA6EuSErnjxJfN7qGKitDiIwrLjYbM4uZmL0ggkiY+iyNPNR+xsxjRU3KKKP3gmsVwtJiJLI+T6+JsRa8RyNPsb9UKhUvctPS0uIZyrdu3XLvAUd8Pnr0yEv45fN5O3HihA0MDFQdVRLnOosmslBCRBFZLSKR1D37eQ7XfZNWi5lE4aq0pHMVaYb1RJ1EELS1tZmZOdrT5+r7oXtsSH19fdbW1mbPnz+3K1euuFeovr7epqamPLt6cHDQT09YXV21/v5+Gx4e3lWpvtHsZLRasDAVtBXVEHIoaHBdgnlUHYBzxw2rm9HsZQiriEFVhqhOKMOKBjbUBX1eHGts+jx1Z0cmENU5Pku9B8muDDE197VUAhiW1l5pbm624eFhr0dKWUISElkTDgOnlCD3U/CIKFAMv1l5XLFftZBGCq1kMZxaxvYU88qao9T9vC/2JxXkpmqGrq/Sogo/7oUOda1IClSErj8YSrViW6XywnaIsCCqmcjcAwcO2JtvvmlTU1O2tLTkRbw6OjqqhIPZLmL/4Q9/aMvLyy9opOZMJiZur+9Sv+NPSmKWy2XPPNUNpol6kRlo4/9UYSNatLbrBkxJrbihtXASi5kaa2y6gaI9QAlLx6TwNiII7X+q7IP+3k/aQbn8ImwfAgdlUL/j8ePHnpi3srLigVBbW1tuWzl48KANDg76aXSMjXiXFIOlH8qkdYy1kED8vta1WWqPNiR9SujpO+P3WdemBCefKf2o4NKmRnMaajf0GAPoVCATlwTNcj0xLyAX0iYaGhrsr//6r+3WrVtugC0Wi/bb3/7WCoWCXbx40U8X/Pjjj+299957YdTPmqxX+ZzvlCmoLsf3+nm8lglI2UVUveDeLL22Vl6G5lOYWdUEx8xdZSrKRFIRkfp3ljE3q6naEdU0fiDcyKhU5eFZqf9rbbBa7mkIlES1trY2m5qaqmJA5fJukeTR0VEPeuJzoHNqnlLqyrfR9rup9XNFCt9mX+KzojpMSyFRrlfvpQrIGOwIQ1HjfC6Xc4SiY42qMnvPbLdq2ttvv22VSsXu3bvnxaYIVESQfP7553b69Gk/mP0lRqKbmP9VYteC0GrTAFJF6RgDjnTQSsApXT+1oWksRJZXJaIPhZtRdYmEoHEdGDzZJBHFRKiq70+1CHPpe2QewNOUxI5jVnUsMqS9GoZp0A6BTxxQvrOze5CWHllJWL2+J8513CTfZLOmUGhk6t/kHbrBosDj+yjcvgkKyVKPou1E501pMq6f0qMKD1VllNbNXiBrfYfZi1B/4oL+7M/+zP7yL//S9/TOzo49evTIPUUkHZbLuwGOeybt1UInysGV+MgJUHSgbr44IbUIPm72eDyn9lHVgNjX+HdUMbJUJdVV6avOkcJLvXcv9BaJFaaqix7XQMecaiqdlHhjLEytDaZMQKUbiXwHDx6006dPexATqg0wXNEKv/eaj2+jfRvviJvu22xZTATBGtc8tQdTnkT2C/YymAixQVH4K5pXlMOeRWXVeju5XM4ZiJm5GougaWpqskLWZoqTGdUQ3WCqpqS8H8pk9H6FbsqBc7kXRiQGpDqlPjtK8VT/1dAXx+X1FL6O5FPEY2a+QGRYKsHyzhSa2et/nYOo/qWkHnOtTCIytay5USu92QtYnGpxbNrI06F+K8QXmQdtL8a33/b/NRPKUqVfVU1NtajC6PxGZhHjhfheBbAyHvYF90M7EY3qOLNAgq6dlhRlPgg+vHjxot28edNmZ2e9oHV9fX01IomqhP4dJXPsiBK/ogIGqCqN/p3llYiSNEvV0ndov6IbORKEMjKYiCKaCM/pq+qXyq1rbc7UXKW+TyGnlDTSa+gHTBfCi5sjMu69mq6ffoZxNwbO/f+9pRht6ppoX4p2vb2em/V5RNCpZ6lgUZVf+8IeJFkzMqYsZ0PWXkm1VN/K5bKH9FOnWMP6C0pwqQEp4oiTkNqcyjlVvzIzl+jqvgJW6fOAZ2po0vfyedaZO9rnrOhX/Z8+0T+a6o+MRbk9aElDy3UOtGURnHpk9JqUR4nPeV7KvqOSLRIs+nFqzvTZ8XMaenQtt+p+WhYjfdX7aiHoeN1e71Ra0DnX9YnM9VXGvte1cV2VgUUhbWaeDqFHn5Jvk3peFmrdq6kgpb4rdKCqfSESr3I/OpyC4CnpGaW/TgbJQ0AxGptTNw7PROrxTDZMjEfQ/is81L5nTaYyBnWpRaYT+wesRJ9kLCkmkrUwcY7Mso21yjgYj3p5lOlGYorjjN/Fprq19i/aPfajtmRB+W/SsjbDN2FCKSEYr9fxRTSXon+z7NiV/Ri6IxKOpoTYJxXa9A3EyHW1kON+10IFNnaY+IyCElaU5rSsgemA+EzDuHO5nEdGKkOJhM8kpeAk/5ulU8L1MyU0PscuA3pgg7CxlFmVy9UJdjoO/o9IIEpFVAxtkQFnMYq4USLzUybM+2GWikIYR+oZe7XU9fHvlI4d4XQKXqcIcK+W1Y9vs+210aJaGfeCNtTjuIdeBcVl7T/uRSjzPhCzagENDQ0eL5JC4rUYq65dFgqMe7SQIgAGHvXDWsQVVQkSgOJGRQ2IiEFVHmVmMdJ1v5yWjcR7VH9UuwbPgeFEg1VkJrwb3TAlaVL2Bf5XxKAEybv4n/nTRY+2jshIsogvhbDifCnqSBl04/WxRfrIeletth+CfxV1Zj8t9Yy4iVK0znUpZ0U0wKfoYD/9izZCGAbeS0Uh/KgaYmZVAkVbamz0bS+kyR7h73K5/CKOJDU41Q/VqJfSFbkX92yM3GPwynQ0j4bnKEogHDgaObMmPBpx6YMaIumH9i+X2z0DJMvgGwlc1S2F7DpPTHJcJMavjE1jUrif5CoWSovnRO8W3+kaKryNmy9CcZ6jhBLnN0vgxHnJ2iCvgibiu6KK8SrPybovpZrEz1J9VgabuibaJiJT2ov5Kf2q0ISRkFejtAnajkxNVdwojLLmKAtt1lLzcrmcFdS7kdpEGlWqaotOmt4To0T1pQwi5gCYVUek0h+YQRYhqQoRiSFubv2ffiLR1d4Q1SfttzIIVfeUkeq7lNHoXOiiaoSiEg/SB0ai2bKKqHK5nIejp8aYSlVPqY2MKUrVFApNbbCUepkFj3VeUtJ/L2bxqkhH31nrGalraqGsFGLiGRHd6r3x3ZHu9LfSpqo0KZqOz0ytl/aPd+h1r4IC1R5YUNUh1bGo50WpF+9LGQ/5PH6mzwKtxMHpROskqESHOUXmkSJuJqOpqcnq6uo8x0Q9L9EWlFIZUgsV+8FnKcnEfEZ7C79V1YLhcphVJPCY95MiBu1/Sh3jucrYstTHuCE021TXReckIsnISJSJZr1vPy3r2ldhJLWYhYb9p+Y4NQbGGuko1WJCp3qMcrlcVUCm7qGsdY2IuhbD0f8jneo7VGjSCnFDxE7GptdrqG2qs2ocVAkKwQLTVH1hE6HvsbBq82AwqhooRNfJw7OCIQqVQb0tPF8njEAr/UwJIs4VjKtcLrtHR9WSXC73UkAb86ljp0968mGMg9F+aUsR014oUpuqTxqjoM/XNeAzTXSjiJIGSlUqlZc8bSl1KWWQ3EsViH3Lkp57qTLa16xx6/OjIEx9H9+lfYz/8xNrk2QxttT6K+PP2rupz2rt9zgvEViwH2oeR6ESMWUXiR2KrlPV0TV2JE5IPONXMxfL5RfZo6gi3IddA/cUC6ubQY2q1ClV6adFj+izMgNFKfyO0ZzK7EA2WgNCI4CzJFxEYamFY96U8cS+K3JTLxQbPkUk6nZUW0sto5veo4xFvRZ6rb7P7OXENaUh/o7fxWfs1Wpdp3OrqkcWc8nahFG15fMUo8lCDvG6aKiNYfSp+1IMi3fWahEZxu/0mVnzmcvlXq7ZmoKALHA0CmpHlTB0cBG668tVnWHzmZm7rxR9UG2L/nAOipm5m6tSeZESTS3S1tbWqn4pF9XJUpQT82d0E3INuiqoSokybiRFU3qN/p+1oMoUdB7jXGuLBXIYr74zRST6LuqcRGM341AmonY2HZsy29hXtcHETaf/x01aSyWJ39dSUeKYazVdl9gv/S7FULSBUlOR1lkqAzS7n35mjSmLCfKu2O+93pF6TkFTjFPcT6GWGl4jc1Dmol4UZRBKyEqgalTinUh+irWYmTMTztOIhEq9Uo6q1BL/ihDovxKHoog4VhBVnMBKpeKIRpkO/Ym5OxAR9/PMrAA7nUuaSvwURNa1oC8RDmelDETGFqvTpTajqkPxWXp9tHHxmdKGzk3WT6opA8xiJNFWoMyQttd7Uu/lvsho+Fzfr99nMbEohOJzajETZWwRSUXBn0JQ8fmRSdbqQyESiCYspV4YB82DI4erVF7YNXhu6rcSeWqytX8wmPb29mSeAYRdV1dXdcQl16Qgtm5KUEa8NjUHcY5iLRFt+rnalXwRRL2K8DdKvjhHKQJgkyjj0u+0hmy8X/9PbU7WThmVXh+9YMowdb1At2q8xJ6l86n9zLILpSRxXMMs1VG/j0gga3PFzZhCQyk0onvM7GVPZex3HH9sERHFcalwj/st9bzUWmeNL7ZCjMKMsDKrY6nP+F8nSl+uxs3UhMSJzuVybqikJJxGqEbdVg2oatuIhYP4TPuqz9PNpvfFyVVCjfahVFMmq2gqJaFS9okUQ8siJpW4ymTj+TFZapYyrYjedE4jw4vQnc9iv/ksGscVTalw2o9HJ8VM99uUuWWp4nHOI9PVZ6UYlQoqHafOrTJwFT5RoGiLwic1P+o8qOWNSz1nL7qsVCq7iCSr6eRmSWX9nxcpAdTi9NrJuJG5H71SJZImjqnU5HNlWFtbW5bPV0cC6jNSUI8+xSS92LRv2lLILSUJdLOkJGtELnHOo90i9kFVOb0vIg2YhsYrgCJ0PhXp8BPnhmfqdykEpNdqv1RKc71GS0d6jZtPW2pD6HrEZ+h9umFTaEj7kYXcarXISFRlVfuTIvgUDWofVR3PYhRRuGQ971VbIaoyNJVS6Pkxn6NSqbwEW2NTGMyAaVEqq1TjXv08JS1UekJ00S3MeCKzytoEilQik9P5oY/6WUqKqX6axUj0/VFCxe/j/MFEGRdrQ9Qrz9FCRfpMJWSzFwmJ/K00gk0k2hh4jl6bQjb0MTLLiFR0TWlqEI9o9FUKBMW/s6A+44nv03si4orrpswrtQdoEa0zR5w3owdfxRaFYTS2Zwmk1LzU+qxWKyhhKfOI+mVWJ/biktqZrMVLwfxaMD4lTSKR8RzgZLw/MhYl6Ih2UjA0hVKy4G/WQqS+i8ziVeC5zgfFaTT/QlWSFPKJkjhuojiulKoa6SfFLFT1VYakaqmiYX0392VFIus8gGhVmMUf3hdbluBKzYPSm445Nf64UVPzo0hSUyBUxYvzj+pUSw38v7S9mElBN60uPp/FwCIGij1ic3OzCiqpZMvaKCmuF98Rr03BSz7HCKuMBMKM8D9KyIhs+JyWQi21+hKZ4162jtQ81Lo2thRKYR5KpZJtbm76AeAq7XTMjEeRXCpoL86LzlcKBeJ5U/QHoafWXqG8jiWlPqqHJ3okVJDRt5gqoOpDqi+p/1PIdL+SOyIZ7UOkeSrP8Vvr4XKNGqbNXuxTPJxZY4vzVGs/vkorpMKX9f/I9eg0hEFiGQsededX2TRZhhyztKFX78liXhH+pxiGMsIsyaHP4yeLiGox0nht6h3a9rJhRTTAGNg4rA8bmmI4Om6gs9qgGhsbPRIXlUaRQxyv9hMUCHLQsH4SJkFN1LdIle1kU9SaP2VAqlZFZsl9amxMbWTmUYVO9CBFRFMLdca10n7pmHlOrHmshcEIqNRcNfrLmmmd1dSYzF42N3wbrQBkUmlOY3EYeLSm8xmTq7pZSlpzT/wstfHjvbU8InshgVR/9uLEe8HDlD0k9inr79Qix77t1VRaRyidy+VeQpIwFLV3IQDq6+ursp+1dCSf6aHkhMBHxmz2gmaUWbApYDiKOlSF0ZiUiFCiKhrXG7sO99Ff/VuZJc9U1ZXrVQ3KQpSp7yJj0f9ZJ2XIkenxfrVBqe2PMZhVe2HUdlUqlaxYLL50VjD2sRSq+jZaQRdEJUsKFjE5SJpasIlnmL0cDEOLG1wnnt/x7xRT0O/3gwDiZ7WkSbQPxPdltVdhJFE67CXdYuNeNcpFyakb88CBA058+Xy+Km2Ad0O4EGqMCYq1Y2gxFQL1KAWjtVauWbUqpNerN45nqwBTG0JskUmn6DbaHmJoQHyOzmlUVSI969xvbW1VFVVW4zfjicZynsv/m5ubLxUPO3DggJmZI7xSqeQn5akRHmGv/fw21Boze+H+TS2CcrAI5XViU4hAJ1ndWlHlyVJZUpspLlyWilNL7XiVtl+Usde9kXnsl9ntt4+6wVICQIWDIhVdGz7Te1TyYjOJz9dn6IZUpBI9DRHFxM0IWuI3jC7SltluigLXqoCLNpSo3ujYsmiK65mPeIa0vgP0pc/mM61cpmo0dhCt+6uMhPU0M0eNcb/onqirq3M0Q35aTIiF8arg/TZUnJcOyIq6pXJMndz9bH7VxVIJY3tJ9fjMLNShix2JotY7XuXdqb7EFhGV9jn13X77kXV9Cp0pwcRNH1WRuIG5Pz47K9lPr4lrEyVzXIdaaJbv9EjJVJCjjpPrS6WSFQoFa2xsrApEJOubRM6IevTdKvj0OzaqMobNzU1bX193mwVFxFEf2dBxjNzP3IMW9DoNloxronPOc+JeVSMz10eVX50j37TlcrldRKLSPBrs4PaRYLLgON8rt9bBacuSSnwHoSiRZm3m/aIafVdKCqWe+aptPwyy1r2x1ZpnbaxTlPhZf+taxxYNl/zonEXCTTGRlOE5S0DpvalNY2ZVgYX6HepXpVLxjazSXO0jKUYafyt61rGoarS5uenqBOgJZhZNBDp/yph4J3MSGb2OU7POU95IrgVBYnzV9Uwx/CwayGqp+SvE8oc6aXQW7hkhki5kfIbqZrpAWZ2K19TaMLFlEWOt/7OkZ4rj76d9W6pUvDdK/axrVZLqZ5GppPqcei/PAppHRqKGUY03UXsHAkdjOeKYUuOK6I3nxHXjHXgy6LMeyxDfpUhDm3oka805NqU4pzCQOL/qoIiMjr6gkmn/1Cir6IQWY3CUifBTKBSqcs5qoWId816qTorWC3FxtD5GlDQsQC0kUWuTvmpLoRBaLZd1fG8WI3nV+1Kt1uJ805Y1d4o2UoudRQCpMWZtFpoa+JRoIXI1+rExSEfQBDWNa1CGkBpvHIv2L2VnYWyxsNVeTD0KTa6Lhur4DO1/pVLZPfP2a/uGqjBqFuAzbEyoMLlczplPPF5Tc6JUPY3XxDHo2KJxOM5pbKlx79X0XVU2krhpVbdTDh8TrXTyvg1jpzKQLGmZ1ee9/o/9SfVtv0wwTnoKTWT1oZY9pVbfuTc19/rcWu+O/dX1YmNiCAS+Ky2sr6/b+vq60wG1YdT9ambugkypxvxkuen5OyJa/Z5NqQgDRgctRm9Uam61L8yF2klq3VdfX+9zUygUXqrezvxhLFVhTN0dEJW+g/u1Hq/Oi8bYMBeKTrQwGOuq5UT3QwvxO6UR/sbTVtALYtvLnRaJYT8crdbmrAV5tU+RAOLz4+evijpqbb5v0l7lWXtdq+OLyCQSG60WemE+2QBIydXVVa//gh1Ar1UYj7Rl00Z3rlbzj0SZGrOOL9rtop6vRthoiMWmERvjiJ4+tWuk+hqZi/4NA47j0A0PU1DGoPRMBDJ9yefz1tjYWBWVzJxkHd2iSbYwlIaGhirUw3OiGhzXJavpvaCulxCJFvBJcaasTZm1OfcDY/fbop6cxUj2Yhy1+qeEup+WdV0t9e9V1JJa79yLcWd9n7KH8Uw8DRsbG7a+vm7b29u2sbHxUuh7ZGS6MVSyoxYRro86oP1Sz0KWrp6aw2gT0nvYbNEID/OJyCI+o5ZtiTnQhMhSqWQbGxv+XDUN4MlpamqyUqlk8/PzVi6XrampydHf1taWra6uOspCZWxubq6aa5AF+1SZmrq+6+p2a/Josei9WmQs0ZOn71PVt1KpvMxI4v9ZNoBX2ZxZUv9VWhYTSb27Vn/2M6lZBPZNWy3vz14GMH6nmIcupEonfV50ASsk5f9ofFQEsbW15eUkcWlqXQ0z8/NnFdrrNTATnsH7eW8McKP/arBNoUzd7IqKNYo2usNTdBMZV/xeS0lGNUKjSvU67s/n89bS0uLRpvSTNAUzq8qHUrUMF7ainZaWlpeKqkfGDRKKc8r3tBTDpqldLCIZtZvx+6U4En1B1md7MY54XxZ03c9GzbomEkGKOLLekZJAtP24fNWw96r95jvdMFGyZ0nEeK0SBv1RRKVSJd5rls4sRm0BQcSkTIiajYTqgS1ANwpEjsRlAzQ2Nlb1N7pnFf3wvc5BzDrWtaZPSge6pnyXUnm06eZUhqFMRNGN2kCWl5d9ExIDozE8DQ0Ntrq6aktLS47WdI55D2hQ1RzGZGaeqhCZiXpcI+3o7xQj0bEqTTAnIFY1Bu/s7Lxc2Gi/m/ybMpIsaZDVojTa6+/9MJJaY3mVpjVa4jymNinXpdyPEJnC5bhReK4yEv07653x+1SYOMSztrZmy8vLtra25lGjbEb6DoQvFApV2b0QNISKROQajgVZX1+vQlCMj7gHiJOx8xm00NDQYMVi8aWzkKLdp9Y67Kcp+uNvjVSlYh9zw/ja29stl8u5wRNmo+hFGUi0yWiuDZ8zl+vr61UnI8S0iLjmikAV2cY5SqFWRUjMPyocthy3g6UkcNYmjDpr6u+sZ9FSFvSsprps5KQpo2sWk4mt1qavhUiiS03/z3LFISHiPSm0EYk/l8u9dKxpyiawFxPRa3VzxO9WVlZsfX29KsCK7zTvI/VuRRKMRTNUuZfNxfhgTkg7PA0wMbMXG0vRRrFYtI6ODmtubnaEE1VA3qmqRqql6CF6k+gD/cWInM/n7cCBA1W2Ca2Vwm+k+ubmpq2trb30DkUBkR7r6urcu8N38VC0vbwxe33OOsEkYfh455j/mNfkNpL4wFovznr5XpI/C4FEN27Wu2qhl9S7a/Ula8KjwU9/a2My+ZuFTjGV6ApUQo9EHxls9AaUy+WXIL1KCvWW6DgjM6Cv0f7CJtfYEO6Pdo5Uej990X7r5o5nQTc1NVlzc7NvQjWM7uzs2Pz8vK2trTkCQPKCApeWlmxtbc2KxaI1NzdXeY20BEKq+NJ+WlwbUJy6evFWwfC5XpElc6g2nLg22tTTlMvlXDVqamqyxsZGKxaLVXamzc1NPzVSaUD/VrpS1Uz/18hcmMjKyoqtrq6+xOCUMTMvNRnJN0UdqclJ/Z16jv6OhkN9V9ZzUvfETRY3XMqYp9I7SmElkqiqsCkVnmeNM/4dbRiqh0OMumF1YbPeoUSLZIzlHhhTY2Nj1YZB51fGqExUQ7rVPpPqE+Ngvpubm62jo8OampqqslQ10Gp+ft42NjbcvqLFljRDd3V11VWn+vp629raqlJ94hzr3KbQSGTyMEIVNgSXKRJW5EkWLjYedeNqn1L2sOiWjlHBpVLJUQ3rCVrJ2heReVEsiWeur6/bxsaG0y0xRNjM4r5SFJTL5aqNrXu5TbO+S/2fGshe1+giazYnE5l1PxtZN7f2K4uJpIiG9yuMVSiHIZLvU0a7lL6pC5GSTvreFHFp37Oka5aayndqhFPmqu5GjVjFsKbvJ9+jXC47YtBNmaWi8RuGoOqCft/Y2GiVSsW6u7uttbXVnj59amtra1WMo1KpWGtrqzU3N/smqFQq7qlgnNvb27a+vu6qD2OG6UUkWWtudR5xXxOBCu2pN0Or07W2tpqZVQXxYU/ROVBVPvYDxrS+vl61njxXGR41Y1J2EN65sbFR5Y2DcZi98LgxlzFgjvdrXwtIuThhqb/3i1BqtdR9cdNkwbPIzbk3PlehV1yY6A5UOJ3qU8xp0GhP3QRqcFMjLESnxkPtXxxfLWOqXpdqWVBZ50D/V0YGM6FUgKIXxg2B5XIvgsvW1taq6sKmGAmbD4iuyaBIPNCDGlSJvQAJITEjOmlpafH+qCdDGXJqnlX1YY7V6MkYIgqDJlRVi8/TuV1dXfW/29rarLW11ebn550pQy/KkBV1xhwesxfH0TLOzc1Ny+fztrm56UbriLZ1LnT+1ZhdLBatra3Ncrldwy6eJbKco/CFNtzYql/SUsQBYSiRZBFxqqU2fuoauGvstL5HN0SqRUbCIikiSPU9QlZQiNmuW5MjQYGZPKuurs7DxXkmfv8IZVMbLs4Rz1Ump1JGDyqPc6PjU1VGmaduNN6pKfaFQsGKxaIzFEWGOzs7fqJhrBMakVY+v3tOM+n9uDGbm5tfYmwRocAsGhsbrbm5+aU1jioK66DqoG7GqILoc6I9STdyZEq6SblH4zu0bAEudJgjdAE9sRlxn+scs4mjOqoRrOvr686gsXHwfywKhWDA5mL2QmWlz01NTWa2i0xY4+XlZWtsbPQgxbjeVTaS1IbM2qRxM9byhKT+555aDEgzOlVaQ3AK01O2Cm1q+IrSQ9+j0BciIuJwZ2fHnj9/XlXFK5fLebRmuVy2Z8+euaRgE2ADoJ9x80ZGEecL4kCysxkiilPDYtwkOn8qBBQtme1CaG0Qo8ZycC8eE1Q/dW2qMCAYi34zM2gp0QAAAjdJREFUL0pDyli1/ylUHFFbbKqOqsqQqmkCHUXUxrxjgNZ5Ss2zGkBhgOr+VpppaGiw3t5eKxaLrmIsLy+/JGCoZKd2KuZBjc/01exFKcbNzU3PUmbOQCnQJwxpbW3NcrmcM3vGpkJXmRKfoUJtbGzsVpGPC7bfpoOOkFsZSy1mEdOneZYyCiaSDcWCKDHqJov2CJ1siEEJkYWHGRFLgSQxM09NZ/IoZsPkw0i0oHE+n/d4DPIdNPYha04ZD8SneSSbm5sech2Nr5qUBeHr/L4qetT+pM4vwjOiFbcqlV1DI7EmxWLRWlpaXlrfeExpCllGJhGhuYaJq4Q2e5EDwruUEdbV1bk3SNeeZ+n8kLAIg4xHwSIoGFcUeDwflZF3YntgbrGBQPeUAKhUdo21oKKGhoYqRpzL5arsWKoeMhZFM1HzULpRz5nO98bGhj179qyKqUbgUNAFqKUmxBYlRexglh6falkMiIFyDToguqW6K+vr6+3AgQNVEovxaCbl8vKyG+BUBUFqKufFWMYCHjhwoAqCRgnHYjc2Nlpra6sVi0UzsyrVYL9zAeOEkBkn+jRMDgShElDXIWUk4z37YSgacBfXnGfFkPlisegeH2Ay9/A7y+azHxrUzaqbA+FiZm7sLJfLrkLp81EnMJZCC+qJ2trasrW1NY/iVKahdi7mJ2VvjEKNe1G1VEiY7TKm5uZma25urmLeaoeJwhDUw3pqYW6u4xlRzUco0VRLUIROqoSiWQ0J+H9aqqXTYKBulgAAAABJRU5ErkJggg==" y="-288.73474"/> </g> <g id="text_5"> <!-- Max Filtered --> <g transform="translate(406.261875 283.42526)scale(0.12 -0.12)"> <defs> <path d="M 54.890625 54.6875 L 35.109375 28.078125 L 55.90625 0 L 45.3125 0 L 29.390625 21.484375 L 13.484375 0 L 2.875 0 L 24.125 28.609375 L 4.6875 54.6875 L 15.28125 54.6875 L 29.78125 35.203125 L 44.28125 54.6875 z " id="DejaVuSans-120"/> </defs> <use xlink:href="#DejaVuSans-77"/> <use x="86.279297" xlink:href="#DejaVuSans-97"/> <use x="147.558594" xlink:href="#DejaVuSans-120"/> <use x="206.738281" xlink:href="#DejaVuSans-32"/> <use x="238.525391" xlink:href="#DejaVuSans-70"/> <use x="288.794922" xlink:href="#DejaVuSans-105"/> <use x="316.578125" xlink:href="#DejaVuSans-108"/> <use x="344.361328" xlink:href="#DejaVuSans-116"/> <use x="383.570312" xlink:href="#DejaVuSans-101"/> <use x="445.09375" xlink:href="#DejaVuSans-114"/> <use x="483.957031" xlink:href="#DejaVuSans-101"/> <use x="545.480469" xlink:href="#DejaVuSans-100"/> </g> </g> </g> <g id="axes_6"> <g clip-path="url(#p04da8cff64)"> <image height="149.04" id="image3f9c7959b5" transform="scale(1 -1)translate(0 -149.04)" width="197.28" x="580.658824" xlink:href="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAARIAAADPCAYAAAA54F5mAAD5tklEQVR4nIS92XPj6XXe/2AHSewLCXBv9jY9rdk1sixrZCWx5Qu7yo4rlTjXvsp/kstU5Q9I5TKxlVRFju04ihVZ+8xIs7S6p3fuCwgQIECQ2IHfBeZz+oBS5ceqrpnpIcHv933Pe85znvOc8wa++c1vTlqtlq6urjQYDCRJ4/FYo9FIgUBAgUBAo9FIfAUCAQWDQYVCIQUCAYVCIfv7yWSi0Wik8Xhs3zMcDjWZTOz/TyYTSZr592AwaJ/LVzAY1GAw0Hg8liSFQiFFo1H7ffwsX+PxWOFweObz+D6eh2fg+2OxmL0b/z8SiUiSYrGYAoGAYrGYQqGQrq6uFA6H7bn5/HA4bP8eCAQ0Ho/tuYPB4MzvjUQitp68a6vVsndg7dLptObn5+3ZQqGQRqORfUan01G321UqlVI8Htd4PNbl5aVGo5Hi8bhisZiGw6G63a7a7baGw6EWFhaUSqV0dXWl0WikUCik+fl5RaNRVSoV1Wo1RaNRRaNRW7dYLKZYLKZEIqHhcKhqtaput2vrNx6PFY1GNR6PNRwOlUgklEgktLCwoNFopF6vZ2sbDAZt7UejkTqdjtrttn3OwsKCJKnb7dr6sEbD4dDsbTgc2meGw2F7ZmwR+xgMBgqHw/a5g8FA/X5fjUZD3W7X9iQWi5mtxWIxRSIRRSIR9ft9XV1d2e/tdDqam5uz/WTPeYdgMKgbN24onU5LkrLZrLrdrra3txWPx2dsNhgMKpfL2Tv0+32dn58rl8spGo3q6upK4/FYnU5HR0dHM+/M/gwGgxnbxe6wWezef/Hz/X7f/h/rfHV1JUlaXl629ej3+xqNRorFYjP26d+fr/BwOLQNYzPYMBYoHA7bhvN9PIQ/FMPhUMPhUP1+X6FQyF6IL+8sgsGgLRCHk5f3h9AvAi/jv9d/ccC9QfE9/PO6A+L3YCBs0HA4VDQaFevDmvC9vCuH0jtd74T9u/t34/D1er2Z393v980JX9+4cDhszp6DwD4NBgNbIw7wZDKxdcAAo9Gout2uOQQzhC8PJc5yNBrZ98zPz884fr9u/r+73a6i0ajm5uZm1ps94TkvLy91dXU1c0D4ff1+396VNfK/dzKZKBwO2zr7w8jv6XQ6Oj8/t8AiSf1+X+122w4+70vQ5PcTYPjdPCPrHA6H7Y9/Lhwa+xUKhTSZTBSPx+0d+DkCE8EAu+Cd+VzOkV9j3smv3XX75N9xNPxe9suvLWcSG8OG/XP4s8b5858hSeF+v2//gYFGo1E7LBi9/0D/z8lkYg/ILw6FQjN/d/1QsRg8jP9sj3I8GmFjrn/9tr/jcF83Zt7Pfx9/x/P6jfPoSpIikYg9oz/A/ns4FCAVDgV/zxcG7NfJbx5rxMbxXN44+Bmcn0dcfEUiEYVCoRk0NRgMNBgMfsNh+EDB93uD4V1BIjw7fzcej9Xr9WacDsYqTQ/G5eWlBoOBHa5IJGLv6p2mR5Ssp393f5D4ZzAYNKRzdXWlaDSq09NT9ft9+x28N/uTyWR0fn5uv59AyJrzOxcWFlQul+2ZR6ORLi4uZg4naCoWi+ny8lJnZ2fqdDq6vLw0x7WwsKBoNGrPwZrH43GFQiFdXl7OBEpQrH/H62cGR0BAY838z/D+PD9BiM8A8bNvIDO+z++F31POVhjYGIvFFA6HNT8/b9EFg/HRkpdkczG8QCBgMJs/GIw/VN7J+APjkYN3Ut5Y/EHk63rU58X4XhbKpz3XDz2OB2P3qdj1TcS4eI/rqIhIQxTw6ZN/RjaItfFGlclktLS0pFqtpm63a/vT6/V+I03DKbB2vV7PHK8/mLzf1dWVwXb2lvfzQYVnwRE1m031+/2Zd2X9PHrFofH7cESDwcDWhmjJPuDIgOV8to+qPuJ6xBgOh9VqtZTJZBSJRCwt8IeH98G+k8mk/c7l5WVDKaSDOB7sMBwOK5vNKplMqtfrKRaLWXpEKuzROQeSVOn6mvEnFosZksrn85I0g8B4936/r36/r2g0ao4F2/Rnid/lnSz7C80wGo3MQfAFGGAtSY//X3QE70qQCvf7fcXjcYtCkUjENlt6BdmA3D76+T/+UHmo7g8Pv4Mv/+9+QSTNRC0+4/qXR0f+/4Ne/CHn9/u/CwaDlvd6x+edWigUsrQhkUgYzGcNpOnhxOB4Zn5/r9ezA4Bx8t6dTkeRSMTSDh/90um0Tk9P7d19pPFrhZFxeHBOnkviWYm2fn/H47E5CNaH6M/78XOsM8bs192jMpwkf4i+5NysD0jNcyA4oWg0qk6nM3MwfWC5nvZEIhHFYjHNz8+r3+8rFotpfX1doVBI1WpVk8lEqVRK4XBYiURC1WpVsVjM0jDP0/l/cvCSyaRFaYIDB9IHL/6u2WwaauOw+XXDxojupJz+//l/+rQavskjQm8jPsPw9sPvAll7xOW/1yPj66ka7+KzhkAgoHA8HtdkMrEo6iMUP2x50JdwNxKJ2IHzBunzYV70OnTnJfxCsTEeWl8/0NedEJvAZ3sC2COl38alXCdHpWlUxJF4bsJDw8lkosvLS/scfq+HkjyTz+H5wkg4uDhaSRYFxuOx5ubmZg4dkdIfHA5Tv99Xr9ebgf04A5+m8Wysq3ec3khBUhxuDkYoFNLc3JwikYja7ba9v19DfzhwIP6foIBIJKJ4PK5oNKqLi4sZ+/K2hENZWFjQ+fn5TOCKRqNKJpPK5XIqFosqFAq6vLxUMpm06P7aa6/p8vJSFxcXikQi2tzc1Gg0Ur1et4PdarUMYfr8H5sMhUIWQC4uLjQajYxQvR78+DvWuN/vazAYGELEJvhs9iybzVoA5+/guVgzj1w92vKfA0cDOuLfQZXXU3yPODyQ4Fl9On7953BEduYWFhZs44GWQNzrxKtHKZ1Ox1hiYJf/wmkAsf3BxAivQzgMEWPmwLEYnqzkIHkvzfPy+f7LwzMfbbxnZ6F4FxaXReX9/TuD1q5v6nWex5O03uikV86HqD8cDlWv19Xr9WZIVA/t/SH2zp91xbnxz8FgYIeWdfQO338GaQN/Li4u1O121el0lEwmVa/XZ5y7dyQ8w3g8rTpcT5f4XalUyshm/+XJaxwCBC0OKB6PK5vN6u7du8pms5ZmjkYj5XI5i+zhcFjn5+d2GC8vL2eI3sFgoF6v9xtVlUAgYFwGlTAqK5KUSCTsGX0KHQ6H1ev1zB5ActgF3Ir//eFwWKlUagbFYTuktPz7b0uDvSPw9uaddiKRmAEJfJ7f9/+/c+O/BzvxZzvsX3IymWh+fl7D4VCtVmuG2eblh8OhQT0iKi/pIz+/ZDKZqNfrzaRAbMD1HO860eidBFHSk6L8+/VF8AeNv+fg+AiK0fO5Pv8kIvLvMOggEw8j/UHx/866+vdhPTF0DqRHdJeXl+p2u2aU17kYDzc96sN4/XOzv3AjvItfN59He4MkqlIanJubUzabVavVmnFG7JlHJPAhfp95d/aJknowGLRSdK/XUzgcVqlU0sLCgr1fsVjU+fm5MpnMTAXq7OzMHH2v1zM7JQ3HRieTiTlEEJIkW+d4PK5kMmkozP/x7+ZJXW+38FU4RqI6KJJ1wDZ9aZUzwtki3W02m/ZZkuyMXl5ezjgcXy4Ph8PGVUpTp1coFMxpYWv+bPmg4s8R78P+4RiHw6HRISD4MD/YbreNaA2FQgbLFhYWZiIPD0ok9geWXNgfUEhZHzl9ynDdiXBA+TtvFGzM9RLc9VKY99g+v8Q5eOfC95HieaR0/dD6PJM/njO6HlH4MkLqS2afZ5Ve8SQ8ZyAQmHHa1zkgvo9ozud5B4EDwLh5Bq8fiEajisfj6vV6dpDgEEajkVKplCQZ35BIJFQsFk1/4g+sTyXH47E5Qg+5PbF6eXlp5H4mk1EsFlMymZQkNRoNi6LJZHImnYJIhQwdDAZqNBozqOLs7EySTEvTbrftkFxdXRlhLWkm7cK2fcUyHA5rbm7O9jmfz9uzdjqd36ikXUez2BsoC4dCgODzPTJgHyORyEyqLc1Wq/jCNiORyEzKxTulUiml02l1Op2ZAAuC8kHFo1zsziNE1ow/M3wnIq9ut2ubEY1GTTBD7ubzbthoYBcGgKeMx+OWb5EqeT7AV018tPW5Ki/x2zgOzxNcrwBcJ375HM+/sCDXP9MTTL+NdGOhfYrCz5HG8Qfndx1S8hlUYXhnjDoYDFpFgPRgfn7ePsPX+Eej0Yx+gn/H6Hwa1G63rXyLEcCv8C7z8/O2p6lUSqFQSI1GQ/Pz8+bMcCA+qBC5WIvhcCpOI9hc51vQsSQSCWUyGXMWOOdkMqlyuWyfQYo3NzenRCJhKfVgMNCzZ8/UarWUTCbNEYZCIaVSKUPXPtBRBfMH12ssvEMPBoOWKgUCAXtW9okA6UlLn4KzX/6gehTryWW+PA1wdXVl5WB4G5652+1asSASiSibzapQKFjlJh6Pq9vtmu34LOK6ZMFzHTgwbIiz7CuB4/F4RrwoaYpIEBF5/sIf+N8G30EaHLRoNPobJWQQw3Ui9PqB9YjCVwt8OuSdA393XQjmHYX38vw3P/PbysiUTXlGUMRvMwYW03NGHrHgQD0S8k7YG7EvEV7neVgjvwfwF6QPpD7sBYbqSTfPi7CnEH6xWExLS0t2OH36SCCBa2i1WjPpgjSry+Agzc/PK5/PK5FI6Pz8XMfHxwqHw1pbW1Or1bLPJGBlMhkTsxUKBaVSKSUSCc3NzZmT7vV6SqVSikajOjg40Hg8trVkT7vdrmKxmB10HLXni66T337tcN44SfbQvy974X9eelVeZV89Kco/CSCDwcAQYSqVssPLevM7feXScyTwNuxjNBpVKpVSKpWyc+KDmy98+L3FYfk/v+09/Xljn3Ei4/F46mz8LwZqRSIRNZtN+8FgMGgRFIl1LBZTJpOZiYCJRELSqzTBcyH+4b2j8g7HP7TXdvgvfsaXoH1dHPh3fZMxOJ/a+H8Spfleb1i+ssEzeoEPX9c9O89KStHpdGaey1dl/CZ5R+UdBIedqAh3gbGB/lgHvrrdru0vB9AjxXa7rXK5bL93MpkYHzGZTFSr1XRycmIBgijJ76bSdB1mkzplMhnlcjklEgldXl5a4Jqbm1MmkzFUE4/Htby8bBxBu91WpVJRr9dTrVZTu902DQdOhJTRPwsHEUfkUQnrzn5drwSypxxEUr14PK5MJqPLy8vfQMh8+VSUL5A5kR2nhNNgH0BdvkLHQZ6bm1M6nVYikVC32zUEgn1FIhEtLCzMVIcgiv1z4ZA4LwQw+B7Pa/rffz24gbg9JxkmFcGBcNAQKwHVPPE6Go10fn6ufr+vVCplRsEDs7mkHHjc8Xg8k6Py0DgG7yX9l4+mnq32pWQ2zHtcvrzB+ejgOQNPiuFQvUiNQ3y9GsKz+N/ljZVn86VbT1L6COidqSch+R72Z25uTvF4XM1m8zeUjxwMz/zDRfD7iIbtdtt+J4feG891B4hEgHfne9g/0BWH5noa2G63dXl5aWmTT8symYwWFhbsoI1GI7VaLdXrdSNIx+Oxzs/PNRwOtbKyYs/gZQoeXYDGfJ7P4cO58P3erqRppCc9wPn6tfB823UU7T8PZJNIJMwJo4vxBPP1cj/vG4/HlUgklMvljESdTCYzjgNeBxuVZOcRnZEv//LHl7TxA6yBJ+vZcx+EPRVwcXGhsDdEYCoLyRe5Ki/m+yRwDOl02vJJcjca0vBgnkAkv+dQXY8aHD5e0i+AP3xEIV7wOhfy21CNT1H8AWQjiZjkgeTWwGd+1pOnGKrPg31O6Zu7fpseBiPgAFKyI624uLhQp9NRLpez7ykWixqPx4ZMfHWIZ6P0m0qljB+gfBmJRCylBdEQCBKJhO3z/Py8BYPrzoHDixH6vJ39CQSmqudIJGJpS71eNzg/Go1ULpcVDAa1u7urhYUFxeNxXVxc6PDw0Bxqo9FQq9WyAoCkmd/jiXhPGnLYQZyetJ+bmzN+h74n72w40N6B+n+CFKPRqObn5418R7iYTCZN/o6D49mSyaQ9+3WSttPpWHq3vLysZDI548BIb2kqxRF1Oh2zH9Ikn17zRUURBNftdpXL5azK58l9CG4Q0/X0cDgcKsxDeBYW6IuhIM29nv/ncjnL8cj9iIDAKzbCd76ykBiEj+4eMVznMnyFyDsJHJL/jOs/y4LAU8zNzZk2wiMLUgeIPd7lOu9DxaBWq9nvxKlhZN5xkVYAYfm7612cvrxM9SIUCmlhYcE2e2trS81mU5VKZYbV57CAJkejkYrFooLB4AwPkUqlLADQLwIpB0EsyUqrrPX8/Lw1oXm9BLZyeXlpCJTqS6PRULPZVDweF5ol8n9sAoeG8w0Gg4rH49ZtnM/nZyJ3Op3+Dad/PR30NsM/PVpDjwISw9mx9p40J4DwPZSoOXTsG/Y4Pz+vubk52wueHccHykyn04bAPM/mObN0Oq1weKpPWVhYMOfDoSYN9HtHljCZTKy3Cfu4jlp5HlAqQcl/P3tL0MTpgUYlvdKR8JK+XOWJGl7MR/NsNqvFxUXzhN6Q/EHHYxPZff7lv3zOx897pOJzeL7+X6jEpxL8kwPsHSX/j/cmimDA/t159k6nY4Z+PZ0AAvsUz1dReO5UKmWGw7qg2ATSFgoFJRIJaymPxWJKp9NW3Wm326Y9AFHidOAmotGoSqWStre3NT8/r/n5eSMi+/2+MpmMwWBSGP5EIhGVy2WD48vLy2YDFxcXFs0PDw9nbIj/1263rUwNadrv99VqtZTNZg35jcdjnZ2d6cWLFyqVSlZpojx+nYjHKQLxgegYOv/O3vueF2yAn2U/IpGIKZexw2AwqPPzczsLBFQcBxF6YWHBlLI4IFAKZWdSEw5zMpnUxcWF/T5JyuVyom0FJIQT4hk5xLwrjs8jbE8Q+wAMopRk3A/f60v2nB3sEl0QP4szNK4KtIABAI14YV++88IY38nY7/ctenPQKFMCdf0LcOh8SdVzAnyBfHhpzz+QIiEnx0n8NiIMJxCPxzU/P690Om0HzxsDvx8NQyqVMlacL3pVfM7on9PrBSDoiGj8HiI6hkJEJSKBQjj0lB3Pz88Vj8dVLBbV6XRMsMXBDoVCevHihQqFgqUbRDF+B3sXiUSMOG80GjN6jIuLC9uvZDKpYrGofD4/Uwnq9XrWNAeKAyGMRiO12207BJD0RNF+v69qtTrDw4VCIdVqNWsaG41GajabttfoYkBEl5eXFvlxckRMKlLsCU6ZErgPjkgW/LuQmsJ1XF5eWupGIENLAqomrcfBkCp6pDoej40EZm/hfEj9UNFyHjy3xj89SUx6RcpEmiK9UkKzHlRX+TmCAGgZLoXnRA3Ne3Ne2EeeY35+fopIyKF8NQIj8BDKD36JxWLK5XJ2sGHqEQDF43Gdn58ba391daVAIKBCoWCGcXZ2ZgbpySlPHvq0yS8aL+fTBn4Gzwu89xUGnIX/7FAoZEreZDKpbDardDptsNJ3yfreh+XlZcViMS0sLKharZoOw1dRiD684+XlpUWYjY0Ng/fHx8eGiiDnMpmMCoWCpSVsOqV2fg+HgANFKZC/xyGSsoHaQKNETBAO+Xk+n1e5XLZBS6w9pcBAIGCHs9frWU8LjoTPZnyAPwgrKyu6efOmcrmcer2ezRDp9/s6OjqygUwegfqiwPz8vA12ArXV63VbE5wA6JODyUEBLXJoOcSdTsfSLxyrT3Fw8LlcTrVazRwzhxPlLeiFIHe9PJ7L5ey54KRSqZTq9bouLi7s3S4vL43H4lk930LrAE6k3+/PpOu8sz/nvV7Pnhv0gvCQz+YzPJXg0z5+vzRFRWGiz3A4VD6fVygUMgcCGcZiAtF5QCKbP/xeWuz1Jh5u+po1Bgm73O/3LRfnwHpHQVT0nZWQRnyOL+NOJq8Un7wHRhWPx20hkWtnMhmLdCh4vfbE8yVUQtLptPEXqVTK8n+vluWdeV5+l3eGPCuVAhwd0YqIzGcDzRcWFoxj4LOTyaQWFhbMaMifiVDLy8taWlrS7u6uaTt6vZ7NziiXy1paWjKjYU0XFhZmom44HDapAPvSarWsTOo7k9mPQGAqOltcXFQwGNTBwYHS6bSR8+122xz7wsKC8vm8hsOpSjWTydjeUemJxWImyKpUKjo7O7NnxvngXHyqSlRljXk+Dg3ogSoTn8fa4lxIq/gs0rfrTZGeeIaPwP6I9oxr8AgL2yEAwO3xTtiPr07xc6A7X4QgiCYSCY1G0ybG09NTKzMTgCHmIeGvE61+jcNzc3N2QDn88B2w9pBhfJEXnZ2d2QPhHUkFKC1Byh4dHdkmedgNHPT5LRvpvThkEp/hS2xECS8R97Vuz677RfWRNR6PK51OG3LwUQwIiFSbmRZEDQw+m82qWCyaShgehrwWZ4VjXVhYsGdbWVmxTlUg5sLCgrHv0jR/zuVydkAhHVOplEqlknZ2dkzNKU3VqTjW4XCoxcVFg/lA6Gq1qkajYd9PhWZjY8OMDGSDA+NQMLtjPB4bYiFFZH1xthxG8vG7d+8qEomoVqtpd3fXUkDIRMrUGxsbyufz5kSI6KSfBAH4LNr3va1ImkkvrvNV2CQHFrvgq1AoGEqlCxlkW6vVDG1xLuCFcPoeLXJ+qLp454qehN8NF0NA9hIJUC1O0I9a8JUn3gnUQdmXM+arcKAwgj9ojqBOIPXUB3/C9FR4DsQbg4dNsOK+Ph2NRpXJZLS4uGiHmEPLInIoE4mERZqVlRWl02nzyldXV7q4uFCj0bBuTxwJC+51I/y9j954TA/HPJLB6D03ct1bX11dWT7PYvoOXIwgGJzKp3F4uVxOc3Nz5r2pgsAxwSOAcEBznU5HrVZLxWJRxWJRR0dHurq6sgPj1YlEQth4UgY4EE9m46iIxldXV8atgMxIWVhX0oZMJqNyuawvvvhCx8fH2trasudPp9O2lqQk8CuQxO12256TPSwWi1pYWNDl5aU5/m63q1qtplqtZofMO4loNKrV1VVJmiGHs9msfT8jAbA/35+CzXi5AcGFQ8H/J5gRMHnGubk5m44Gb0MFRdJMd+/CwoKdEc+1YA/+9/Ic2N9kMjFkCA+ExJ0ziUPAefZ6PXOg19N4H2Rxkr4Fg7OSzWYtYPnAynmg6uQ5Qd6Rr1AoNC3/eofBQ0ejUSUSCdu0i4sLGzDc7XatTBQIBEwTACGH4wkEAlZKRsdwenpq0Bt+IRAI2FyIfr9vQikcBA8PMsCJ4PyIYKQGeFoWmHyPSMSi8704PJ/OUFFg43EqfAZqQhaVkq5vv8dAMSafm+McSAOormQymanAJxyeObTj8Vhra2uKxWI6Pz/XwcGBstmswVoOrBdRocRkXUATHm156B2Px7W5uWldvtls1oRY1WpVuVxuhvzmEPhKBOkbrfGBQEC9Xs8mjAH/W62WcWgErtXVVUvRms2m7evZ2ZlarZbxF14hfHJyomg0quXlZdXrdUupsENJv3X/eQ+QFugGngCRXDAYNM6p2WyasybYccBA7VdXVxbBqeJQ6vUBmedB58NZQgiJc/ZCMq+O9YQ9dgwflUwmrcHRN/LhKOCGvMNgdizf54lqH0y9kJD0R/qy18anCR4Osen8gM/nIYB8OdezzmdnZ+ZcvJwXj0q+T2RmA0Etnq32Tsw7J+/d4SM42ERkNAL+iyjCIvJOXr6MceDEcEp8FpyGr255HoI19TklCAWNDelht9u1MroX7UHMshdzc3O6vLzUycnJzPBmr9pE8AUxzlhBnAjv4gMInE8ul9PGxoai0ahNFUsmkzo7O1O1WrWO4OsoDk6M/QoEAjNT4YfDoZaWloycj0ajhoyWlpZUKBRsulkgEFCtVtP5+flMi73vKyIV63a7qlarikQievnypR1uP1nNR/zxeGx24vUxoGbWxJeEPUEJf8XvBrmyptgeFTuKBHz5ap/vZuefFCz4XFIIT7SPRqOZGwNocbhu1/w37+rJckn2vpTow+GwBSAfoDn3Pt3yaaJbq1caCB9d+DBgb7fb1fn5uZVc+f9UaILBoJXSyAmZYOUJOwwQByLJeAA4CCpGrVZLrVbLjBHSk/Ijkm6QBNwLzwAsbLfb9owssPe+gUBA6XR6Zg4IztM7nOv6FN7doxsW25eqiT5sHBsBWiJNwBnxfPv7+zMHoFAo6OrqyhwJeydNI8fq6qpxPVwrgPNmrUmVfImSXB5hEroB3hHExVp6pr/dbuvi4kJXV1dWtSLl9TwExB5f2Ec2mzX+JBaLqd1u21oPBgM1m82ZkuZkMrHqDEEkGo1asPESdv74Q5XNZu0wUt72DiQcDs+Qp0R8H2w9imDv0AJxhqiK8O+kgQRB0hNfqr28vDQy2+tF+F1wljgabI/Ag10hmIP4JWXHkfB9g8HAzpgnU1lTz4uCLHkWX4kajUbTpj0WEU8O0w18IpdkQArpAMQYv4iNSCaTRupwmMmJfW6FEAr+xJegIY0wBMRBlAX9oWU2hE9BOFChUMga0DhAyI15Fu/tvff3pcQvva5tHJslTaEzPSGw+b5CBJLBEAeDgbHuOEgPeYG18BbBYFDlclnxeFy1Ws16nFZWVjQej619fGlpSZlMxohg1g+yFIfEWsJrZLNZI5AhzdEF+VEAIFDQG4T8xcWF9vb2tLi4qGQyab83EAgom83a2k8mU0GbRwU4HA7g3t6ezs7O7HcC73H4oVDI0IkfUOyVl14eIGkGid26dUvn5+eqVCpWKODAcigQpQHfWTMClk+bfEXF8wheuBaNRu2ZaTc5Pz83BOubLTkv/B5skIDC7/DjNUEJnM1er2d2w9mlkkWBwwcGLzTjC4fmbZdz70ldHJLpSIgwntzz5SOiDQYA1GaTvdF6tty/PCx/u91Wo9FQNpud4UFAEaQtOKV6vW4LD7tPLsymEz3oOvUlS/QTGBWRwvMlROPBYGBcQLPZnIlYOJ5gMKizszMr43W7XbVaLYO+8Buo/zwBDJoi34egxaGRY49GI21vb1tvTblcNpUkFQwEgWg3cMD8Hn6v3x/P9YTDYRUKBUmyChTfB+GJs/GHg1SDPBxjw0HBESC7xqY4KAgU+dnJZGLIhrTGHwoOG3vgUSLrhj14DQ/fjxPJ5/PGBeDkR6ORoUK+sG+CCp3InnsBJfmAR7qAnJ5J/Yj8PHonJeIAg8Q5nKAJ7JU9pPvZo3vsn7W4nroRsDyC9WVubNqjUxzGdVTO/ydlRLEcxgiIgORuMP75fF6tVsvUjpRn/aLwsH5AMYvFF2kLLcuUhvk+T3qycJSRaZ/O5XIqFApqtVra3t5WOBxWsVi06JLJZMwgJpOJGQiL5CsmvozlURR5O5UnSCaqVDjG8/NzQ2VXV1emwqSEtra2ZofgutbGk9o4kvF42nxXr9fNmfCcbOT+/r5OTk5skM/8/LwKhYI1uZFX+wjitRE+cvJ3oDevCWJiOq0NhULBHLwntf0sFByRd+poQNhLODTPffC8w+F0vOfp6amNGMSxc9g8ie8PhX/H6+QvzxuPx1UqleyQE1ggLn3agk0QqalSXncO2C3vAMJGV+QvP4OD4rZD0h1f4SGd6HQ6dgbo2UESANHvKzQ4Jc4QawmXSWXUa6hA3PBZ2D57z3qQsnlE5v0FTsfIVqo2Pv/HOUiyD5CkWq2m8XhspSO8MA/GzwIdgVh+/N/Z2dlMudZHLfJltCEeIfV6PRUKBSPj0CKEQiGtrq5alywOietIeS5/YGCg6V8JBAJWdqTdm5ydXJiRf3t7exqPx3rzzTcN9eCsvvjiC2s1ALXxHpBqoDBSIZz13t6eOp2OyuWyXX1JxNrZ2dHp6akuLy8NAXFYvIKSTfZVC6Iwyln2mv0DSfKcnrO5uLiYkUV7JwsqY9I6Ke1gMFA2mzUxGWjFOzLuiEHVCsfmSUEONgfBd1tDWEPw+8DlU+TRaGTd6Rx+0CUO0Tsq7JLD2Ww2zU5rtZrS6bRV7Hxkp5M4Ho9bGR+7QyKB1IHzwDsmEgml02lrZcBReMeLHWLb7H21WrV3XVhYMH0QCB3HhaPygREb9II79tdLEFhnECnrw/OFGXlHxGSTIdWuVz3YIG8cXmPhy0J8DpUfr+Not9tGyoEO+N75+XmLjP1+X6enpxZJzs7OdP/+fd26dUvz8/M6OTmxmj9ajkqlImmqXaA0jcP0Sj88OwtMD4T31pQO6aJECu77EjziicViRnpSziW6XC8Bg/CIAOPx2KbH+ypOJBLR6empPvvsM4P5RLRGo2FSfD6bvaOa48uUrLXnJTyRiOFLmolYzFrlYPooGI1GtbS0ZAeBn6ekzbtCBCKmgjRsNBo6Pz838Rt2xHNy2EAHPl3l83F2Hqnw75PJxBoVcXQ4DZ8CRCIRi94e4fhWEdAin+U5Oe5I9lUidD7YNevGZ1IZo1pGYMMJcfYWFhbUaDQMGbEP3uFSrSTFwyEhv4f3QFWLc+LZDF2EX402YN09serTJbNpfsCLYPwmApF8dceL03hYpMI+R4XoIdr5qNjpdGyxyLWq1arl/d4DHx0d6eLiwn6ecvLCwoKN3UNav7CwoLOzM9sgeg+IYEzpAmUNh0PrG6KDE0OAy+CAceharZYKhYLJyH0ViI3Ew0N6UvIbDofWAsCB4Pehg/BaCcRzVK8YY3jnzh1NJpOZjmCeE+QHFL68vDSnhVPFSbDn/vD4FnR+FuGYJxPZe0+skwLxd163AbGHU8ehM5uUShFO2u+FF3ERHWnCxKF73sGT3di3F/phn746RbDwehM+l+gNkvWlUl/hQGcCh4Tj9JoPPwKSgJfNZiXJJt1f52xYQ0h6HAqaIMhptDCQyNg09uz1Ypw77Aokwn9j1wQZ9ttzciC48MXFhZaWlgwesil4a1+bBqJj5IiceBicBd/vJbm8jDeqVqtlEScUCpm0mI1nIarVqhkhB4WJUdTQicY4umBw2nhE+RDkAYOOI+l2u4ZEMD5PIJLr8j79fl+VSkXB4KsrFPyaYWzhcNg6bzkApG+w9hwk3on3J6WkLJdMJu1S7GBweuv90tKSTk9P9cknn1ha5zUPOPlQKGS9MFTicPwYFNwKfATVsUajYZGr2WzayAKvrwAxsbaksr4ciZF7gtaT9FSAvDYGZ+PRG7wcSA9E4h0ohg7qpeqCI6f0yvtyoEmNcLQgK4jl8XisxcVFi94cIIIeaW+1WlWz2VSz2bT0ttPpmIIZRMsaDIdDU+fivH2HMuvHGeOgsz68P+/NeUun0+a00N3An/AZo9HIqqCIG/l/NHmy/pxrUh7OujkSqgdEDy/ggUwDIuMxaS32ajiap87Pz+2XXi+/YYR8ebhMt7D/PGBZtVo1gx6Npv0f6BLgCngHhhSHw2F1Oh1zcO1221SbLCIenTK2rz5wWCTp6dOnJvRidmgoFFI+n59htElTQHOU8qjU4FDhKdiQq6srdTodi/i/DVWAqobDoZUGB4OBlpaWDKGxseTAkHbXrwalZMvfAdHhLGjeA2HyjhCQ8GU+FfZRC+MionFYiXg4T5/esVbn5+eWChJN2Qf2hVI1gQm04pXGoAJIXy8P8HqL647X/zzBg8PDoGrP5eAgI5GInQ3SrF6vp0QiYYiEUZNUgEA2vJcnONnPk5OTGbU2Toa0Y25uztIN0utAIGBjEzhjOGAQJmvviVeCJkUCAjoVMF9lux6MwpAnPmJ6wsmXUTEEzxZj7Px/zyqzAPxi8l821/fJEP2vrq4sAmPYtVrNvCGMNC+CseI0KB+GQiGbyMVBRB8DxMvn86YxYeHhW3yF4PT01FKuer2uQCBg0naQkyfWcBrAUw4VxoCoDKVnrVZTs9lUtVo1Y4eQ46DA1aCLWV1dVSKR0BtvvKHV1VU7GJQg2VdQEhoZ1L7+/+FgfG5Ph6mP0j698zflcQDRx1wPJLwDtuL/noNDDu85t0QiYd/rRW6ID0Go2C+jFXAsoFT2yOtXQMX8Nw6EwzocDm2GLEGDyhRokudizRCYUZ6Fc8CWGo2GpfSDwWAG2SCa9A670+nYPT1UUamUQoYHAgFLn+Gz/Dwbni2ZTCqZTFqHNWkuqThqWd8bRmsLiJxnu55qBoNBhZlD4Uk2Npl8Em+JGg+k4stf5J0skhef4ckwABaZ74EIIxp3u11zTgcHB6ZCBCWcnp4agYVXZaOYWoYIhy+QlyTbQOZ0ZDIZtdtt7e/va35+Xmtra4YKTk5O9Pz5cy0uLiqXy9kB7/V6qtfrlqOTPkDEsdh+7UBH9MoQBQ8PD1WpVHR6emob6VHbdd1Ls9nUxcWF0um0Qe2zszNdXV0pk8kYdPeoCj4gnU5bFGYvQJ0YNIbsG8SoMnGA/AHxzoJ0jMjFZ9P5DDFM0CIggFTj8bjxBfxOvs+jCN4L5AyqxdhBW3AIrB92MJlMDDl4Ivd6tCZ9xUY8wegDbr/fN45rMBhY4PGBCZIeopW1IEhykZW/g4h3JEDwbJxBgoNHcbwzn0/jIQpiAjaNn7w/aTdlY2l6XxUBzVe1fICKRCIKk5/6L6IKAhXQRr/fN5muJ3j4QD7U53W+pMwhBi3gMHA2QGYqD3yGF8VAdjJIiJ8dDAY6ODjQ3t6edQ6TMkA4NhoNJZNJ87xM6bq8vNTZ2ZlevnypQqGgYrGo4XCoi4sLvXz5Us1mU3t7e5bK+ejinQdpAYeUfJSITrq2vb2t/f190yT4DlpQDM4X3gKjkqSjoyOtrq5aqe/k5EQvX76c+T7vxEEBvlTJF3yRL/Wzhzw7JUf+cI0E/AOoEsTKF4HBw2CvqfFwmgPtv4fnImBBNIJecAT8TtARRO3CwoKlO54XARX6JlAiLXoJ1jCbzc4QrH7YEc/FmoM2+v3+jObCUwPsA+vq75NiDfwBh+9hfIGvGKEGp5IEP4VDZNxloVAwm/cp8HUhHsjU28BwOLSAzNn15f/Ly8vpGhGFvOHyIvl8fibywCZjpF7I4zX4vjTkDXc8HiufzxuhiuECQeEQfKkUdh4uZTyedoM2m03jN3gefx8rzg5kcHV1pbOzM9OLhEIh+29J2t3d1c7OjobDaYPZcDjtfXjy5IkkGdKhGdCXvq9zBEB8jA3yCvSHqAxI77kNmt18CumhpTTlEXZ2dsxBXFxc6PHjx0omk8bWwz1w2NkTUkF/SKXZhjIODgbOc4VC09EDjAsgbfXEIF+sDQT9dXREeuGJfQ4ASAT0QBGAILO0tKS5uTk9evTIIiUOCwfmeS7vGDmMPs3DQRL5QYDYKagBJOrFXaSMrKd3ZHAL2CM/wxpghwRT0nocEvvjEQCchy+T8//QViG5H4/HdvF5MBicmWAHCgQZ+jk2XrSGwwAFef4GOwsEAgrz8r5KAZkEDOMHaGYCZeCh2WAcAj/Pgg2HQytzUiFh4/lZ4DCfw2aMRiMb0MOhBYZLsguWeDmgGZAOVIPD9G315LSJREKVSkXHx8cKhUJaWloytr1arVr5k6sQlpeXjeAkJ2ZhyT0hpJnLgRGybnh6mHdKsBwYDhd8gy8rQ8xy4CqVihqNhobDoU5PT+1zvEiO33txcWEH338+CBRkQVpLVQb4TO5M5AUleCfkUxeQITbkFdS+EuAFZRgw6zQYDEw3EgwGTWTFBHxSGs/H4exYM+yc8QZof3zgotKGfWOLOOTrHArpvSed4UWutwEQFHFqXhWOc8KB857Mc/VVHCp7ODECxGg0silnlLJRhOM02Avey9+SEI/HTcjpq4s4D56Ns0qgoFAR9iXIeDxuCkuiK1/dbtdyRLy+153gVSGCfJ7PF44GEs2nKxgkxo/gioHHLACGBuLg2ggiqK+hw5gD38j36csg5aHUSoczremdTse8OATrwsKC5ufnlc1mzQiIrBh8PB7X48ePJUmvvfaaRQgfVagk4fBardbMu4Ou2DCeAf6CvBznIU3Vr7QOJJNJLS0tmQNij9hTPgfUAxIAOXlHwrpTrr+6uprhVDx7n0gkbIwBh8WX/nGmkJNodbxWA5ITR9Lv982RoYoG5fiITiogyaoNpCLX0RgoB4IWtMTv4J34Pr7gqXBcrJ3n33g3DiUHGd4FR4PkAU4lHJ7eYcQfzhvvQKECTpJDzTrgqDjogUDAEA52CTqmVI8dgEpwTiCtaDRqV5p4ZAzdgOo2zCEgQjF81ueM1LfJ21hIvKU3Fl9O8yI2foYXHg6HllY0m02dnp4qHo/bghIlEB1RdsRwrkv3+VwMmAjLZ3C4fCmT6OJFa/1+34hT3o1nv7q6srEIeGcvR0cL0u12TWuCApe0ptPpGI8CKgKV4Ci8Poa1QCFLKoBR4Uw8PKbDlJIf6x6JvBpGzGH2RucJVh/p+/2+Li4uVK1WTXnpm9HY64uLC5XLZUOCXv/hUyv+yfDv66VWDqwPWhwWkMFgMLAZwwQW9tpD/slk2oB4cnJiKmeu88BmsSNsgbTGI3K/HtfTOpwJqJh9Zv297UKOg2a9Y0GD4i+gow2BCXOgIK8hAVWhnPW9TDhKzocHB5CynC8oANAi1SA+l+ohZwnnHQwGp017nhQ8OzubYe4hnkgHMA6+cBqeuPJ8AYsMYvAeFGfEHa+pVErFYtEOOA8cj8e1srJiTobN4nM4zMBDeIZQKGQcCocF7sCTUhwmL3DC4IvFoh1oNAMYjVcDk75NJhMdHx+rWq0qFoup2WwqlUpZ+oBWBkRG1YrPz2azBik9rM7lcmao3vFgrJ51TyaTKpVK1tmLkYDISEf5Od7Xl2c96vN9OBiSL+37dI2UkIgGksJJ8O9etMX3sR6sN6IoSdYD5WH34uKi2ZM/YKSRoCY6prnCArjuS/weibD+OHU4BSonrD+CTC9hoGqF3SN0xPmjf8KJM2IBO+RZ+D1MZysUCpamsU6eC/ISDZ7J8yw4GM6ql8PD+7GG3vFA5pIWY+d8oVUKw2AfHx+bweNYms2m5XoevmHQnifh/+HBcUSSZrzyxcWFRfXRaGSpBApCdBonJycqlUrGmjNbhAUnOkiyWaBASF8W9reyeYEdUYMckU3GUcLhMEmdcqKXVHOwqHIRaWmYApmk02nLY3F6qVTKhGKLi4vGzqOExWEC80FVnsQmOq6srNghyuVyKpVK9jvhEnz5kzuDcXxEFZwKv3s0GhlTT+QbDAZKJBIzQQXjZJ0g5dlzEA0/S+MjiAzHdR2iE0jgDCizVyoV+92TyWSmxQP7JXigJCVtxpGBIllr4D1rRqoNUoE75N1xlJ47IMpHIhG7O8kHPUrJiCYhr3H0zN2luQ9E4jvXcYocdhTF/F5QMnvnkYkkCySsN3YbDoftBgSPVBhzyfdRcUUhzL6HOfzb29taXl6eYdMbjYYdelCJN2IcCZHGIxT+XC99AenG47G1jFOr7na7lu/v7Owok8lYnutLvXwO+TAbiJPjyxNYpGkeTTCns9PpaGlpydIeNpT35jmo5OA0J5OJ9vf3LfJ4zoDnPjs7U61Wm+GOYrGY1tbWzAjW1taMoKX2zz2swO1araZ4PG7iOfYpHA4rn89bPk6jXL/ft4lh8C08U71eN4Xv1dWVzs/PrRoDV0KKQb8NqSgNYBgnjgiBFeV01KDwHyDdUqlkaCYSiVhVDg6EqoxPlQlE0WjUoD/RmsMPR8XcD9JAbAaS35c8gef8XSKRmCl5k8L+Ng6GaI/IEUePo4EgJdUlnSEIcZk6UgLIZN8CgKye9yL9JJjROY2tgsZYH18E8OfFB3EcDsgX6gLU6lMd3tUPqrKqDQtdr9fN43GgIH2Iimj1/QdwqKLRqCGZ64pWIDO/i42H+PTiNci3Xq+nZrNpjsMTjEQw7zTwrt7Jjcdj05GwiD4t86U4yFMWHcSFfJuavK9sIECCYAQGgoIgU3EeGAE9DBgPM2pZC6IKzD3T9dPptBlYKBRSoVAwh0GkYMQAkBanC/8C0sQo2+22Dg4O1Gg0dOPGDcu3cQ6soa86YAPodfyFXLFYbEZ5jEMCMnutyMLCgorFoqHCSCRi9wqRPrE/2AE6CklWaTg6OrKrNEiLCXJUmThoHGrsFTSAmI4DAsqBsJdkFSxIfZwhqQ7pMSknToExlNh9OBxWqVSyq1j5Pt+3hR1OJhMLRCAG9q7f79vdSF4oyqVZONlOp2MtBb4kj34HhatHddzXjLqV1gXQPGkQiDHMoePgeq6DvIg+Al4O9OA3B53B9foyAhsM+vz83JjtSqVieZfXnzSbTU0mUwUoTgYHhBPzJWCMzXM0IBEflTBiz5fwdxBJOBVPMNXrdSPC4F0wEMrB5XLZohoduj4CzM/PWxs46QKMvT9w0qv5pqx1LBazBkAOJWQySA2Y6TVBOFCmkiUSiZnqV6PRMAKS/UFKPR6PZ2a5QBZScev3+2ZcHHwmtxFYPHGKiIzyKl/9ft8cH1EdgRWBw/d2oQOCZ8FxXl1dmfDKpzjwOzhArtygJMsfrzaF4Ic/4D3gaHDcPoqTLviGOvgDEB4pgm+XYE/5fn4GHoIgRtpIik2QpdIC1yNNL39PJBJWGQoEpjc98Ls9/zEej2ems/EsIGNQIt9LCs1Zo9IXxujgEDhwfrFBDv7Q+koFCAID9YIVDj8vPRgMVK1WNRwOrRvS6xk4zETURqNhWg9IIvJWL+qBY8FJkMfxjBgKcnsgK7wGOS3vR15MPwYbz6HFOdDI5clhui9BZBxStCekIRDBvBdEH/B4MplY7wTPQM8JURxCMBgMWgs6DhYDhtANBAJaXl6WNC0VMyQpHA5rfX1dKysr9ruA2efn53ahFg4HgwIxkCZhkKA2LxbEoWJTHq15ZOCrASBegha2cXFxYQgag8YOQR9e04FyGF6M/fZIAKeNM+j1ekqn06pUKvYOOHjeAaeBswcF9Pt9NRqNGZvxBY1Go2GBkbOF6BIeiag/Ho/t0jXQLN9Hquq1YCBIv1+oWikpFwoFK/2zTkz64+yjmvYjJvl+ODfOervdngrSeFGf++OV/CKwYbDHeCbvjDg8pEee2ccbEikzmYzq9bpFXwyTHBNSjmcYjUYzhBjPQlkXzgAijr/jgPnyHs+LcZ6fn2ttbU2RSET1et0MkGiMfmRhYcEIK5xKpVLReDxWuVy29IF7fKj+RKNR5XI55fP5Gc0MaA1I7mE9RsRBpUmLSIGT4Ocl2ed0u12buUokarVaCgQCdv0Dw3Si0em9MIPBwC6rQmhUKpUMgWIrOOJ8Pm+pA5UQ7yxwHuTqjIQEghPxfVmcFAnhFQ4xEAgYQqU0y3N5XRIkMAGMIOIjsu9ToRrC85Ke+n4pggSohveDP/IVPFIk7JOAxX4idyeAZbNZQyG+ckY6KcnSYt9OwPfigEHhOEX+vy/B47xYa1o0isXijCiQNWRfOUsgN8+98BXG+FhMIL83GgyHA83P+J/1hCpGz/9ncYCW5NSoXRn2y/ej4eAAepUki3ddLckiEqlJj4gY5+fnajQaRhgRwWu1mpFwRHZkxVSLSqWSIpGIeWwOFYb1/Plz6zSm6YwNQFrPZUteh0P1hIMP74ATOz8/V6FQsNGSSOqByewP+ToOHvKXdSoUCjPTtYhAd+/eNYTCrFiMFRk6zZF8NuVxIDUHnEPDQYvHpxPvmSUTi8XsjiN0EjgW33DGz2Ow5OKQ4nA92B0OgdERnrfgi4ZGb/w8A5yOPzBe58F5CAQCFp39c1FQoBeGwIGYkujuRw8Q1HCgBCTmE/f70/4pKk8gk3q9rmAwaAJMHKWvUDHbBPEgKJuAAuLylbpGo2E3XOL8Id75XN8pTfDyQTLMN/t0xKvwvFPh4PLHOw7uxPW/6HqVB++KUhVGGo9NRKCRDQ4AZNRsNu06BgYbQQACk0FC3F8sySoJQFH4HER2RBRyWN6B4UsoTunMpPzGAaY3olarKRAIaH193TpzmSFLGVKSHZ7r7fw09ZGHM9eWO1s4aERVPstH24WFBSOYgfsgMgYTwXn5qLO7u2u5PhGYr1wuZ4YFkUpQ4dBjO4xiwDB9WtXr9eyuXCI6TXXoYhgfQTrjU1dEeiAhUp/Dw0NFIpHfGDsA6kFe4MugOBzem7/rdDrK5XJGhOI05+bmbC8hPDnA0WhUe3t7M2VnRHmk6b7Z1X+x3pRu2W8coRcsttttQ5BUsThn9XrdPpPfATjAJnD8vkRMCuTHT8BrctMi+wgq4vdyG6KkqSPBQUBM+TzekzjSq9ZunI9HKNcrOtdfjO/n8BChTR0XftUsRO1cekUuslHkshCW9Nvw/2hcIkJw+TaOhRGMSNo9ZwLjz0bgAFh4SEHeG/KS9M+rXzkQ/Jwnon1ayIEhUrEODBnmMJG2sXY+TwWqsl6+zA3qazQaM4pXjJfmRw6afya4LARLTDmj4Q0nSlsC+02JETWnX0sMHHRH5GeCOgI1UNrc3JzdG4RoEPTgxzfW63Xj1nyJFEdH0PM2yjvzvKwraSD2wf6z76Af1h1Ewz5BcvOcfm0IGDg1dELoPjiDEOocfnROVFN4ZgKARzDYL89FqZy1QK/lR0T4MjdOzwv3sDV/tnm2sEcfRAZ4jEAgMNMHwUMiWOFAeySAEfJAeFMcCF6MPIzFYVEmk4mJw+bn500LUalUlM/nlUwmdXFxYd2/+/v7WllZUS6Xs5waZSsVCX4f6IfckbSBg0cOTmQC3j5//ly5XM7yzqWlJRswnU6nrWJDZQTR0WeffaaLiwsVCgX93u/9nm0Y4rrxeKydnR2bddrtdrWzs6O1tTUVCgUlEgltbm4qEAioUqmYo2e9qS5JU/h+eXmp3d1di1zpdFrhcFg7OztGBCOs8iMPCoWCstnsjIyfdIzqWTAYVKVSUblcNo3BkydPDD4PBgO7fgL9DA6Xw9rr9Wammx8dHZmjJLISufk7goknlcnRmcsSj8et3QKDJ+2RZOpS5oFcF8FJ0+5uSSqVSlZg4GA3Gg0LgvStUBGBl4lGo1ZV4iZAOrupQkFeU36mi9wfTM4hThhHgchNejVr2HMyaDvg6DwAwMHxPjh/tFGexpBk5DrEdyAQsHua/Pfz/AsLC9Ob9jiAOAZfcfF5lkcL5PFsBnCM76e8BBnnp4k1Go2Zej2ej5kcKC673a6Ojo4kyZSS3uEMBtMLs3z65QU5hUJhhkTGc+Msf5vkH+SDzoM1gNAlX2czPXeDvJ1o8e6771rlBS2OZ/JxuPF4XKlUysrK9NqgduSSLAgvfhbH4qtDRHkqQIHAdG4F/+T5PSmKocND+CHMrB/8j3fM+Xze9sQjFtSOGCaR2+tTrpfnWRcOOA6AQJPL5cxxsE8Yst/DYrFo1Q26hNkn9obvZ01Ho5EpgUl3IUALhYLZNuVv2jZAjgRRbM+LMnHAw+FQd+/etUDAXmMD0iu5OTZAKRx+hd9DQyuVS/Z9d3fXuCeqhJSRqcJwvm7cuGHOGOfAunuhHiiGZ+W92E98QphcGqiN6IbDiYckYgSDQdXrdXMOKB0hangg3/CF5DgQCJhuBEfFQQTiYlh+oXznJ8/nO0SpGOCA+G/ueWVxMGi6R+nx8eIdHCvONZFIKJfL2ftLMugdDAbt7tR+v6+DgwN1Oh3duHHDJMbk9sxABS5zKJeXl+1Qc4DZHNIdyEwuL+Kd/UDoUChkoqxSqWTkM4hjZ2dHZ2dnhgLT6bSy2ay63a6KxaI9GxwPpVjSCj+ng4BTKBSso5SOYP4fg494PuzDO/dyuWzlaiKpr6CAAkBFpN9UP3DM4/HY7o8mDSXV9Gk6a0xFhnYEUjSfQiD+wy5xFCB0OCP2aDx+dVnU6uqqoXm4NNI7yrsEA1/oAN14NTLCMM4nqZLns1jnfD5vZ5CUj2FHZ2dnGo/HM31fnny+LnHwKIU1Zx180JW+5FTn5uYmeGrYc8hQSlIIb/CGCGYQ5ngFIBcd4dEYVuQHEZG7Ec0g/HA+REj6Z7wICaNbXFw05AGpRVNfv9+3e3HPzs5Mco2xA8VPTk5+455byEwgYDQa1c2bN20GR7fbNeSE5mJ3d9eMMxQK6caNG6YZgSDOZDKq1Wom4GLGio8GGBXrD2Kam5tTs9m0S57I13Eq6DfYF2aTENEYEclcUMqJOF4QpXf8xWLRekXm5+eteZFqEWVmUAVOnf2MRqM2hV6SRVieCV7FE/Q4emA5JVPIRNJE2hkgP9vttvL5vNlkMBicuXKENWW9cRrYFciY7mjOAU6QZ2etIVPhaLgZcH5+evMhojeCMOmcb5TjgHKASVFxXCBAH5h5NtYMZ8o0QU80Yx+gY7RKBDdSOVIofpZzlEgkTFzoCxjXnbyJ9zg813M1uiR5aYhAFpHozVWVSH5hj0EdlBORkTPbwNera7WaRVmmfEFqIjn2rHGn07GmPvplJpOJTfhmABNVivF42tfDgYNbID0BSuLRvRI3l8tpbW3NHFS9XrfyLu93dnZmStZgMKhisWjpCH0TyWRSa2trZtz8LNUjDiUkHO+ayWTstrpkMql0Om06CmArh47PY+bp2dmZMfL5fN6a1zBgn77xzp6D4X2AupJM8UiJl98NsgSaE8GurqbXmXIPEKVLqloYOwef7+cgoxambI2mB4OmVD8YDFQul5XNZo1Eh1+h0gdXQ8qF87o+UzWdTtuIAtYF9ELq6zUszHO9vLy0gVOkkf5M+U557Mtrfvx8ZJwJKCAej+vw8NDkE8jeSY1os8COQKOUgQeDgQqFgpHWp6enMxVVgtB4PDY0A+3Q6/Ws6gkxjtaFdC8MV+AFKcDuSCSi5eVlK33yYdls1mrqeOtKpWJaCWAT/04EhUvY2tpSp9PR8+fPdXJyYr+bNKDfn868KBaLWlxcNAN/8eKFydQRE62urhr7XSwWNZlMbB4qZCGL4SMjhB+wF41GMpnU8fGxcTuS7EpEStdc40kFYmNjQ4HAVDXKwaPxD1QH9CaCEA0xRqIwvxMybm1tTfl83gwbR04lhcPCoQK2oouBX8hkMtaXweGNRCI2t3ZjY2OmpwaIjzCN5i0iMUiFaAZ09lF3ZWVlxkniYIrFokFzupMpXZdKJS0vL+vy8nIG5aH1AVGCJCC6qXKxdgQyHD68CZ/F30Oij8djK/PncjnbB96V72e94Q1xnDgO3hdHxTqS5vDe0qsOcqqj6LEIbD51QGfDF07WFzf4woFT9cFB1Go1Q74or4PBV1J+zivPf3p6aqmQDzAgTtLIwWCgMFHbV258+ZCI41V3vAB5GwZHtQVEwJcXtfBSHGa/eKRKiHLG47EymcxvLCDfw10zbA6jCyGC19fXjbuo1WoqFou/IQyj7LuysmIRnp4NGHG8+MXFhcniiTogG6+FIBWkkuHr8ZeXl5ZSLS0t2R2xqAsR6s3NzalUKlmVbGlpSfV6XaenpzP3KXN4yasxWN9OAJoBYVxeXlqfSqPRUCaTsWoMe4Mjy+fzpnbFsEm9fJ4NMkTj0O12DT34viguekerwLOyNqRQkma0JqRkoAnQLIphSYZ2GCxO6X9hYUE7OztaWFgwErtUKikUCimXy5m6mgIAdh2JRGx+L6ia1JxZMwTcpaUlczx+pCd7CTL2Yk0iPg4W8jcWi9mVrbHY9EbAarVqVSAv6ycAB4NBc5BwXxQjQqGQXcPCz/gyP/YEqRyJRFQoFGY4HJCbH98BnZFIJKZkKwcUb8vDYoQcevItnAg17lQqZYQk6lUvi/fG2e127Y7XhYUFHR0dmZF5R+F7OTiU5XJZxWJRlUpFJycnymQyOj4+noFkkFGnp6caDofa2toyJwdBxmKQSkiyPBwiDWOihM33tFotxeNx5XI5KwVCvvo0CQeKkVQqFe3v71uey0VKdLNWKhWb/5BKpSzCHx0d6bXXXlM0GtXJyYk5+uuENsQ1Kl8OFX9o4W80Gjo4OFC9Xtf+/r52d3eVSCS0sbGhN954Ywb5cBkYxsxVqEBmvqje0LfjiVR4MuA1vS5oUTgQviENlJjJZHRxcWFDuiFwSTdAfdgJaAVujcMSj8dtVAPRFl4M8tNXdQ4ODiztg3inCkKqkclkFIlELH1eXFyc0VsMBtNL1Gl2hFPwBziVSkmSVVKkKQ/BuxJk2VtKyP5M+XPDegQCAVNjc35okaBKR9q2uLhodEM2mzXCFUoBZ+j5SMr/3Ob35Z69In7IqzwSoTeEBfKEJAZ9dnZmURpnwr8jrSW36/end/kii/f6EwgvIC1GwsNPJhNzWjRuNZtNU7l6MdDKyooRpOTY1yEgv4uFoWX/vffeMxVpIpFQq9VSo9GwrmUqFWdnZzo6OtK9e/cMnbBROBYG+hCNDg8PlclklMvlLO2C0wC5VatV67ru9Xr69a9/rV6vp+XlZaXTae3v7yuRSFgqxcBn+lQwBhCUH2Hwy1/+UgcHByqVSjo7OzOEeXBwYBoHUiG4Dy4HhxMhuABtPZLFuLAhHAQHdTAYmJ6o0+nYcGz0N9KU86Hhj2g8Go20vr5u3BkOKxSaDjuCL0AByj6xFpR3QTXsK85fkpVOaeiLx+NW0pVezbzBIVK5ImgSZHHeaHf4GdJBgpOft+NRHpwNCNePqpA0c1sfn0+XMGcKvmx+fl7tdtvQBik4duKRs79uIhwO20Vzfm88dwJoiMViU0QCIYT+gEiNEhFixxsNyIGNIip7D+lVr+RibAi9JBxoDhIEa7PZNGgPIXV+fm6ir62tLZMls3EImmCeIeWIojgMqgdeAYsXv3HjhqGEL774wkhcZozgjNDCNJtNHR4emjScAUQrKyu2iclkUtlsVsfHx7YJkmxIDPkukZSUBKPh4qyzszOLaJPJxLqogapUz5BD00NBA+HJyYmhBCo4GJIku7hrZWVlprqxvb1toxtxFBhbKpWy/cUm4AkgFxE/cdBisZhWV1etP4YyPcI8XxUslUoz4ivWZ3Fx0apTiLWi0agODg50dnam0Wik5eVlk4cD1dFYSFPBom9dQFeRy+XsMJNWex0HqZi/kpXyOe0MXt/EXhJkcXqgPwoXl5eXplEhGzg/PzdxH4pYUm6QEVUwRkCgZoVw9upoEARnDseDEwZlAxr8Weac8fxwX+FweCqR9yUo3xyFwW1sbBjT60VVQDY8Jy8kvYLbpDSo6Obn57W5ualMJqNPP/3UvLNvGPLe2N+qjsAGWP/OO+/YPApKdxCJqEf9s4bDYbsThHzTl7bQuMC9hELTQU9nZ2emmcC4SO28UhJnzCYkEgnrCEbPAenstQpzc3N2sMnNYdtXVlYUCoVMsk0JFB0N+4FzJD3AsIhGXliERH5xcVEnJydqt9taXFxUPB7X4uKiTe5iT0CW4/FUOg76pBpFOukVzEBpDikRmxI9z1EoFCw4+dYDVJT9ft+ifrfbNb6GA8isFkrhg8HAJsYFg0FLd0FbVAaZ3+orODhEkBZK0Hq9bgeQ4ENfT7VatUOO9AG1MzIBoriXwYNYT05OLCWD5/CVLN8vhiMIhUImaYhEIlYhJFXGYXtx5uLi4szoRYR3lIQJbN1uV9VqVdVqdeamhPPzc5VKJWuN4FlNkIY37Pf7WlpashcfDodaXFy0W+6BtBwY761WVlYsbUGKDI/ixTcYKpET8gsvTyoBIuBgoCkhdSAqEcELhYLC4bB9FocJMhJIikiMgwRZiCye98QIV1ZWZm6V9x3JIIlSqWRlRc9k9/t97ezs2AEDCVxeXurw8NDQ0erqqr7+9a+bMXoijs2iiubRGcOA/JUCo9FIi4uLVp2Ix+M6Ozuz5yc45PN5q3Dg2IrFonEhoBoIWiaHke7Cb1CFqlQq6nQ6WllZMcTF82SzWV1cXBjBDEnN91KS96X4q6srVatVqxJyALkfOZFI6MmTJzPRHSTUbrftGo5gMGhpEVGWw48gDadJdG82m0b8c2jz+bzdNkd65svC2Nry8rKlF7VaTbFYzJoUS6WS2WC1WlW9Xp9R3mKP/X7fKpVoqEDPcIG+H6zb7Sqfz1tjIdkE9uLTJPRcpDKkRf6SddohCFqkP7QKwDFiFxQxwhA9+XxeS0tLM/fIMPgYNpmyHuVcX6Ggkxf+wHMfMP4IXeg8JV/0dXS4hsPDQ4tERAOIJgwMJwWk9qVQDAhFKxuFM/Q1fno1EK3xPbTR867hcNgmUyElR+OBU4rFYtrd3bVZrvAWRA+4IZzN06dPzahhy6nV+1ydSggwms29urrS4eGhJGlzc1OhUEilUsnQHHDVk2Q482g0aoiCVA3nQnWLGSp0CNdqNTtQEKoohamUUcYej8dm5CAKiD/Q37NnzzQej1UqlQz9ZrNZCyAEAcrdq6urhlSQDoAQgeggqWg0ajwIvUQ4dQ4L6ZVXeeKoCR7wdTh0uCXEYXAR9Xrd1MOgXBDfZDLRjRs3rIJ4eHiocrlsaxuLxVSpVIwvgbPs96fjFLkagoB5HeUQrLGj3za3NRQKmf2trKzYjQ2sRzAY1MHBgZaWlvS1r33N+syokPV6Pbv2FtpgPB7r+Ph4KkhLJBL64IMPZqIoakbgO4vhUxs0DZeXl/bfpDCkLL5dudvt6uDgQPfu3VO/39edO3dsgj2TuEqlkjXrLS8v281oHEQW0OsEQqGQeU+YZ36GdASHgyGjaUHizqwSiMlAIPAbsJVIA/E5HE47Y3F+RFsQ3Xg8HXbEZ0JaQxayNnt7e+asNjc3DdnxnEQMnAnvHAgEdHZ2Zk7g6dOnOjw81GuvvabNzU07zERnSXZRNcgNzskbI9Ca2a7pdFq//vWv7UpI8mvK7ehgEJJRmudQItoCdXa7XeubYYjy+fm56vW62u22bty4YSkzUL3RaGhxcVErKyuSZGVh7BEZOYI9StkgZaTtvV7P5t5eXFyo1WqpXC7P9G55sRf7SeMoVRVfdPA6C/Ydp3bz5k3jtkAR8XhcGxsbFkgfPXqke/fumdPf39/X/v6+oZHV1VXjE+fn5616RbAmq8BplEolpVIp085wcwCoBccJskSxDQ9CeoM9+wpdMDidX3J8fGwzg+PxuMKxWMyUnqQJwDtKfp7h5UCSsxEx6fdgQI7viyCyUlKlF4MqkTQlLxOJhPL5vKLRqO7fv28vyO8CXUBCURWAWPQDathQT6RRwWCCFZtxcXGh4+NjQymIlPzsEzgTBHZA7na7rf39fZVKJeVyOUs5UE1CgpI/Ey15dpxvt9u1lKpQKFgkv7i4sGn7RDnQIsiMSgHkV7vdtj4cUAjIg9mpkOn0JPkhwoj5KK83m027j0eSyefRTEDE12o1cz6Li4u2b8BhxHjoKiaTiVZXVy0dIHVj/TgckrS4uGhpXz6fN42Rn+eKiI3nHI/HpiZ++PChQqHQjI6FSgXpFVUIf90nIr1UKmW8hufHKCFXq1UNBtOBUxCW+Xxeo9H0ShOm9YMCu92u8UDvvvuupX+QnwQBAujp6amSyaSlPYgEz8/PDdESxNl72gpI9UE6rPPx8bE5p9FopKOjI4VCIe3u7hoypAxMOgcJj+NhhEeYGj4og01PJpN29QFkC+VIoBsVjdXVVVUqFYv2yJRproO1LxaL2tjYUDqdNqgYj08HCt25c2emg5SrGeAdhsOhCoXCb5SYKQMjEac0Ojc3Z1dbbG5uSpL29vaMGDw7O9P+/r7u3r2rubk5cxpwEsFgUKVSyQjD4XBoakAIQ/JWmuqA+/7mwJs3byoajVol5Be/+MXMfAzILg4MjhBnUKvVrApDfwylOTgXeJh4PG4VkMPDQ+vxKRQK1pHLARuPx9re3jbSEvWsHyfAvk0mE928eXOmWgHSQ+9Cvj0cDrW/v698Pq+NjQ0jfEGTfDbXbRDRCAb+7l2IYqIwQQ0Csl6v22gJyGD0Qqenp/a+iURCi4uLxicgC2B0JqIrn2rzDOwHlSHv4Hh+ojgIzZdg6TaOx+OW5hKU9vf31e12defOHQsItCvAuyGEpNmRvi5sgJYS9tcXSwgU3pmTwpBBjEavhmVLU75kcXHRHBnkMtTGaDQypwrBL2nKkZB6jEYj5fN5Y5K5iIgckL4MauJUQ0gzyEUXFhZmckWgFCTq/v7+TO0e5Z2vwcPTMNn+7OxMN2/eNJIQDQKwkyZDYDfe/fzLC7h4P0Yw3rx5U6lUysYtghKkV3fcjsdjHRwcaDKZqFgsKpvNam1tzbzy0tKSlpaW7OpJuBhEc6gqOdhEQkqikkyS7ZETEY61JkLBF1CmJIVjfflskAgan4uLC4PsIE3SK6I1svR0Oq3Ly0vjingGKjXsDZUcqnMgW6Ie4qjhcGht9Ogu/OHkThdQBD049XpdjUZDjx8/NnKbHH19fd0QJAgHh8QAH5yzV1NDlCK19ypWqjZoo0hpfBpweHhoaY+vkvlKYyqVUjgcNm6GQMMhJJ3ibuZWq6Xj42OVy2Vtbm6q3W7r6dOnRooOBgObh0KqiNPDvlFN7+3tWXCJRCJaX1+3Z0TIx/vxjtws4Pk+0klsDwqD0jJKeK/nCbO4qEFhfK+urvTgwQOlUimtrq7aA7HwXv6L2pOLkxhuS6oA/Ds5OdHu7q7W1tZmOAAkxeFwWHt7ezONfzDP4/FYz549s3SJTlpKugsLC9rc3LRem4uLC6VSKbVaLR0cHCgYDOqtt96yA8VgIjYXVMbmx+Nxm7dKcyIsPOXmYDBoUFaacg5nZ2cztxP2ej1L9yBCT05O7LBTKcAQQSWQuhzGVCpl5WHERYwcpIIwHo91eHioyWSi27dvW1XE5+c4PD9xnfGRjEF48eKFKWyvrq6UzWb12muvGeGHMwIyU6r3Xa8cSl9e9SpPnGOxWDQDh5T3ZPN7770305uSTCa1tbVlCl2MH/7oxYsXmp+fV7lcNsRHFzKpMcQvTsArqH3E5ot3oHxNcJxMJrbfXrmdyWSUzWbNBrwCF5Vot9s1DU673bbqTiaTsdESFDBAQOiWut2uVlZWrHIJAiFYs4aQt6Bpv67hcNj+2el0lEgkVKvVDN3Qt9ZqtezaFOnVXdtUD+HTwkSPo6MjHR8fKxKJWFpz//5982CkMZCuoVBIq6urmpub0/b2tjWiTSYTq+P7BR+NRlZ6hPGlpIs67vDwUNVq1ZSqIAW8O1CNwwZawrhBIsfHx4ZyqK1L0tLSkqEloFw2m1Uul9ODBw+0v7+vcrms27dvW0SGBCWN4plu3bqlVqulk5MT0zognQ8EArp37541DTIjhGfnagR0CeS0lFe94heUxXsSWdlUnANflLyPj48thWo2myoWi0aeU02o1+uWC1MJoALj2x06nY4ePHigra0tLS0tWUSDx0EqjmPv9Xo6PT1Vr9fT1taW8S9UY+BtONDYE06TCh+olLWhK3d1dVUHBwc6ODiYIX9JXXDoKEv94UEHtLu7a2vJxDiCBiVTzzfQdj+ZTGbEiTgnAma3O51yl0qlTDZPms+aQkzTzMn3oXs5Pj5Wu93WwsKCtfJTRaIqAzKUphyHn1XD35N60orAFS3n5+f2+8kS+F7OFlxaq9XS7u6ucrmchsOhcU7Yyvz8/NQmAoGAstmsTTTnYUajkW7dujUjCtvf39fJyYmRlKgAyadGo5HVx8k32eTMlzeo4aUvLy/N2PP5vO7evWuKxX6/rxcvXlgUIRXgMFHD9ipRUgPIMWriXoW7t7dnnbk0X/kuTioORKVweDr3BDZ/aWlJjx49spvHWDuiFKpYOIF+v68f//jHSiQShhDOzs5sfYvFotLptEUQUh+MYDAYzKhv4YX4Ojk5salspA5EJr4mk4kqlYqhPCZ+TSYTQ4d8PgePSMPnEUGJfqBJ0idKoV4S4LUJoFOcJ4gN3QTIk1IoCBTJPT/f6XRUr9f17NkzBYNB3bhxw+wsm82a2DAanQ5jhje5urrS2traTJ5POwTEbafTMVWyv6aWsQKXl5c6OjoynRQzUEAapHVeQg63JckaK0HfOH1UwhQkDg8PTXKBLgSHhygT8SIIA74ulUqZTbFf5XLZ0FQymTRKgBQLxxMKhaxhMhQKzWiPcNYgLlo/fNoUxrPxkEDedDptKAOuwCvnPHlz48YNg4hffPHFTK+FZ8N7vZ6eP39uajl6CCaTiU5OTkxZhy4ll8upVquZItYv2vr6uorFovVt4PF9X4cfzByJRLS5uWlEEca0srKiTqejbDardDqtu3fvmqQctDUcDo0jWVlZ0dnZmQ4ODvQ7v/M7KpVKpvpl5utwOLTLp/L5vLWY4yw4+IuLi7p586Z2dna0v79vzY48N+8CHAd9UBVYWFgwhMChWF1dtRQtHo/b9xKFKHH3+33du3fPSuJwC0Q9nBFpD6XveDxuuT38VSKRUDab1XA4tMY+UCYpC70ppI2Q6l5QFgqFbG4MvVlIx5GeX1xc6NmzZ0byDwYDmxHj2weKxaK9EyQvg8I7nY4ybvqZF3rxzuwF5X36oXxvCwccLQccH3flkEZSWsfu4BTZp263ayR5qVTSZDJRs9k050+qhg3whaiMfiWIVwYshcNhvXjxQq1WyxzMcDi9a7hWq5kjAyhQjaJqhYPmPOG8JFmvGErZMJ4OwgrDD4fDOjo60osXLwxqX09XyEPb7bahFzgL+jrwqLu7uwoEAsYPEOEZcjwYDPTRRx9pNBrp9ddf1+rqqnK5nKkQqbZAEt29e1e7u7vGV0DkAe09d0BPyJtvvmmTtNhoInQ2m9XLly8VDod148YNg22FQkEnJydaXV01fQJlREk2eQyuhclmlLapRGHMaBNCoZClFxgV5TW0HOhU6KAlRcCRLi4umnE3Gg1zPMPhUMvLywZdkWtT6qUUXS6XzXGApJCIoyPxCuNOp6ODgwMThdVqNV1cXFhTJO0Kw+FQKysrplZlPcj7Jc0EJBAHaR0RG96BHiz6Zvx7kr71ej0dHx+bE2Y0wPr6uvXrkH4iq282m+YkfYWDFMdzBKVSyc7Gr3/9ayPd6bEaj8emCOYd0DKRenp9CQ4cdS7pKlUkxpPSf8OagVahC0B3CBw9wqvX6zo8PDRO5cmTJ3r+/LntDQ4Bh8JoiXg8rrt3784MdyYAhMNhI8hRxE8mE4VpUOLlEIBx3+3u7q6VrNgk8khJlnYcHh6ax8L4fIoA54Agam5uTnfu3NH6+rqSyaT29vb0xRdfWHq1tbVlsIpNOD8/VzabtZ+jPEpHJy+OQyRnRRGJF0UnQ7WFvG93d9fav/HCa2trqtfrWl1d1c7OjkWT8Xisvb09RaNR4wOQfdMwCHpiMzggVDtmymdfOmAgJRsNYsS4SD+Wl5dtM4ms6BR85zRpEzNNKKGjpKTbl8hCG4O/D3Y0GimXy+ng4MCqCuwbSIG18KJEqgdETlABBDB/T5m1Wq3qxYsXGo/HpuUhBSKN9FPBaKkg0nsSmMNxfHxsdrm6uqpCoaC9vT1bV4Kd73jHifCZpII8UyKRsHYM9gAkJMkcKmi43++rVCopGo3q+fPnGo1GKpfL9vzlclnRaNRK+lSdlpaWjChmHgnD0G/cuGG9WvRS+RQZMADSoOWAFAh7rNVqVpbmq9Vq6fT0VF//+tcNMaVSKXOauVzuN4j0MANZyOl2dnYsMjC/gAYtIkCtVjOhWebLWaRPnz41OI0joQNyMBiYcdJiD7LAE6IY9K3a+Xxei4uLqlQqCgQCNuTo9u3bymQy2tjY0JMnTxQOh7W8vKx79+4Z/PaNT5HIdNLbwcGBnj59qu3tbS0uLiqfz8/U93/v937PGvaYQl6pVEx96fkLjGc0GunmzZvGo6AZgFuZm5uzKyfgNximw+HtdDq21uT4RCwgM81noVBId+7c0e/+7u8a20/6Q19IPD69NItBR6QMlUpFX/va1wwZLS0tmZPiv9GEPHv2zP4fWg5SSdASaTAydSoV6IBog5A0gxxwDJSn4WBqtZqtCypo1iMYDFrZdW1tzaof6EGoZBUKBeMQiNwMkRoOh3YTHUQ860sJ2zcQEggl6dmzZ0omk1pdXdWtW7eMy8B2crmcHfLxeGyOJJfLWfmUM+SvwwBp++dDs5JOp3VwcGBOGX5KmhL21WrVELB/Fjqo4REnk4mOj49NIwJqBE0zNgLAkM/nFQwG9fDhQ0sx0a1AaCPoxIGFOeij0XTuA7McqZyUy2VjqfFaHDagK+VPnBEHAgjPQgC5QqGQkYiUXmOxmN5++20jU6vVqpLJpD744AP98Ic/NG0DKlE8NpFlZWVF5XJZ9+7ds7tuyMPpz7m8vLS8mqZBEAZEE4eEGv6dO3e0uLhoTHw+n1elUrE0ifZxDI6qRSQynZrFWnnuhnz78vJSv/71r22QDjwU8NanHzs7OyYBz+VyevHiha0jJTvuvkETgdFNJtPxlsBd9oI2cxzccDg0Ig5C3csBcFakOHACcGc4sb29PSNs4aIQH/oKlBdhcTMfVSU/Q4W+Jy7fTqfTlo4BrX2+zveATlgnrzQGkWJTCCeRNMBfgBq5NrXValkFiDQJZ3fjxg1VKhUjMemVIdBJUrlc1sHBgckd1tbW9JWvfMVUpC9evLAGOdJZSsgM85Je3cENr4ONgwjZdz8QvVgsKhwOmy3Bg7HPEOS0HrD37Xbb+rVAKKAdEE/4/PzcSlzk77D4x8fHSqfTqtVqJifGmWC4oJD19XVTIqLwxBtCiPq8kSY9yEUGvGxtbdnYwWBwOlXqV7/6lUFEIiY9HHTMDodDKwfmcjmtr6/r1q1b2t/fN+RwcXGhzc1N7e7umrCNCAovAS9wcnKiH/7wh0omk9blePPmTQWD04E05XLZKlFEQARf6AZgyCG+0CuwBtlsVrdu3VI8Htfy8rL14uCU4Cxu375tTns8Huvk5ERnZ2eq1+uKx+P6Z//sn+n111/X4uLijNYgFAqpXC7r/PxcW1tbxh9BJgYCAdsX1h/4XigUTFeCWhMkgdOBjOewcmCXlpas58XrNUCjfLXbbeuFQe+A7bEfGCpcCkgFm6EX5PDw0HpeEHtRAMAmqtWqpV3oPSDi/ZwSbAV9CKkUfMO7775rfNxgMDCJ/8rKipHAoLpoNKo7d+6YRAG0jzbo/Pxc29vb5hCLxaKt1c7OjkKhkBYXF62PbH5+3oIjPU7M00UTRDUUu1tYWNDGxoal/Tdv3rTiwOLi4szlcpkvJ7+xdt4eyU4YoQAPGg6HFcaofdkQREFeB3fCF01ViIrYdOAbCEOSVV0k2QsT2bLZrC0mpBb5PBoMKjLD4VBvv/22CW7+x//4H3r//fet1Hfnzh27cewP//APjaBdXl626AGvwcLwz7OzM+3t7UmSPvzwQ1WrVQUCr24ZpMFrf3/fmvx+8IMf6A//8A+VSqVsLgflTsjXYrFopWEOIuvb7/dNWr++vm4CQDYeeT58AWKtYrGo119/XcPhUD/60Y90cHCgvb09IxKTyaSazaapFjmAjUbDSoHMYgkGgxZpLi8vTYA2mUxMB1Gv143sg3BFmYnBZb6cdM8gZqIm70sF4OjoaAbpUJVBYsCF4+wVaBehGI4UgjqRSOj09NQqCaBr+CGc9+XlpTY3N2e0JERz0J80VRmDenyfEGkUNo7TgRMJhUJaW1sznpHDDvLFIabTaZP5F4tF9ft903mQBqEeRXXNz7948cLOn5+VQ2qB7gbCH5UrlRw/zoNKKQ6UyiyIjbSTZkrQLWgUNEVWEY/HFSbv9SVHIGaxWJyROqPk5E5aynxUeMbj6UR1vp/mHnJSHBZSYiLQ5uamms2m1eKr1apNR0NZW6/X9dWvflXZbFbPnj0zFWCxWDQJ/PPnz00uz5wEvg8YjtwazoPFYtoaBx5+A0/vL7KSpjnqxx9/rLW1Nbto/M033zRmm25Nb4QYGk6BCA+pTK4/HA4tt5ako6MjU94iirt165aKxaINnKlUKlpaWjLDQ3wHumo2m9rf39ebb75ppW44C/qe6FLl0EYiEd25c0fRaFS7u7v2PtKrrmsa2hBZ4RgoiRJo4vHpDJrd3V0tLy/r+fPnVtqlQgQXwtpwKPksiFpIUvaGQAPSYP/4XKoZmS+nicE1EIV9iwfpEE2GvBtaq9PTU3MkIF3SdeaL0Cdz7949BQIB6+7mc+EqmNtzeHioRqOhd99916pISB7QdeVyOWtRYWohVS0cM84TZ4MtRiIRS/f7/b5OT09NswOKhFgn0yBA4mAY8EWAZl+RioQx7rOzM1PPffvb3zaZey6XM5Jlfn7eGrEYXoxqD0IWh4ERvfvuu7q8vNRnn30241ElWWn5m9/8psE/yniNRsPy61KpZDoU5PBra2smrc5ms/qnf/on67fxMm5SMXI/SDgEO0SJer1uoh2k9cyrPT4+VubLO3Mw0IuLC+3t7enp06fGk3zyySemEn799dctBeNQfPLJJ9YZy2wWHDkNa0QZCGp6iThIjUZDn3/+uY1caLVaVuqFCPfqYQ4Q+T5qWi8Np1KBMpmUinZ1ZrJUKhVbWyIy60jZFMJ5Mpno9PRU6XTa5qQkk0m99tprpvdAgUtaGgxOb4RjGDEpDgiFMjAkKGIqAgIH24sjee+nT5/qvffes/QC8SEydCK054zOz8+N94HzW15etslgBK1gMGg8F4PN2UNSJabYb25u2tUa8BlEeapUcEN0qcNd4eDpw6G5jjlCp6enpnXy84WptnQ6HRvb+fTpU9PTrK+vz1xtMh6P1Wg0rJLYbrdNn3JwcGDnCEFcMBhU+MWLFwZbvNS4VCrN1PrpYUHYRX6OQfhDDZzt9XomsWWyFaRPqVTS1dWVpU948Xa7reFwqOPjY5sjQR5I2RhVrDRV22JUzNagugSRy/NcXFzo/Pzc0g0G7ASDQZuCv7W1paOjIzOoGzdu6ObNm2o0Gtrf37cyZiAQmLlki9+HZJ6D/PTpU8tBq9WqDg4OJMmuerhz547NgEFvgXPB4cZiMXMWCPaazabefPNNraysaH193dAfZG2xWDR+IpVKqV6vG7wnXSWAUI3CSaytrVlUp7QM6QuJ/eTJE6sq+ca1drtt/AEEZ71et4PAQc5ms8Z3Qf6enp4a0etJPVASB5TDxSHlC4dNFzSiK2k66Orw8NBIWPQ4kLZUT1B8knbTasE1picnJxbpsU16mp4/f65qtaq5uTktLy/r17/+tW7evGn3EVNlo6HQB99Wq2UjPb3kgfRD0sw8Yrg4FLGkmJ1OR8vLy5aWlkolPXjwwAoe9Gt53pIS8OrqqvFBvNPZ2ZlNTUNfMhqNjNQGPYUpfzIwBoj3v/7X/1Iul9P777+varWqZ8+e2f9nShLQG+ksncSoIIPB6YTzQCBgN97DHZTLZQ0GA+uUpT4NzGu1Wnr8+LGurqaXKJNCITKLxWLa39+3ag46EtBCKpUyshU4x8jAYrGoTqejw8NDRaPTy6G++tWvmthJkj2bJJtVWavVtLGxYc7gjTfeMB3JixcvjACOx+MqFotWZuPww/1gkKQJ8E2S9M477xjPQhmwUCjozp07yufz+uSTT+xduSCMSpAn/jDAzJf3msB9eNk1aRqiQL5HesX4M7eCvJmmvkePHml+fl43b940Ayf1+uEPf6ibN2/q3XffNQfH/cLMm6EREq5lc3NTc3Nz+uKLL4wDwdlBeIIaqE6AfEAjkkzhTCMpWqLBYGB9ROhtKHuSYkQiERWLRT179kwrKyuGxJhHU6/XrZMXMhc0TqAYDAaGalOplI6Pj01tfHFxoeXl5Zl5r/BDaGzgr0DQPv0g9aYqB9LGEeNkGG8xmUyMN/NNkTiUtbU1m+QHKiZw+daEcDhsEg1SOnQ/ILUwTVvSq6sfT09PLW+qVCp6/PixDg4ODJ4Cd+A8iA6URiEpMWZyM1h8pPh4tFwup2fPnml7e1vb29sme6aJCAgNA0/7NJEEmB2JTFun19bWjLFm8AtfQGFKjIwo+P73v6/hcKj19XVtbGzo/v37Mz+3uLiot956ywbI7O/v67XXXtPZ2Zl+/etfmw5iaWlJN2/eNPIMGM382/MvJ7Uzgarf7+vNN99UOBzWo0ePLK9n9MBwOLSZIpKsPJjJZPSrX/1K4/FY3/nOd+xAUY4kjWHMAEN0OJRUxRC2RaNREwbu7e3Z1Hvk/+Px2OyCaIowi45bSYYYmfXib7ZHG3N6emr/7tW/PMfi4qKVjjksVAN92ZL0B16P94N7g/cjfdjd3TWewQ/bqlQqNjYAyQPNl+Px2BStDx8+tIojZWm/xhCl0WjUiM4XL14YcQ1R7XlIIjvpaCKR0MnJiemmQGjwMHBBlNBZH677JFBRUa3VapqbmzPRKWgMmYDPODjHZA7wd8gIcMYeQBDcwxje/v6+NSK1222LxsyyIC8j3Wg2m9ra2rIOwZOTE9VqNfOUkch0ujW32+FI9vb2lMvldOPGDVPkQeKSLycSCUMe3W7XiEE2/jphCXkF643wjWsgcJJ+Ghsl71wup253elVDpVLR9va23nnnHW1ubhpxhToV/ueNN97QjRs3FA6HLWWDwFtaWrLfCaQlJUOZOTc3Z2W+8y/vDolGo1peXrZRC+SpgUBADx48UCQSUblctgi4vLysX/ziF6pWq/r93/99xeNxk3yjPaAcPRgMjBuhGgIiYdRDtzudm1utVu361X6/r08//dSuBrl9+7Z+/vOfK5VK6d69e7q8vFS1WrUyIddV5HI5HR8f63//7/+tcrmsu3fvWqkR2T7Ge3x8bALAhYUFvf3229rZ2TEVsPRqMDjOH/6Ng05jZ7PZtNSGVAWSE9SAIlWS8SigcdJb5shMJhNTnvphQ/62BUlWDePeX6K1NO04R14OwW+Vji/tmAFLoPrxeHoxGk6e9AlEDWLhQLMWlPVBwqlUSicnJ5pMJioUCqalQndFkIMbBemMRiNDTbwP/8SJE9RJO8OBQMCMGbIP5Sf37KLXgGUHRvn/XygUZnpygEXBYFAbGxuKxWLa29uzAUWS9N3vftcIxUQioaWlJcs1j46OLNp4EoiqRiaT0enpqdbW1kzpikx8f3/fxD6UNykvE3kgbWnIgvEeDqet4xBlQHoMXXrV1IUTvnv3rkKhkO7evWsRpdPpmC5jNJoOEjo5ObEDR6mVahFRrVarWcs+V1mMx2M9f/5c5+fnSqfTevbsmX71q18ZR0F0oexMmwNobTQaGSGKAwauPnjwwAY0QbJms1kdHByo2+1qcXFRX3zxhemF7t27Z0610+nYYeMdgdCglV/84hf64osv7BL1b3zjGxbhONSPHz9WLpczNAfiLZfLNjtmfn5erVbLrpQAWdFxHI/HbXYtosCFhQW7PZECAJEdW6F0jLIaIjcSiZhDXVpaUqVSsVYKyts858HBgbLZrFVi6vW6DccCKXhlNqMNIHp5Xqbiebk+WiuQB410yNZxgufn55aaxuNxs7Hl5WVD+0yTOzw81Pn5ud544w3r0wJ9sBakRKB92j5QE2MPKGnDv/jFLyTJmpCI1kQBjJW5IRCMBwcHRjRGIhEj/XZ2doyoTSaTNoYfJWav19POzo6VkPGuKysrqtVqevjwod1vi8gJWMWCxuPTqe/Ly8s2b5TvIY8Lh8P66KOPrAGLCCBNc2/GFoB8iCx4d8qi9ILAmH/++ecmIFtYWNBXvvIV41mIYkjF4SYgrfr9viqVit566y1rif/www9tw2HauT4TIjCTydghqVQqOjs704cffmjNXj/96U9NuBePx/XGG29oa2tLkUhE+XzeeKIvvvhC6+vr2traUrvd1ocffqidnR397Gc/UyQS0e/8zu+Y8A+tD5xDMpnU3bt3LdKOx2MTSNHXAZ9Vq9Ws0kXXKMQzB5FZJjS40TiXzWb11ltv6e7du0qn03r69KlVNEBtr7/+ukKhkB49emQowTfGEaVJjfg7vkgBx+OxFhcXTQ7AICv0Jah/19fXjQvwimiCBg2R8Xjc0IA0hf7j8dgIVQIjKQr/xHk1Gg11Oh1zqgQIUEw6nbaUGEcMYevv6OFZ4Ms4u8z6Ad1xdQe2yfPCI/GscIdweiBoSsbtdlth7sil1EupCYgFlOr1etbLUCgUlMvlbPgsudny8rKSyaQdSMb20/zH9Qi//OUvFY/Hdf/+fUWjUR0fH9tVkvRoUP+GqARmUU5Mp9MmZMPLovgMBqd30vAZOCAgPGx8o9EweIfx3b592/iR0WikWq2m8/NzLS8va29vT9Vq1VDUxcWFRbHT01PduHHD0ikcSaPRsHx9MBjYCEZKaRxWrmO4efOmSqWSXn/9dbua4vz83GZ2lkol67/gcnPuFdre3rY07ObNm6bU/du//VstLi6ak/7e976n9957Tz/72c8sdwY+v/nmm9rZ2dGnn36qzJdXSlKCpUeHfVldXVUgEFC5XLa06OnTpzo5OTFSFYfDeIVKpaKXL19KknV537p1yypSoE6uY81kMnr//ff14MEDnZ6eWrMnozS73a6NsRiNRnb7Ho4EGYBvJAWaQ5RD5hOIeIb5+Xn9/Oc/16effqrf/d3ftaokFRMcaCQSsVsNkZnz9/A2IEHfiMqdP1dXV9ra2tKLFy9sdCJIxBPO4XBY5XLZ+oUIVMgksHGkAnA5zHWBSyGIokOCi6MAwu9F/8T5Q5qQTqctM4BvC9MnMJlMZu6xOTg4sPwKSMYH41RisZjeeust65HhKoFCoaBarabPPvvMmpm4OMqLiR48eKDz83MdHR3NTNgi96XvAe8LXEURSdpQq9V0enpqfROSZsg58ttcLqc7d+7Yf8Psw56vra1ZKbrX6xmvAD/EsN5oNKonT54YkXXr1i0bTQDpyfP6maGhUEhvv/22lWDz+by+9a1v6b333rN8k9SQu4tZMyIcpB5cRyKR0Ouvv675+Xl98sknJhwCevZ6PZVKJRWLRSsThkIh3bhxw/QEjBJIp9NKJBJWmbq6upopL87Nzdl+Pnv2TO+++65dGUIOT4WGIMONAt/61rfUarVUqVTUbre1vb2tBw8e6NmzZ8pms9ra2tLW1pYhNTRG5XJZi4uLun//vhG8lUpF6XRab731li4uLlQul7W6uqrRaKSf/vSnBtU5DBCQEJykkvB9Po3F9kiB4EGePn1q688BTKVSNj+Eyg8OyXf+7u3tqVgsajgcGp8TCARsFiu2try8bDa+urqqw8NDS019M144PJ0JC6qiYxznByJaWFjQ4eGhjcmg45p/r9frevDgganH6amhgkoBg+ZX+Bx0KQToVCqlcIZx8uGwtre3tbS0pBs3bmhvb09XV1fa3NzUG2+8YTX90Wg6gf3OnTt2gCKRiJ4/f65arabnz5+r3W7bFQrVatWcA7Do8vJSjUZDOzs7lmrQESy9UhqWy2XF43Ftb2/btDO4GfpPms2mnj9/bh4avQHlLzYLZIUjIAWan5839JVIJLS3t2cGG4/HLR+E1X769KkZGrD0888/N/iIdgXZczweV6VS0d/93d/p3r172tzcVKVSMULwgw8+mOmZePjwoWq1mt5++20TtaXTaf3N3/yNtre39Rd/8Re6c+eOGSMRhncg9YtEIhatfv/3f9+mY52dnemrX/2qRU6uZxwOh/r+97+vv//7v7d1f/78ucbjsd5++207YMPh9JrJi4sLI4Gj0agODw/1+eefW0UGUvW1116TJNMg4URBjgj+9vf39fHHH1uqwYzaaDRqXbWxWEyPHz9Wt9vVP//n/1xf/epXZ6o2u7u7VmKHd/BNejg3iGVIWNIWOr2RKJBawlPBRWDfcAk4Xg4xh480gbQL5XA4PL2rhkJBoVBQIBCwfjaEl6SEfO7R0ZFWV1ftv30q46kIgjLl5Lm5OUMVBBmQuteCofvBTnCuICucHijLE9rhzc1N6+koFAp68803jcDa2trS22+/rVAopM8++0zD4dC6a+PxuN577z2LetVqVXt7e6pUKsax3Lx502AaB5hZj/V63UqGnhhkAbnv5Pj42KS5GMf5+blGo5GpbIGqkUjEFIsoN8nxcTA/+9nPVC6X1ev1bLoUBOuTJ0+UyWT08uVLfe1rXzMBFDX2k5MTu0NVknZ2dtTpdPT8+XNFo1F9+umnViVZXl7W2tqaVU9WVlasK9hLwIPBoA4PD7W9va2XL1/avFMEcPfv39ft27fV7/d1dHSkq6srvf766zo4OLCemn/6p3+y1CeRSNj08J/85Cf64osv9I1vfMNmXayurmpzc1PBYNDGZkYiEds/KkloG87OzrS+vj7TUcrVri9fvlSxWNQ//MM/GC+F6G88Hmt5edmQEPt+dHSkr3/96/rqV7+qfr+vTz75xGD7+ZdT3ECSr7/+utbX1+2Aw3WVy2UdHx+rUqno3XffNc2O5yHQj2A3oA5/ALlLiRImXNhoNDKVNAEE0rHdbmtnZ0e1Ws1a8MvlsvVLoQAHkfB5oFKcpyRrD+CAw6eQzvsZMwz/IpByDSiHGd4wnU6b7ocqKmkJ/XL9/qsL7yg4lMtlFYtFtdttGxqNngu+kIkAKHiDwaCNFAjv7e1pY2PDynioM+l1oYmNqyEWFha0v7+vW7duWWUFOA3n0OlMr24ERkMENRoNbW9vGwyj0xhPClx6++23NT8/r52dHR0dHRlUhJQC1USjUSs3ohmQXs2+AKbR34MaFnY7kUjo7OzMau4LCwu6e/euwVd+RzabNf4hlUopl8vZvTg0otEHQgXj7OxMDx48UDAYtKh8fHxsEfutt94y6Pvw4UM9efLE3qVUKpls+tmzZzY8COn0cDjUJ598opOTE62trRkBCnJqt9s2s7RWq+n//t//a5WOQCCg58+f6/j4WP/n//yfGU2HJMu3cTZwIjiEcDhs8vxCoWAEMQLEVCqlZrNpSlWUtZDOELJ3797VeDzWo0ePrJcGwpX9e/jwoaVlX3zxxcxMGA7as2fP9Omnn9phrtVq9rvgOwgaNOBBVhKBcfZUthABIndIp9OmNuYOYxwuaTpK2syXV50iLTg7OzNehJGXl5eXNpwabYYX1lGS5Rlp5ETDBCoAvYCumUWMHGE4HOrw8NC0NIFAwIZ24fSazaaJPXlfzuzBwYFSqZQ5sOPjYwuu2AFOJryysqKlpSUVi0Xl83mdn59rZ2fHtBWUWmnF7vV6KpfLmpub06effmpVHTYJr0d7OA93eHhod7nk83mbZ0m+F4/HtbW1pWw2q0Riekk00+CJ3jgtcnXUkaANvijpUXkA3o3H05vXfImRdmrEUOhVzs7OTB+Asd27d0+5XE4nJyfWYk+kjkajdkN8v//qGsdAIKBHjx7ZxDFyc3oziMQcDAjctbU106NQjmRMgG8ye/TokUmlFxYWdHBwoGfPnunzzz83Rv+9997Tw4cPFQgE9Ktf/Uo//vGPjYthghzpwWQyna7GzIobN27o9ddfN70J6thcLqeVlRVbw6dPn9qBOjk5MYf99OlTq1rArT169Ei7u7t65513rLLj+zZw9JVKRZ9++qlWVlb08ccfW0k5GJyOVrhx44ai0agODg70ox/9SIPBQPfv3zc5OCksqQwVQNYdcpXKE6MXPBKBm0DIKMl0QVT92HMuWWOgtL/YKxaLzfT1YHOQodFo1Hq2dnd3jcxm0h+pCl3zIH8yApw+4xW86I00BpuE9yQwQVRT4fR9Orwn+0NZmsBkfNTm5qYGg+mFTHSJAqnwVPR6wCS322199NFHdp9ouVw2Act4PLa5DIy6e/z4sV28FQgEdHR0ZMq/5eVlvfbaa8YZVCoV/fSnPzVngAiNfI6DS++JjxBUcHhp6vDLy8uqVqsqFotaW1tTPp83XQkLhoqXG/ISiYQRjX/wB39gsvvvf//7NnIQYyTC8U/KmVTBQEU4EsrewG28O3J0BHZoASj9UkqfTCa6deuWvbtv//alVa8tgSOgOkJ6lsvlzIHC/Pv0hu5X+meofLXbbVWrVX3yySd68uSJXfKNDgLdEVUJnBBCO9b4zTffVDqd1tHRkTV2cplYIBDQkydPdHR0ZDcKovk5Pz/X8fGxDg8PbS+azaZd24ojQGMC+sOZgN44QJDJ/BwNefl83gR+zDqh6xh7Z/ATAjdIXpy0P8B7e3u6vLzU+vq67t+/b2MZQRZwZaAURlR49OP1Kb4D+jqXQaUTJD+ZTEzoR6rJcOvl5WUbyZD5cuohNu2lE/w36RHBKHx8fKy9vT29ePHCSpaQQG+88YZVagaDgT799FM7oAiykK7zfcPhdOJ6Lpcz7qBcLpth8eKUYRlJWKvVrNOVh4UV5qoJrwhcX1/Xy5cvzSPikdk0STPsO3k6+S1KXjpgSa8wcHidWq2m7373uwqHw/r5z39u4iia90BDiNVo6POlRlrHSUsoA04mE7voi5o934dQDXTDkBu4kh//+MfmpJBr+x6LwWBgyK9SqSgWi5m6FF6Ag5b58r6iRCKhRqNhUX9vb08fffSRXQr2ta99ze7G2d3dtZYGlK3MqcDh0YDpdRukHS9fvtQ777yjlZUVayn44Q9/qFwuZ+ViDjU9HShHSYVarZaq1aqlsMxkuby8nHHclH55ZyIvVSm4ueutFNKrSWQgEeTqkIygQ64IRWgGf0KF7PLyUoeHhxY8cEKUq0lP4SuHw+nVp7VaTd/4xjckyRplKcnTFsDzMn8GzgubwPnj9OLxuCEs0BK0hW+WzOfzVjYmSLKOaMtsdOrOzo4x6MBnpoe99dZblr83Gg1RKuZFMVhy4I2NDctLgf5EEeTLaDiQR1erVdMnkGdzGHy+xkGlEY3fc/PmTR0dHZl4CDmyJNs0hGXdblf1et0Yd7gTSDY0DygY+SJFk2RyffJEHBx5Ng2KGCswlufz0cF/PmsgyUrpdF5CxqXTaX300Uem2Mx8eaMbxkTOm0gkdHFxod3dXc3PzyuVSmlpaUnHx8e6ffu2IpGIzs/PbQTCvXv3TNyUzWZNGIXOolKpKBKJWMpCuZKB18lkUg8fPtTq6qpWV1ct72ZgMM/Av49G0+tG/u7v/k5zc3P6N//m36jRaNgdt2+//bY6nY7N4yWlACl4whJbpCrhOQEiJygMJ4RNoGsCMWEPfCZIkUDq1bQEQ6I0AWJubs64KY84QSgEGgYsc3a8XoN+MgLrT3/605neMbg6Or2hE2jIo2mRd6J6yN4xcT4Wi1lfE0EIktYrvcPh6a18vnLH5zK/J8zAmslkouXlZb3xxhtaXV3V6empPv30U3322Wc2mwM4DAIgrVlZWTFYe3JyYoOLMEo6dMm9qFwQeUhN+HNxcWERiXtoxuPpjXFnZ2c235Kck0iey+UsEk4mE6vdgz4wAHJcIghGOj8/byo/VKPAeXoK2GQ6LSkV8xmSLKeWZF2jRDz4HpAQHt43ogWDQcu5QVLk+z/84Q9NQo1uBtINp0a+z+e+ePFC+/v7NoWNBkCu21hZWVEgENCzZ8/U6XR07949PXjwwG5ChEAnDaT9Aen94uKiOWImrnuBGSrnVqtl8n1KkDQDvnjxwniE/f19U14mEgndunXLJvVTZajX67ZmOAB6XOjWRv8CavatFiALIjStIrQ2oGKFxPddtlTyCG7whAy9prqEhsVPCfSIgnMCn0JGQIC+vs4g3FarpUajYen+u+++a1d1gGIDgYCdB5wc5WhSMDRK7B02xLPhaCkvI/vHrvABw+FQYaK1JL3//vsqFov66KOPLG2A3CFXBkZnMhm99dZbgmMBudAdyYJ4TQhdvGwYKRQbgxLWRwecHJ6RRUX8RfmSOa1wPeS8dBwD2WDB+cPmYAwQW1QRWDTSEdIZnBIaGP4dowOiclUnUJLIxFryXnAh9B3x7gwdDoWmreTM2CCtxHhwhGhlWCOQA1HbX47kA8LCwoIpU2/fvq2bN29aKgHJRzrGIaEKc3h4aE64XC6rUChYIyfCwUKhoEajYYrjVqtlTZ80QC4tLdnsmn5/ertApVLR559/bvNQQqGQScKRGfi0BSdBgCGyeg4PJw6P4NO84XBowSuVShkpj50g0kIRjaOKxWJW9fR2D7Lw6fVoNDJl9mQyMU4InY2fowKCIMgQ+CaTyUyPFXNWKBqw/zhJvg9HiqKdsw/XB6nOtL5isWifh4P0bScgunCpVNLm5qb29vY0Pz+vf/iHf9DR0dHMtCu0EdwNfPfuXa2vr+udd95Ro9HQJ598os8++8z6TCjBUclAzch4t6OjI4OelAo9TOT3YRi+hOtLgOPxdFr46uqqJOnly5d2oRQQk0E0pGV4VEkzlR4QF2iGyORFcpC3wGWmvPPsXByEfLper5sc/NatWwqFQtb92+/3jZhDQo8Tplxer9ftedhcUJzvKaLTmXUaj8dWEu90OnY5NEI5cnty5pcvXxosHg6H+ru/+zttbGxoeXnZ8mhSOpog/fxdDidzYbksTZIpKTc3N62qxOAnZpkcHh5qbW1Nd+7c0dtvv62Liwt9/PHH1reyvLxsSBBOARQIX+c1G3yRSmD0PDtIENsiuODcGanAAGucF42X3DVDJYWKIKiXKI8z45notsZ2IYV9ukXaAfLzKma+zytzg8GgXrx4YQT/6uqqpYlIHKRpZ/LR0ZGdC7qNWTNfIudc0DqAuBGBH46bvW+32wrzIPPz83r58qUeP35sL+d7JIic7777rj744AOlUikdHh7q0aNHOjk5MYRArX1paUmLi4t69uyZaRXYeO4mpewLImBqGJ7dq+/YUDYGNBGNRq3nhMjLQF2vE+AQs6k4KyoUVFggDVkwUgS++B6aoWCuKd3RAUvpkKiFDN/3URCFWBcOHSMTr66uVK/XlUgktLq6atPHkOsTTbPZrEVMH11xSmgZWGc4IWAz2gbk/o8fP7YAwlqRk5OGwjGgJqay8/nnn0uS7t27J2lKUD579swMFcFat9vVRx99ZHqT+/fv6y//8i+thEx0PT4+1tHRkZXCT05OdHp6qlqtZggXzROOzfdTwSnw7r6Cdh01YzNwQFx4hu3A1zEQG7sCIWDXw+HQ9FG+bErKioOglF8qldRsNk3hi1wBNMgh5oxwZkhJ2u22njx5Yr8Paf3Kyorm5ub09OlT04TgOILB4MxYTBA1+8l6sG7YOloZuCQDHFtbWyZuOj09nbn305eAw+Gw3nzzTd2/f1/Pnj1Tq9UyaTiHnPISnh7hDVCTS4OA6h4ul8tlu5QZD8yio2TEEKjTh0IhE5PhQSGO+JP5cqo9B4PvJU0JBAIGe4F1zMcIBl/dvSLJZPD+Hh9ujQMiIpMfDAa2dsBhr+AlPQSKkzvj5Wl6hLuan5+3iW6UV71OYDgcGvnG51P683sIhMWh4CwYHL2xsaEHDx6Y04OARcMBs89VG17fQKWL7lmcLAcNIRyIEcfc7Xb19OlTffe739VXvvIVm1y2ublp1btcLmfcEhwQUZxDhbNk7gaBEGcI6YgNQDBTKSyVSqpWq6Z7SafT+trXvqbhcGj3Jg8GAx0cHMxU7CjtwvukUik7E+g0OKDz8/N22dXJyYlxb75kjqgRVMWeM1d4aWnJ3puDjlM7Pj62ubGgNZALKJQ0DNKfZyB4kzonk0lVKhXT4SDyY998+TlMiZYyWLfbNW9Ijn/jxg0tLy/r8PBQlUpF+/v7Ojg4MA6FB2N03tLSkprNpnXyYtSU0ji4zE1AVYrXk2TGQjMY3AgemWoCBgJcxJgghj2KgcDFkfjozc95KTTPijzb902wmBw2rxZEbEeJjOhEbwZcCPM12MTT01NzfBDN3BvT6/UsvaCd4fj4eIaoBd3wHqPRqzmwPsf3HZ5EXMr5jx490sbGhiSZEhj0l8vljDQmF/dVDMYrnJ2d6e///u9VrVbNuXhJfiAQsApOLpdTPp9XrVbT97//fT18+FA3b9406fn9+/etMpdKpUzng46F/fQkYCqVst8B8iSKe5uAO8DWpVddwdg308I8CvHCSFJS78j4HNaEYIE9c4j5J9E9GAzavcp7e3uG5EHBXngJn0Gw5fcgSMMet7e3NTc3N/O7qahBotdqNbvBgaCDWpu0EK4JvQqOCTsI0yXLweDP3Nyc3nnnHetu/PzzzzWZTHRycmKXEQEfO52Ozt39F9KUJOIAAtEwZshMCNe1tTUreXKvKBzA+ZfTsRcXFzUeT+808Rfz+AoJm8PVjkQeNpIaO+VUEAQDd+mChOXns7yTQkfDwfLEMSgHR0X0pCXAq0OlqRgMNNHtdo20A8ZSGWg2mwbZEcYxdBknTu7vOYBoNDrTdMXvZ6/J03F0iJAk2V0+kNmkWKQcrDmpDuiPfWQwEc6LvWo2m1Zq7Ha7Nmgb7igajVqPx97enl3PKU1n5967d8/eETRK5WA8nt77s7y8PCPeuri4sP4gvw6gs1AoZLfura2tGYqZn5/X3/7t39oUPMZEELw8D0EAQl/iBXGIwDioOA6ceqlU0tOnTy21IDUGBfqudt9wChJijUELOBlSJ4IKachgMLCqDeRvNpvVZDIxrQo/Ew6HbVB0p9OZuR8HOwuHwwqTmsAsr62t2X0c4XDYNCSSLAqwCERHFJGlUsmiMbkiRo+DYkHm5+dNNciwo263q62tLdVqNZuRQOUE9EH5ikoDi04e7L+A2ywqDo46PHcNewEZZC3RpN1uG4EpyYzTi8sok4KMEPAAZYG13shwPJQTKR/+tg5inCIla9Cd31QfsTyaS6VSKhaL2t7eNgEez4NjJEcmtaLkl8lktL+/P9N6DzeEtByHiBPnj4/6VGnYq3w+L+lVK4M3ZmmKhHA+VDjgzZLJpF3DQHWrXC6r2WyqVqvZ7QSk0qwbhwj0FAy+GiSEc2XeMAeeYMX8jYcPH+rOnTsaDAZqNpumF8Kx4chBBPw7c0FIoUBJfpIdfV/1ev3V+EKHtIPBoA07whZJmb14kzXmHUlFQRZQDgQTPgdbwplJsvejuurRLz/L2QtHItMRdGtra1pcXLQqy97envWAEF2BighX8PDwKkQHkAit4KFQyGZdeEn5YDDQ8+fPjVcJBAL65S9/abCXA4ZakXImPAOL7Cs7GC6bC/z2KsBer2ef6xlz5NXcZYvRSa+0CpFIxARzeGzSGP4deByLxYxDCQQCVi3xm8DmoTANBoMqFouG4jjQHCw28+Liwt6Rig6pIw4cxEFDJQ1dHGByc57BX+XR7Xbt4ncqMtI0qnqBHYcHso70mHXm7yCGuRjeq5g5TNgaKIq0cmdnR5PJxBxQJpPR22+/rd///d+3NGA0ms4Zfe211/Tw4UNziDhUeJN8Pq/Ly0vdu3dPBwcHpkgliFSrVbscqlQqmaaJ6h88Bnf5YgdoikajkV0JQXWHoADJDnJAJoBz9qQ+AQVOEJQKYva2TXrpJf6RSMTOKL8fHg6luL+fZmdnR7FYzCbrebRDSsMZIaCD6obDocK/8zu/YxCZQTPo/zE2Di+wzJexaHii16DdfnX/Lw4Dj8mIe2A0sAlID6mFR2aDGT6D0ZPzXleYcpA8V8CLAs29UyEq9Pt9uziIiMFC+giN08Vp8vd+Crov/xGliRx4c7y+jzwMNWKtRqORMl9eJQFHglMCEVKCxKHgFInkgUBA9XrdHB5kqW8h4J+gJEqQiMi2trZsvAAOk4hLPu0j29LS0oyzAVHiKJiVgsP3UdcrkbE9vnCs4XDYptvPzc0Z8dhut21Wx7179zQ3N6ednR3TNpVKJZ2enqper1tDIigAHRPOv1qtzjTjwV1A1geD0/Z5yHDS+/X1dWvdyGQyOj4+NnITHRYpNRXB0Wikjz/+WEtLS2YDODRaL4LBoKUe2K5Po/05Ze4MCBLkid6Fa1lwBEjrKe3TNAqvBs9JOud7swgWkUhE4bt372pnZ0c//OEPTS0Hh4EXYiMxABhlVJWgCRaVXg4gN18HBwcGI3EGpBBELYiyWCxmYiqazrwiEcP1JKmvApF64ADZEK+2DAaDdvUDKRMlMc+r0BOUz+cVCEwvV/cDdLwykAqRj1Y8P8QqA3ZGo5EJ1mgSgw3n2XB0VLEkWXkQ/YmvsEgywwgGg9a2EIlEjNEnNYG3oGzPYWISFxUH1pRqDPCYQIARX15eamVlRWtrazYSEsKWaBkMBrW7u2uHEoeCI+E9IbypoFFJIB2ErN7e3raxf/Aq5XJZ9+7dM2dB4yapKOMPOEyUd32DmySrqjAFjgICV2airk0kElpZWbHGRqI9zkaa0gKQzjwHKR/iPNSj0WjUhIg4fZ+uoAXxNoZzgnD1KUo4PB2FiqiM0m8w+EqpTZPo/v6+9vf37VpXf6EYP0vZl/eIRCIK/+M//qOOjo50cnIy00HooxUoAkcCnGI2KepYmpKItkDlVqtlhxtyC0PxuTQHDS6FWQcsIpCLBQSNEHF9jwKbRhkX0RIMNKw2alMOIiQayKtYLNp0eKK6h+B4dRAVDgnnQbcqUR/HxvdTzUGYx3sgDotGo7bp7AEIEt0DaA0VI+sD5wEiwNBBCaQmOGc/q4PoCcdC/4VHC74HhmDD2jA5jLI0pDsOg1SK9JgIyghBeKmdnR079NgNKIFDAiImlatWq5Yys29ffPGFCoWCyuWyzTONRCL62c9+ZvfWEAC86HB+fl4rKyuG9ri3x3Mj7Fu9XjdZOpPxeT8CHe9Kfwx0gTQtwVM63tnZMaIVUh7kBMnr1dnYMkUQ1sfzZzjyzJdXuPJO9NqR+iaTSdVqNbvSE5ti/UmvABDhcFjhX/7ylzPQmNIesDQYDBoqIBL6iE0awFAVIp3Pr7xQCIWpr4Nj+BgTRBfeDgcmyRwZKUgkErE2bFIdDvb1w079nsoCkZZNWV9ft//2d/PSA+IPhU87vLjJE4w4R7QDeHbeod1uG/HFJrPeoBsiAI4oFJp2ZzebTXt+jMxXZOBX6OGAoM5mszMcFoGCahFGCSfm1xxnxmR9nALkZiqVsv3meW/fvm2piI9ilCEh51mrfD6vw8PDGXRHVQwUBNFLwxvzRSkEsLe+Gsmh3d3d1fn5uR48eGDdx/6w+Xcl7Wy1WhZcisWidnZ2DOaHw9MZuvSBMYibUaI3b960HpVsNmvOFtIdh4l9RSIRk8yHw9PWCVJy7GAwGMxQB9gv5w1bAMlyljmDoHHeGRuTpk2ph4eHJupDa4X9+HUhoEwmk+nwZ+rjvhQJUgAq+5yWeaZ4TPLA27dvG/QjwhI9OHw4BTbaR2oOhZ8/ys97pR9OAWLr/PzcDjbvApIh32d+bDAYND0GfAHOi43Z2Ngw0dtkMtHZ2ZmpQEFJHHKIXVAHB9NzA5Ks5k+kgHjl8LK+8/Pzdu2AV5GyXpTnwuHwzCVS4/HYUi8qaaQOy8vLllOHQiGb9kU0u7i4UKVSMUPEQOAIrs8TwSGS+vC9kgwhebIbFMCNfTRDesk6PxcIBCwN5efhDeAwOADM1GBdvbrak+h+4juIo91u6+c///kM/Ie89A2WvV5PT58+tQN569YtpdNpQ6Y4FOydGR8gyq2tLe3s7Jj+hUu44GawlXa7bWVrVMAerYF6QKnYEPZLqgTxyv8HbeKkfCpOMAcc8O/5fN7WjD0hKyCd9bTFZDJRGHjs690sLAfck0wsOFAHAvD09HSm/Hh0dKR0Om0lSx9ZfT8Bf0dq4ZWkvkzKVzAYtE0hTUAhCpGHkRHJ4B4oNZPKUB0qFAompy6Xy+bwkIQTRb1YjjZ7n9PzjnS+knbVajVTgZKXQ1iCatiDhYUFzc3NiVm6oC3WkIOFIfC+fBaRvFgszgxipuOXqhtrxTBjNCu0Bvj0Ix6PGy/A2vL/vTYG9INjI/rye5m+3mg0rAKBIBHHKk35BYIBKVqz2ZxRUIOYmB0Kp4Yt4SA4gP4Lu4OD8W0KtCigGmamChUjP9kOlCVNpQ9UJnFw/P+rqytVKhU9f/5cxWJRm5ubpucA3Z+fn2tpaUnhcNj2wau2eT4qib7yBhLHefgSLw6UtfGpuT9fcKOTybRrnrusQX1wJJ5qgOyNRqPTS8QlzZCalHvw8J5s4SWIEswcwRsCp+jQJF3hpTEsn/rg8ajhs9GDwcCUnVQTKCGyCV5ijEFR/eFQcVBBFNFo1AbZ4gy63a7y+byVw87Pz1WpVGYk/6QAdN5CVHoHAjT2h+p6WRq4KL2aOEVqR29GJpMxMhdEAEm6t7enYDBoQ4AozYZC0+YyyFx+t6/GhELTu3ZIQ8itmfNCxIJsR4dD5Yx37/V6yufzFvGSyaRFW+Cu722BC1hcXJQ0TTNwFDhmvlgbHEAgMJ016nNynGoqlbKJczgR1pfn53NAlQQdrx0Kh6e3HBLZsRl+hoole+TR9vHxscrlsgWsN99809D6w4cPrYOYNC6ZTOqNN97QycmJ7ROpGeiU9eCGOxTRBHTOGXNCOE8gTzQ2/mywV4jTQBieM2NvSYE8HcBMl3A4PDOiYTweKwwD6w81h54rGTEIoBUzNYnQsVjM5pfC9oME+HlPknrCEU0KY958WReYhhED/X13MJANcdRwOLSpaTQdeRhGXsv3tlotM9LDw0Pt7+8bNPZcDCgMY87lcjNzJYCRpDZsolfUUjrGIfP9dBrD71CtAj3gAOPxuN0Gl0qltLq6aqQyhwEDx8HjJCgJIsDyeS5I6erqSuvr69ZKAGqh34YZunA1oAWc7XVCGJThS+qhUEjlcllHR0dqNps22hMCkAMC2c0aeVhNMMKeKIMT/REr3r5924aWMzXN7yFlfE80Ym88O8/tZ5aA1Bg6FQhMR0JeXV1Zl/fS0pKq1apdGRqPx83p4cAor/f7fVOGf/zxx9bNzftzPkHqaHt4fn/dBCV2kA5UQqPR+I3qGPZCoN7Z2bHRCZwnaAZshj2HbmDdwz7i4uG9AwC6Aq2JJEREX5IFevmcDeO4zo1wUOEgiOI0g3H4cSj8AXpTjkRPQJkUKT4b4XNM6vKDwcCqSxxkclWEUIlEwthyckmip4eWHolc51t8WQ7HhePl3dlIoCkHg3WlnA5C9EK6i4sL69sh3aCiQBUHxS8qS2A5zg2Hj6MkEoJkQFzcQ8zAYb53MpmYbJ8UEzKQS6PgNnyqQgrBeyISpF+J52TtcLysGe9AQCI1RLl848YNpVIpuwGBNcGWWRNsglEApN6j0XR8AjcdgPq4Jynz5TWx2BXXPWQyGV1cXAhZBXcGUWmhIgIBi9NeX1+3cjMO36Mp1hLE7Cs2Hu1yZvgezgnIkHUIhUImohsOX43JtHLul6kbaT17DgLBH7CeYf+XklQsFvX06VMrHYIgvObCKz7RQPimJAY/8xmUGf3P8AIQUywGuZcvb3GYcFBEnXg8bkIzBG4cIK/K5e98aROYyuKBFLxh+XIz0M9XnDzvAxTmEJLjw5Hwu7iuk+/zG7y1tWWDpXq9ntX9mfiF02RDG42GTk9PZyphvkKxtbVla4hB4DCINpLs4NPhCcl2/uVtcqRpHB7sBCcSDodVKBQMGtOjgyP1xokzYMqd5xlAHIxQwHHDmRAkaDDjEntIevg47i3a2dnR3NycisWi5ufndXp6au0H/D54PtIJ0lsfbEDJkJ8cWLQi6EUgKOmaTyaTOj09lSRDNGi1Pv74YxOsvfnmm1peXtbl5aU5wNFopMPDQ+OTmPbX7XZNG8PZ9fQDwYL7gTzqZJ9wANhorVYz0Zz/wif46pAnoT2yDvtoz//wBI61CX9J2FCaxCl442WoT6FQMKUoqEaSNTdJmhmMQ1kJ4pDPIxcDPsHwX11daXV11aT5lFH94Bc4hUAgYI4H2MewGDQlwWDwN8Yhco0BxCupCjJhno/8k4UmtfF1fA4ZM0v4A1T12pw//dM/1dramv7Lf/kvkmQSd1DIycmJrfNwODSnBGclyVJM1hTNDF+kMcwrKZVKpqsYj8f2rERmHBHv1Gg07PeGw2E7CPAFGKovwROQQBIeXTKZfTweW7ctAjRSHH6WNeW5ut3pRPtWq2UBDBKXQ0Ilgu5hDoevauAccdLBYFCLi4uvoPuXz80zkVLwLIHAtDFzf39fuVxOlUrFeC7eB1ulssPoSXjAQqGgvb09dToduw9Zkk2C8/1kBD3szq8LaTHpJpojigDZbNYa8FCV0+dFWwtohrNwcXGhTCajdDptFVNS94WFBYVhdTk0xWLRFInkRBjBG2+8YYNmcBAYBCRNPB63QSy8CJsA74JHk6RkMmkQk0WBuaYWzm306DvYbIzCM8oYLWpVL3YbjUZaXV21qM4ENYyYSMRUMpwTRC2pEL/Le2nvTHwKw/NxkHE8XpxFDvry5Uv96le/UjqdNj6ItAlURWMbWhEcOqgGx4F2Bd0HzwyE52tubs6EU8Fg0CaosWcgIQIMFyxJU7hNKz/y9FKpZCmmrwr4KiAGyN4QVeHB/PBtnx6DCllfUolGozFTju/1enaPEj1GXqHtUxtsbDwe68aNG9rf37dABIoioDECEZRCOunlEIeHh9bsNj8/rzfeeENHR0daWlrSaDTS/v6+IRZsDaQWiUR048YNe3ecMzZGFy7IEkSBnYMocXz0jM3Nzaler89kBwRQbIxKFc2gpDW+aoSdeSBBBS2M4AYjarVadmk2XAZGz61b7Xbb5LtEa6I7m+6HK5MHM1cEgwCRYLSgHu8MYIyZAk9liX9nQXhBfp6Iw+Eh2kCecbBYMO8IfHl1e3tba2trVpEiugC9vb4GwQ+RCycRiby6h9c7Ha84pGT313/913r//fe1vr6uJ0+ezERI8mSILmk6CBhJNLk74x0wGJ4DfQJMPZLslZUVSTKFbSKRsPKhJ1BTqZSOjo5sLSTZlQsvX75UqVSyQVbXS8M4FHgX1g4kRpSnUY3WAXi5QCAwM3/EayvgwkhBhsPp9Q7I8uGRcMZeO0KFMRqN2sVU7A/PC9lMWkLgRSLP3jFZj/GL2Nv5+bmKxaINTDo+PrYUqNVq6cMPP1S329WNGzdsHgmHf29vz4Se4/HYpPPSq9GMHvXF43GrflJ9QewGwur3+9rY2FAikdBPf/pTCzyQqAQpzjfCNAIjQb7b7erg4ECrq6sK48ECgYC++OILewA8N4eKSUtsGH8wKEpU9IyQJlGfxmvyvfPz89bGTeOQXxxeiKjohW2SbPAQ3AAHHAMgiiDVp5yJhoWUjHSL6hUHDhRDXszn0MdSrVZtGFGv1zP+wNfziXZEPD95jYoQuThObzAY6KOPPtLa2poWFhbsginWgrGSy8vLxs8Eg9OWeHQMngfBGQBFQY9eaHR8fGzpJYcEshxnJcmQIaRvNpu1EjLCMIhb7IY9hTz01R2vUQKFshY4K9oMuOvY9wFRuSBgkbZy6RPox6davkLGIaEfaW9vzz6HZyPFYbAX71Eul42YRgYRi72aQ3x2dqa1tTVLl6+urpTNZn+DkM7lcup0Onr69Kn29vaUyWT0la98RaPRSLlcTpubm3bFRjQatdsv2ZvRaGRnh3NTLBaN+4EbS6fTunnzpo1hZC38aArSIWyVcZa+kdTzLv1+X61WS0dHR1Oy1cujmcXBgcDJrKysaDicXu1wfHxsJSciKlEDw2EmJZC01WoZ1wLfwe8hkgNveRGiEY6J5yENQcRGqY7eCBwDBBJRAGERiIjfy+AYngFjJ4KVSiV97WtfM81HNpvV0tKSdZh+9NFHphNgZgtOASdHBIWvQE1Izgyqwwk8ffrUjH9paUn1et2+bzgc2h1AIBwm/VMJoFERLQAVHS879xoicnmIT+lVRcr3QPGVz+ct/YM4hdfA2YA6cdoYIs4NZOFRHXL38XhsTpT3A66DMldXV5VKpawj+vLy0uA8kJtgk81mVSgUrGcI0pLgh9PypfxMJqNyuWyaozt37ujp06dWxh0MBtYNy90/TE2jislYxkePHqlcLmtpacmGOV3n2Pb393V2dqalpSULTNg5lVLshAOOc/aFBao+OJ9isag7d+5obm5OJycn1uIAnUH1DZRPagTtgQ1TmPAaqEKhMN0/IJEXESEdH41GRq4weo6cm79HcAYxR/kKeMvhB757CBaLTW9/83leLBazxUHzwM8BR3FgPn8mknBA8czAcf+ckIDb29sWVbjpL51OW7Rmse7du6dyuWyXDvlb2b/yla/o7bfftt/bbDb14x//WH/zN39j/TCgDQy72WwaUgF+8j50qna7XW1vbxvsZy4G64p83ouzgsGgpTl+wBRONBAImDjq4uLC0AkOG94KfouDhV4BPQQpB60QlHS9BNv/HY5jMBjY3nJgiZhUQUBJpBS8F04vHo/betJxDHqu1+t2bSuOEONn+hskMc4Ju2QgNekD1RiQdyQSmbnk3etJQL8+befzx+OxvvjiC41GI2t7AFHgRCC+ee6XL1/a7YMcdiqma2trSiaTevnypS4uLuzqWlonSPtJ85PJpDY2NkxztLi4aGNKeXdQN9kI1SwCJ/wegIP9kaaK3vF4rDCNU5Sm8O4cWsRMOADyKK8xwPsB2amm8P/hTGCpybXoT4DQQ/vhyVgEa3xhbAjY7ty5Y5EykUiY3oGDyaJAKNbrdV1cXCifz9uAF74XR8RBgYOh3o5eoVqt2l3CKysrajabOjk50cbGhkHTR48e6bPPPjO1KVEXroTcHgPigHOF5xtvvKG7d+/qs88+s8lfpC2hUEjb29vG78DUSzIHgWGPRtMZMUT0/f192xeIZlAE5WY/VY4Ih7CrWCzafF/SRV/NYmr7rVu3DFn4ahrrzdpCMvI9OE4iH04dziaZTNqoiW63a4I2bIO/I52RXhH4HACmzudyOfsd9AFhM4uLi4Zm4Q+kacVwcXHR0NV4PNbJyYm13K+urlqqzrBwbmngWbix4Pj42JxzoVBQqVRSt9vV48ePtbe3p+985zva2toydM3w5YWFBaXTaW1vb9t7n52d2d4cHBxoOBxqbW1N6XRamUxGjx49mtEhMZ0NnhJn4WUXpGA4dJwJaRHILhgMTlMboBVXdcKNIIhBUORLXZ1Ox8glX2+GVScqekEY0ZkHJmpgWHhgCFZIXqAbJSj6FGKxmAqFgjXhxeNxLS4uKhAI2PxVRED8Pp4JdSgwGd5mZ2dHzWZzBpm8fPlSL1680JMnT9RsNs1pfetb39Jf/MVf2LtS5SECNptNLS4uzhwkLtkeDofW/8JmYJgPHjzQixcv9Jd/+Zf61re+pe9973sG6SnZUiqkktXv9608B7Pv+R0iu+etQAIYSSqVmhHtsff+e7y4DqQIH0JUJ3JBOPphTDgDj9RAqKwL5C4Rlr0GkWBvOEw6shcXFw0F9Ho9a3EIh8P28+Fw2MYy+HeBUGRsALbpCWGUqPl8Xm+99Za+8Y1v6OTkRM+fP7f1gCPhQM7Nzem1117Txx9/bH1eHH4c7fUmR9LTn/3sZ3r99de1tbWltbU1myczGAx07949G9ZUrVa1vLyst956yzIGfg/9a8Vi0cYq+D0BjUWjUVtz6AycrK+GUSCAD+Osh+fm5nRwcGCOYzJ5NQoO6OM3HMUpm+tVcGwKjsGXVYkGyOCprmAcpCzU23lY4B/Rgv+GE0CoVigUZnQZqG673a5yuZzq9fpMrdxXqTwfxLMSLcPhsD799NOZqg6L+OGHH+pP/uRPtLi4aB46FAppZ2fHOkYh9zhYOBWimzS9HJpxBWgfAoGA0um0yuWy4vG4TSmDQJNedXf6VNGTz0Qcz1tgIDgvxhww6U561RoOmw+Zy/qg/WDdSNfgHMjve72eIRSIZebkElAg4nF4EK38O4GGoOLLtaSCjOUknQsGgyakg9zkd3DXLQ2b8fi0I5e7g6hU+N+N3eGM4ML4ev3113V+fm52AbdzeXmpWq2mer1undQ40FKpZFUgbKFarSoSmU7c6/WmN08y1R/0d/2ZPP83Go2Uz+ftuhdQIsj59PTUJqSBUovForWgwGtR6YH7omLEuR4OX3Wtc5bDdH16I8MDe/0C/49D7UkzlKp4fLwsRkFZD34CIRJfLDRIh5wXwRUVmoWFBb311lsqFAqmZSEa88W/kxKNx2Pt7e3NOCwOGI4KiMYhxyGRDvCZXghFdCeKE02p1eMkOawgNZ9f4gw6nY5d7cF1kaVSSW+++abi8bi+8pWvWJdrr9ezy7H8uvv8mENGqZc95d1wPhxAX3EiN+Yd/QS8QqFgE/dxXqPRyDg01pChOFS9+v1XdynzziBNSTPENMI4L4Xnv/2ohnA4PHN5tiTTwPj+kHQ6baQ/AQLlLWtGuRnxIjwB6S4BlujsA2mpVDJ+odvt6sGDB9rf37d0hYCHiItUhlQI/nB+ft6KEPzOi4sLtVot/eQnP9GtW7dmblngvGAvcFY4B+7cZs3b7bY2NzetNE5bQzQaNRQLnwbC97wk5xy0QuBnncK+U5KD4KspRGIOhfRKaEVUY1K11waQo/puV4yJiAphRjTi8yB68dZUGNbW1uzCIriJ09NTDQbT4TpMZGMRfMMdm81iQF7ifDqdjkn98fhAf99Ils1mrU9kfX3dyDaqDaPRSO+++66+/e1v60c/+pE5NQhSKi8YMM99cXGhdrutUqlkJOovf/lLvf322/qzP/szDYdDPXnyxJwx5fizszO7KY87c+fn502ExgBif1mVF1qxVqw1UYeIyyyWYHCq5aGl36NU0JgnZBE4bWxsKBKJqFqtWutCv9/X/fv3jZinoZH9k2ZTX/7Oq3Vxqn6vSZ+Zj4rj54sqGAgEp4NtYvc4WGzZE/qNRkONRkPLy8s24rHT6dgUQGa7FAoF3blzx9LXer2u7e1tewdmE0Nmsn7YEKViNFtPnjxRrVZTu93WvXv3lEqlrMzNQOuf/exnxtdcP9fYFqrzZDJpjmV9fV2np6dqNBoGEpAqsMYEQYIV5x/hY5gD670cuZt3CCwq5CVfGA2bDanF9xGRfJ7OBnLQqWBgIEzWzmazFs1LpZLef//9mdIaCjwIu16vp9XV1d8ot2IY5KUw/PAxKCTZRDwwegNKdel0ekYrEwqFjPBk1gkHiEMIgcahJUJwH46vYkH0hkLTKz6/+93v6h//8R/1Z3/2Z/rTP/1T/c3f/I1+9KMfGZ9DykKUxVlQ+UILQ5dqrVaztI4IypjCWCxmpVOMhP2D9wC5QBx6pe9rr72m3d1dc0CU2v/8z/9cc3Nz+vDDD/Xw4UOFQiG9/fbb+pM/+ZOZKgGo7JNPPplRj+JUfFAjyPkIj+MBuVDOBZHhSDKZjLrdrvVmcSgGg4Hdr8SeYJMQ5OiIEJLFYjGdnJxob2/PDn4qldL777+vTCajlZUVc5abm5uqVquW6oH84FK4nzmVStld2fF43AZs7ezsmBMeDof64z/+Y21ublrgOz091fHxsR4/fmzEPKkbwZOqETqTubk5NZtNayGhhA/iYKwk54sghAYsHH51XWyYg88CctCJBmwIToYP5ef8sB9Kd9wjy/fwWT7as0GkLTghdA9bW1t67bXX1Gw2FQ6H7dpKyFGqCouLixYJveCNSJ3JZGxuhp+g3u12tbm5aQvFGmB4QGvIZFSfjUbDtCLhcFg//vGP9e1vf9s+o1qt6rPPPtOzZ88MCSFWQhjkuQ5SwFgsZteWptNpFQoFtdttPXr0SP/0T/9kjpfSI81nXjdDCjaZTEytjBoWIs2T6/AoXEeJVgCHD6eDVoLfgygMO/HaE/gFonW/31epVNJ7772nfD6vbDarfD6v1dVVRSIRvXjxQj/72c/0k5/8xG58o9mQUjb8Crfyob5mWBQ26QlrHA8ojB4enD3NiRwcVM6kvKTfpFEgSHp2uKGuWq0qnU7b4dzc3DTi1hPaOF2CDAeZZwYxExRwxojs0CYRvF6+fKlyuTzTNJtMJk2YmEwmjbIghWcQN5VTbj6EL1lbWzOkMzc3p7OzM0shEYp6JTopmCSFIQh9vZ+D5EtBaC+APOSZnkfhMNHchyKSSsD1G8J8D0EgEND6+rpu375tuXIymVSxWNSNGzfMKKi1k6OCaKgYsVnxeFxHR0d69uyZ3njjDVtY0AR9Rf1+Xzs7O6rX65af4tQk2awNeBRgfL/f1/7+vh4/fqzvfOc7MxzE7du39YMf/MAMhcMFqgN9QK6CwP7wD/9Q9+/ft7mZP/nJTxQOh/X06VO7SoKuW1ICyEsQFnn23NycarWaVZIQJqFkpmQ/HA519+5dNRoNE0ox6pB9x9FJsn9n3zno2APPhg7ov/7X/2op72g00vb2tq6urvT1r39d9Xpdjx8/NrsjvYlGo9rc3LTrJjHYzc1Nra+v6+HDh3ry5ImRsgxyApFR3kTUiEPDMSA18HfOSLKDhbMdDAZaWloy9AePQ9Pk0tKSdnZ2TFN1nRc7OTmx9BU5PfYOFwRvh8NhD7ETxJnM2iWgPXjwQNFo1ErRHjEzdY7AtrS0pFu3bml/f986lLnZ8Pj4WMlk0ho3QcnMU0GsSRrLPsIR4vTCvtZO7s5CkgbggShf4i0vLy+t1o5XZ9Pwgp7pxlnxMEDG+/fv6/bt21pZWZlZbBR3RNrBYGA1dFqtge++N4fSdCKR0Pb2tmq1mhYXF62mjqrVE2fMmyBPjcfjarValrqQ3rEWS0tLNmCm1+vp888/VzQa1dbWlpLJpP7dv/t3+u///b/r4ODAHAqoh5IbRDLIgNmqP/7xj/Xf/tt/kyRj0alW7e/vW4WNg7ywsKDFxUVDaqDAQCAwE33fe+89RaNRff7552o2m3ZXC041n89bdcHzB4VCwdI9HAifTc8R095brZbZT7/f12effWYBg+gViUT0ySef2LhKUF8wGLTGtz/6oz/SBx98YF2qEIOTyfTunG9/+9vW9f3JJ59of39f+Xxey8vLikajVhGBJyGlJNWGP0BESNmUYDAYDFStViVJa2trhrxDoZAFk1wup3fffdfSTSpErVZLjUZDZ2dnevHihaVeVEZCoZBOTk5mRoHyeZCZPriDjAluUAlPnjzR4uKi5ufntbS0ZH1K8/OvrkaNRqdzfg8PD5VMJk1+QIrjy+zdbleXl5c25On+/fum1IXI5k4cnnU4HKpYLE6HPwP3ySl9pyRwlgegzwHPj8NgMzAI0iFeHo8Lx0Eev7Kyou985zvWPYnDwfg86UpFAvmyFy15XQPQHbbc97QwApLnQPFIxPF8Bg4MsRalYZ6NvpK/+qu/0l/91V9Jkv7jf/yPWlxc1Ne+9jUtLCzoe9/7nvEmpEg8Cx6e9/7ud7+rUCikTz/9VMPhUOVyWYFAwGZbLC0t6cWLFzN8Fp+LaI71ubq60tLSktLptI1E6Pf7Wl5e1re//W09fvxYmUzGSEYQJfwYTlySjT948eKF3nzzTavKZLNZE4pxIHCYrCnvyH8jnEMxCiryKmZuqltdXbX38xUl4D+o7v3339cf/MEfmFBOknZ2dnR4eKhWq2WEMWQxZDnl7mg0aq0hCOUCgVcT9ur1uqV2OHAIXabK0W08Ho91fHyseDxulbiNjQ3t7u5aj1c4HLaqIzoYeriY/k9Kc3V1pf39fYXD0xGjnDHO5OPHj616B3KgjAuqqlQqGgwGunv3rhYXF00GgcaK+TOgD1CuvxKWlggaFPP5vDY3N+28hH3ZlpwadILBYgREY6AzhB1VDy/cwXEQnTBwtAQ3btzQysqKstnszHAbnA9iJn4GY+VgkyP70h4ogmja7/f1L/7Fv7D5ECw0/IwXii0sLOj09FSXl5daXFw0tprpWryPh/yZTEZHR0f6wQ9+YAv68OFDZTIZ3blzR//4j/+ojz/+WIlEwqox0WjU+kR4Xq7f/NWvfqU33njD1LkQwBjJ3Nyc7t69a93Zl5eXM5dY8XkQmJPJRGtra5pMJjo4OLDmuXa7rcXFRet6BWkRFJC+o9DksNFgBt/DYSMXJ5j4si2aAz9LA4flUwGqI5eXl7pz545yuZyJ+uDCmKzOwfJDrL3gLBaL6c6dO3bxfKPRMAhOWgfaBPH4yiPpwnA41OPHj/XixQt985vftHTx6upK5XJZlUpFh4eHikajM/L3VqtlkokbN25YRZJDSXBl3mqlUrGAMRxOG0nT6bS2trZUqVSsVOurJjjYjz76yL6fe7vpyj08PNTLly9t/EA+n9frr79uF4j7YgJpMNU5UCl6EqT6pVLJ+MZ8Pv9K0+Nl78Ph0CTB/f50pgQDYpg1Qr05Go0aoYexY7w4BA69Hx6bTqf1wQcfmLoQJ0MkoWrhyT1SJRwTEQzDp7qAYXMVA9OlMpmMlpeX1Wq1tLu7aweuVqvpW9/6lgnWeA4ukqKKgZHjiFgbohWRaDwe6z/9p/9k6IHoOxqN9OLFixkNRq/Xsyn7GxsbxoAvLy+rUCjMdBSjKoQEW1hYUKVSMYOCaKPaMxwOTeHJbX205ePQaTXAiNfX15XJZKxnY3V11dIXjKZQKBjqIAVlBgrcgr8Lhy8clf8iGpMKo0aF6/oP/+E/6OHDh0Yy/tEf/ZH+7b/9t/rxj3+s1157TXfv3lU4HDay/tmzZ3bQ7t69a1W3zz77TNK0Svbpp58acUpKyN3Ct2/ftmBFDxg2QrAh4LGmpCtUU1AZ0zkL/+QLCgzd5veDBhFWMtpxc3PTAiDVPH6OIO8FeCcnJ3bVLmgUp8d71et16/TGiSJqPDo6MnU0NwYQNMrlsvb29gypgCKRLYxGoylHgmEQ+cnZpOkN7dyIhlGHw2Fr4PPqVkk2bAeuhVIdxO3GxoblsUBg321MyZl/ErGA3PAVQDhfYcIpMmv15OREp6enunXrlk2F4hkDgel9L/V6XWtra7p165Yt3sbGhhmFPxgnJyd2CEgfcExE4lwup0ePHmkymei9997TgwcPjHRGlk/Vg/Ir5c/xeKxKpWJDmGgS5KDW63WrFlH6htwkyuMEcQIQzyADOA/2Gv4AhwSXwdqSP5PCXE8X+T3kyx5pXE+ZSVX5TFAs+44g7D//5/9sz0L15vvf/74ePXqk58+f61/+y3+pp0+f6nvf+56VLH/xi19YIPz3//7f65vf/KbC4bCVvrFpHAy2J8n6VIbD6VR2fw8NyJeSMc6OVBwdBQHQV3l6vZ6hKuydtAg0FY1G9cd//MdKpVLa2dlRrVZTJBKxtPbGjRv69a9/re3tbevghYwdjUYzw9PZU9AXw6fhfh4+fGgEbTw+HVN6dHSky8tLNRoNqzR5xwYSfOutt2x2ML1JkNaXl5fT6yh81PfRxOfwXmzE98Fl8GKlUsmmnGPMy8vLeuedd/TVr35V0WjUvCHp029DMxCbGDqOBU+I0/D8yWQymZkIlkwmlc/n1Wg07N2KxaIdUCAxXb/ZbFa3bt2ygTVsEO/thxKT6tB1ubq6aqnO2dmZ/uf//J/6wQ9+oH/9r/+1/uRP/kQ/+clP7Ka2Xq+nYrFoBu3hPeKl4+NjBQIBLS4uWupGZQynUSqVbA98OwIVBXJ9Uheu3SQKXVxc2G11lO5Bj8Ph0NSZtBrwORxC9uL09NTuxEWr43U8iMCA9hCA7BnP7hXTHET+/caNG3r69KmePXumwWCgv/7rvzYEMx6P7VrRQqGgDz74QCsrKzo/P7dxD1zKTQoA2Y/M+7XXXrOrOID5fE80GtXh4aHeffddQ3TRaNQa6OhrQgqBBkaSlWEh8uFYGK2IM+EeGziZfD5vhHahULBz8uzZM9MQYResJ1eFsi4vXryw+cDogNg/GlfPz891enpqaRw2U6vV9PTpU92/f19LS0szg9R94Cdlevny5TS14cPJw/1LF4tFu9OXB6E8TI6+uLhohgWRw3WXf/zHf6z19XUzRPgIIBmwl83wDsKrLj03QRoBnMYYvdOp1+t2pyslX2l6v2ooFDJ1ZqfT0cHBgXK5nJLJ5EweCDo5OjqyA4OjA5pSdclkMqZu5Ub3ly9f2vWHpF2NRkOVSsUqNBCMvpPU3wDvZfv+oIJWuH8ZtS5rCB/CXrJvvprmeQvWlEPCjYkYONd7VqtVS7Fg/2HyeQc+D90DPSgockGakLqQ8zwX+0xT2KNHj+weYtSU7BWkdzwe15//+Z/r29/+tra3t9VoNLSysqLDw0P99Kc/1Xg87fr1jaTYC+krKST9OJPJRJVKxRA4yk/fBkARgruGQOxI470UPRKJmKw/lUopn89bSop9hMNha0Rlv373d39XqVRKe3t7RsZSxkb+QH/aZDIx54/OiFYRAmatVrPB05w336e1v79v6Vs8Hle5XDbEMhqN7MLxXm86YPvly5cKk+NQhoMkg1vAa/tSFGQldfZEIqFWq6WDgwMtLS0pFoupWCzqX/2rf2ViJry0147gKFhIqi/e8wGzIRAxeJAJ3pT/x+8gn6X3heelAhIIBPT06VMjBHm/er1uJB2VBa6c9JUh2HcOAWQquWMgENDnn39u8n4mxBeLRSuZ8my+bZ9rN7n/NhgMmnMGbfX7fb18+dLKvQsLCzo+Ptba2poymYzNeCGqSjINDtUejAs4zvfgmLggjOpSMBg0NS5OgHUFoQLdJVnXra+kcTAWFha0urqqYDCo7e1t47OA4ZFIxK4o4edBa2iFGKjU6/UM1n/44Yf61a9+ZU5wfn5+Ogbwy32iGuOFeV5n47Ucsdj09kgqNsPh0MYXDAYD5fN504mAYPk9vp8M3igcDhtvRvrjp5PBzaysrKhUKhlqw0nev3/fhIhetj4ajbSxsWEaE5pDfbZAEGHMwGQysXESHhnCWe7u7iqbzerFixcKBoO6c+eOKcdp84BTKpfL0/Scsp80HVKytram0WikL774QicnJzOyca8vKZVKpjD05bKtrS2999571tKNwZLL+1o6xCNf8C0cMqIEP88mEmX933ujQ2fhBx17TgBjZoYlsBTVJukLzxsIBFQul+37cISRSES5XE4ffPCBCdbo/ASm0gFKFQZFIaP3SOtIv+hi3t3dVbVaVSaT0d7ensLh6YwMiMnV1VWdn5/b1ah7e3s6OTnRBx98YMQyRnx0dKTl5eWZ1BHe6/9r7sx+47qyq79rYBUpijPF4mBKIqnZkifF3e0kjTTQiV+SAEHe8pb/Lu/91EAQIEECBEjcNrrdirspWRYlcRbnqThVfQ+V3+a6W+dWUbYDfAcQVKy699xzz7D22sPZB9BWacp2efbrYPQFNEjRwN+MF3XjRWFhAa7FYtFjeRYXFz3alKND8AJQF/YEDIUsZFhModDa+9LT02Nra2v261//2qNMu7u77enTp/bmzRt79OiRt4NtBahiMHEFPjXqYw+DvWGbApiYXwcHBx6SQKrFsbExl96VSsUPG8dzd35+7sZbAuM++eQTB+Nms+m5hmEchLsThIkgpCDgCCRUFZGARNy3b968sZWVFT/sDaBmLjabTc+chzDAYzg1NeXpOQYGBqwMqrPZi9BYXfQUJplGNWKPeP/99+1nP/uZGzpBNyaXqiLcq5Z9Jp2qKRgIlakAHjrZkLDaLjXQIiVoFwbhoaEh97osLy97RizOM65Wq7axseGJmljwavEnhB8XqNo0yCZ+9epV29nZsW+++cbm5uZsZ2fHNjc3HVy6urrsxYsXdnp6ahMTE9bT02NTU1MZRsH7cabs9PS0B+3R1pWVFfvqq6/s4cOHmQVOtnel7Lg/q9Wqx1qwFQEXfqVS8QOll5aWMlnESqWSzw8Yndq5mIDYktjuD13e3d21lZWVzHhduXLFhoeHXRUCxDCOswh5Fl6DiYmJTDAZ6ubh4aHvidne3nbpTsyKqncELTJvT09bSc6JWjUzW1hYsLm5OY9DYp6quoT6hn1oeHjYBgcH7fXr1w7gsGwia8mzA1h/+eWX9tFHH5nZxY7mvb09q9VqNjIyYl999VWGRastT43vCGJAanZ21hYXF217e9td3qOjo77nDQZMZOzQ0FAmHwxR0SMjIw6mGFzLpNhnx+Hh4aHNz8/7oKGSaGg0SXauXr1qH3/8sf3pn/6pe2IAB93Yx9+wCDV2YZQFbAALNabROSAvxjz19sRnYbNRwEMPhCY3Gg3f98HE29nZ8dMENZ1BvV73g7NQm3iXJ0+e2OTkpM3Ozvqkp103b9607u5uz1oFSC0uLvrZPwQEEQxYLpdtfHzc1alqterWcdyD2JrK5bJHyHIN1Jm4gPPzc9+DoUF4eKag1WqAxDaD4ZFAumKx6MyB5N2pfTxqnOZZvOfCwoK9fPnSent7/bCrer3urGlxcdEODg5sYmLCA9TYiUpQG3ORrQ/9/f22sbHhIQsnJyeez4X9WHiMsAV1dXXZjRs33A63uLjoKhs2ClIhoEIC0JxyyHGghIsrayU+CJWtVCr5iZAEJZI7hFCF7e1te/nypc3Nzfl6IaT+5s2btry8nInRaTQa9urVK2cezIWzs7NM7A113bhxw3p7e+1f/uVfbGpqyprNpqvfhAQQrHd62kpEXq1WPXIW1XN5edl3w798+bIFJCMjI9bb22svX760paUllzSqQ/f29trw8LCn1p+YmLCHDx96wA3IjkqibENZB6CkBlXUJ6VokX3wWXfjQuEUwJjIsB/sLNyjYEabUIEajVZ2MnRjSk9Pj21tbWWYEYbQ/f19j2S8du2aS/Y3b964ZCevBOzn0aNHvk8GCTU9PZ0JANzd3bXl5WUbHx/37QAK0P39/U6VoZ4DAwO+M3Nubs4lLxGSCwsL9ujRIw/2gmlh6CS1AlIIaUjMAWkfmLDLy8uu5gHw2JaQlBpLA5srFoueQ5S/8fxxzEm5XPbgO6Q7e0kAHTLZY5jt7++3L7/80vr7+21+fj6jql67ds1D3fGCwH7xIBK9CXsl7QHqLf2FOWBxcdFKpZINDAz47mv6b2pqymM52L8EO2WjHLFYAFmj0Tp/Wm1JyrgZd7OW0wBWj/BgT9Dm5qZvZGS7B+obHkiEDpG1BDgSrgFROD5uJa4mPcGtW7d8Hxv1vH792soYS968eeNhu5obFO8BKf5++tOf2sOHDx3ZWbAYPFXNSBVsGhqOT3ANv3MNOqvu92ECIHXVmKef9W8tgAEDh+rG9eiiqDEEGMFMiPQbHBx06/f+/r7VajWbn5/PGEgBKWIJ1MVZLBZtfX3dQ5TJU0JMCaCC5Dw9PbWNjQ2f9OwgXl5e9hgH4j3QYwlhHhgYsNXVVT+3dnZ21g1w0OyTkxM/67bZbPr+HHJmnJyceMQvbATvkgYVYk8rl8vu9QF8cK3DwgCx4eFhGx4edhWsp6fHpqenbWhoyJ4+feq2ATaWEYjX1dXlu6TxoKCSwYDxQrFrljkB80Co8b64ZKmPAEzCFJDgq6urVqvV7Nq1a26PwiBZLBbt+vXrzmRZ1GbmY8N2DNQbzhJqNBo2PDxsOzs7tr6+brdv3/Y2cz1CZGZmxo6Pj+3rr7/O7OQmOfny8rKNjo5m4ogQRCMjI66akc5ha2vLQUcdF2tra7a0tGTVatUmJyd9hzq5bu7du2dl9X+ra5VFis736NEj+/DDD61Wq2XiTGAAygZYzAoMFP1N7SiAh0baYrhTeqxqQwQJtUKrWxhai2RUCzXPgNXMzs76ZjIMcGaWsYGQogADLQOFZMX6zoDs7e258XV8fNzfEYaFcRgVAp0cTxALWV10uLA1mzmsrl6v2x//+EdPeH3t2jUbHh62V69e2RdffGGff/65ffDBB/b06VPb2NiwnZ0de/Xqlb1+/dpmZma8f8gH09/fb2NjY55p7uzszObn511PJjkTXghUL/ZrNBqtHazsEwJoACEicldXV10vn5qaclWqVqt5Fn/OZWGrPjQeo7wG8p2fnztjwzOCxwe1Ga8JoMIWAuJtYB9HR0c+dl1dXTY5OZmJiUF93NzcdJuFemOKxYsk6bhlmQMwPubigwcP3NXMqYv0O0eQcj22Izyt2OcGBgZsbGzMNjY2MgyEZwHubLEws8wGSlgZoQ3FYutY29/85jcOKsVi0V68eNFiR/j7sbQTc0ElN2/etF/84hd+JCONB0RYjAoUWlLMBDBh4bP5ioGNTCJ+5pkABuABSMBY1CCrbdUAN75n0Inqm5+ft9evX2fiJNhIhQTb2Niwrq6ujFuV3KXQ0mKxaDdu3LCBgQFbWlpy41aj0bBarebvBOvAaIjkg5GYmRvJsA8NDg7azMyM27Oq1apn0RoZGbHx8XFnOFzTaDRsfn7eqTau56OjI0+szb4TdbEDpmZmS0tL7gXRADLoP+CEmxT9GtZpZp4GkOQ6Z2dnnspxeHjY7t27Z4eHh57F6/j42N3RZq1NeXfu3PFjLY+OjmxjY8MNobu7u64ysinO7CJeBvUBoMBIriBw+/Zt+/3vf2+lUskjjtllTWQoUaTkWpmcnHQBgnsf2xPAwVzBFnZ8fOzMFsaF7YuUlfQ3qRbX1tZcrSoUWhHBqG6NRutIjf7+fjs8PHTbH/OMfWXEzyAIWd+YD/r6+uz69es+voQEFAoF36pxfn7eUuehXVB3dPdyuWyzs7P213/91+66U7VFWYYGGKkbMAUE/K52Cu5TdQSAUPah7IcJFQEqpc4os1FbSqqN5XJrV/PPfvYz29nZsfn5eXvy5IltbGz4tX19fZ5tjAha9kYMDw/bysqKh8M3m62Nc0xsoisJpGLBkjxme3vb83Ag8ZA+jUbDk/8g+QlQwri6sbHhagbJbwjgunHjhudf2d3dtZmZGevv77eZmRmbnp720/Io2EfYNV2r1axYbGXjqlQqHlau6hDqH/NE00ggJIhzALhJUETU58TEhId3E/THYtA5gorKMRgYZWEs4+Pj9tlnn9kf/vAHt9fgucO4TEgBngk+I2hIdcGRICTjOjs7s5WVlUwgmO4uh6ECAhqagNqFugII1+t1d8Wur6/bzs6OTU5O+p4c6hscHLQXL174vcPDw74TnX7+9ttv7eHDhzY9PW3ffPONrxnAnl3AqGVoIHzm3Wu1mgcOdnV1uZdybGws410tE+qKQdXMXJX58z//c88uFhepLnAFlVRRrwxgogta3cIY1vQ+rqMoCOnz29lmkJyxXfqZtqDXXrlyxT744AO7fv26T9bnz5/b4eGh+/cJJyddI2hNtPDp6an93d/9nS0sLNj29rYPJO9AsBLuVHa6agoDAH5sbMxevHjhi7Ovr8+WlpY8EInNY3hCUJVKpZKzpN/97ne2vLxsu7u7HnhHMuBGo2EbGxu+oxcm9Pz5c5ucnLTp6Wnr6emxsbExT8aEGsQ+DVzapVLJM6lrMN3Vq1c9ihiX+urqqtte2HT28uXLjApq1pL6hKTfuHHD90QRkc0YDA8P2+PHj+3TTz/18HP6s1gsenswCqMWAE4sxv7+fvvJT35iKysrtrm56UmRnz596m5nbGkLCwvOTGHF2NgAeZiCgsri4qK7bhnnnZ0dW1xctM3NTfvwww+9jSRmhq1ijyFRNGOAygdjbjabfuzp2dmZBxXCPNgWQV8jwBAOqGSkjejubp0U8M0339jZ2ZlNTk5amY6A8k1OTtpf/MVf2MzMjFOflIs1Lsa4iHXh67WAiAIAL4snR4PReGGtX9uj6o0ypggSvAfSI2W3OTs788AyFnWz2fT4mtHRURsbG7Nnz555/AZb7tfW1qyrq8uDzs7OzvwgrX/913+1xcVF++///m+3V+DW1E176+vrngmNCbG3t+e67dTUlL333nueEuDhw4dufCVI8O7dux7WjkEP+06j0bB79+65CnZ4eGi///3vrb+/37a2tjzrOdK1r6/PF9Dg4KCrebAlkjMBihj7MCizgDDYVioVZ3EwL7NWzAnqI/tSmEPE6BwdHfmuXqKuMf6atexJU1NTduPGDZuennYVslgsOhi8fv3aJSsb3ghuA5yLxYuwf2xU4+PjHuVNqk3OlCkWi75LeGJiwiqVSiYqFxbEWExMTFh/f7978Or1ur169cpevnxpt27d8lB42CpbPWDBqETYp0qlkgeajYyMuL2zWGxFDaOOFwoFB87R0VHb2Nhw0MakAMjASvA44vLH1gcbv3LlihvPy3T2wcGBPX782FUZM3sraOyyIMICz7snRkKyuFnMqYCz6AbT+2NdqTarUZeCMZbBUe+Rqljaxu7uVkJewIVB4jAsUH5lZcVGRkZscHDQfve739n29rb95Cc/8ehHAFw3TOGt4YAl4gswJhK2jQFsf3/fg6/W1tZsdHTUUzHiodjb2/N9EQD2jRs3fCI+e/bMg7F6enp8tzP9ODAw4ImdAFnYmEZ/EluDpCeTHUmN2TS4vLxs8/Pztrq66nYdFgzG1a6uLjs4OHD3Li5PQvKh1pVKxZ0EXV1dNj097fu6dB5A/9mgadY6mWB4eNglLoFy2MjYS0P6QQL42DC5s7Nju7u7NjIy4jEVsAQ8VLieVUDhPUP9Q42AnbGQYebPnz+3er1u9+7ds62tLRsZGbFvv/3W5zsuebZHMF+wfcLyhoeHbXp62k5OTmxpacmGh4f9IHRspKibx8fHtrKyYtvb2zYwMGCTk5N29epVe/r0qRuu1QN5dHRkZXKK1Go1+8u//EsbGhryiaSqTJTgnYAkggpMhAbE+3iW7pnRCa0eGW1HJ+OvTnhAKrYL9yd1ah3KfgCTmzdv2uTkpP3Hf/yH/eEPf3Adfnh42GNDNjc3nXlgoLp586a9//77Hi8BiykUWntJUIl4LhOEfRSEw+OShr2QOwMXIKH3GErfvHljk5OT3gcat0IgFmHcExMT9tvf/tYGBgbs+vXrHrxGNC77LFCbtre3bXh42FXB8fFx3y/EsQeEjJ+dnflGT3UJb21teawFrJFD2oktqlartrq66io4MRjYat577z0HOGW+/I1qyDjDKIj3ISBT79vf3/c2HBwceCQu6snAwIBHGmNkJeE464ctGBi6UXsGBgbc1oJNiDHDbX10dGSbm5tWKpXc6EkAHB41gAcPI/lP/vjHP1qxWPSNppoUemVlxQqFQmZ/HWoV87Fer9v29rbvJicGCIMsmQAgIeXz83Or1Wr2V3/1V3bt2rVMcJcudF38lwEPXXwq1SOYcE10HattRIEoApu6jdUGo4Ch32vQG89BhaGkjMMsbtSt7u5u+/nPf261Ws1WVlZsdHTUPvnkE096hBRF5ajVah5+joTHYAoTI5BoYGDAFwmGcGgydomVlRWbn5/3iYnULRQK9uLFCz92AhqMK5ECG8MrgiRmw+Hx8bFNT0+7gff58+d+QBN2B2wGGH9hEvQ3Vn6iKzWMXHeAkwIA2wzMhMPfybEyODhojx49cpWgp6fHZmdnPSO9jpvOL8aYBFYsYAANO83W1paNjY05Gzo9Pc2cf0RAJgmVC4WCvXr1ysdRHQK4jovFok1MTNj29rbbQ1AjiKAm4yA5cAGdZrPpeVXX1ta874gwJf6DxF2wmOnpaY+6Zdc7dqTBwUFPlg2YEPODRwmbGnNEVX3sYYeHhzY6Oup9UB4aGrJf/vKXduvWrcyCjoXFxoJlcC5T1DAbJX20meTFnGh0qy7waG/BzqJFr9X9ILEgDaJhl6IAd37eykr2J3/yJw5O3d3d7iHhDGJ1kVLYTn7t2jWfrGovQtqy+Y/Nc9hCkCAct0iyI82zqR6R1dVVe/78uX3yySeZAD/qwbVP1Cjq2uLion333XcevDU6Omrvvfee50K5deuWPXv2zJaXl91Y2Ww2PRUC3hy8LbgRK5WKG11hV0zwtbU1X1T1et3Gx8ft0aNHNjMz43YP3MBszovzKjW+LJA7d+7Y8+fP7cWLF97XjB3eSbOWexoXPm5UDOkc80reUxL+4I2iPcT4wNBwlWKvIMYENzD71Hg/TlFA1e3v77cbN27Y06dPrVq9OBtHPWNktJubm7P/+Z//ccAmsIxnAFiMOeCGkRkWT9Qr2ysWFhZcdbp+/fpFfMw//uM/2tjYmJldnBafYhpxkb9rSRlAlUlEW4QCAwsjtkfrUaaS1079TRkMbi8MvilGkuoTDeThbwBWQ/qJV6E0Gg2bmJjwc2HJVzI+Pu4uyMnJSZfMgAj/ME7W6/VMRCbCAFsPuWWg5mtra3b//n3r6uryeCGNbSCC8/3337dyuZWbg/B8olwBmUKh4PlmySKGtCJSs1gs+g5fKDH0GIPn8XHr4G5OEYQd4ZF48OCBPXr0yONeyuWyTUxM+LggJVNjFPuc7RJkGmNvzeHhoZ8lhFRHAqPasFipA5aFQCAYj8WJB6+rq8u2trYyJw0WixdbBLAz4GkjLgXPCYdU7ezs2PLysucD5sQFoqfL5bIbWfGCwpIwkBPOgNaxsbHhSbQLhYIDiJk5Czk8PLTvvvvOHj9+bIVCwecLAIJHpzw9Pe03dlo8umAvo9YwgKkAslTp9HvKoKt7UJS9KHsye9vWos9JAQ/XUz/Ppw0abctz9BkR3OL33d3ddv/+fZufn7dCoeB2ECQ3tBGXLHac09NTDza6d++e1Wo13xuFWqXJn81axykAVoDFq1evbH193e7evev2DYALNtBsNh20MMhtbW35AllYWPDryPWCR0cjfdm3g0qBi9WslRaQFIYwH8C3v7/f7ty5kzG2YkfQMdc52U7YMT8qlYrNzMzY5OSkZ9VDsuMK7+7u9vwheJdQYdihzf4WWNfBwYEvMtQVM/Mzb4jZQnUByNhuMTY2Zpubmy7QCXYE7Or1us3Pz9vo6KjdunXLPSpsVcAYrEdxYKsxMzeikiOo2Ww6iyF4EecDRvSTkxM/yoJ6NdKWs3LKnDWiuTu0XNYW0q60A4dO1yooxO+1fan7op4c/2lRu42qN/p/yl6UCphL9Zd+B+saGhqyBw8euNGPxM3QcyTw6OioNZtNjwblWbp7FBcpQXDYWliYAwMDNjQ05JO0t7fXvv32W3v69Knv2TAzX+ykotza2nLJiWsW4Ovp6bH19XWXZGTwJ/ITdyObxQAgEjHxG0yFBV0sFm16eto+++wzGxsby2RyUyabEixq1Nd71IbC3MHOo+M4Ojpqc3Nz1mi0jnv453/+Z2cJuO451oG8Jv/2b//m40VkKh4zTkQ0s0zg4bNnz+zg4MCfX6lUbHV11e14x8ets6VJ4UD7NjY2fH8RoKMqDuweFjsyMuJRqoQXsKWB/uc8azxLqL26dWN1ddUZDu9zcnJiq6urLa9inOgqNX8IgERaGZlBqqTAAhUhAkXK+Kv3XQZIIkvhOgYi9kUeoMUJmipRreP/3t5e9wIRN/LmzRvfy4PvvlxuJTJGjcJgi7WfuBNiJcgH0tvba1NTU3b37l3fBKfZ2jHewryIjejv73e3MekLSJHAAnzx4oXt7++7radSqdje3l4mIpVFBUMC/Ij+VENls9lKE/g3f/M3Njc3l9k82q4/tei4tWPW+lkFAIvy/Pzc00YQT0UOUwygzWYrxmh2dtZWVla8rYABGdvHx8fdNYzqjPsd9kYYAM8nJgahhrdqZ2fHcw8TxMecxTXb39/vwFmr1Wx2dtZOT08dvEkmRQxQpVKxhYUFt8npfNbd9eSzwaBeKBRsbm4uCyRxYfxQENHGRPBI2SC+b4nGUL6LTCZlRI7AwN86GdE5dVLmucUvW1LGQVIxXL161cbGxmxvb8/+/d//3ZNXcxQGNBd9fG5uzq3r6KzEpNy5c8c++OADGx8f90kzNTVlX331ldP3paUlq9fr9vOf/9zDn5Gu7BwmxgHQYbIPDQ05fd/f33e7TaPRcFpOtDR2IzaBcgAXbs5qtWpLS0t269Yte/jwoUf7wlAu09cR7NvZy+j/1LxgTvX09Njnn3/u3jTGCMMt9p5PPvnEFhYWfEMhxvXR0VFnjHoQFTYj1D8C/hjb3t5e++lPf2r7+/u2trbmh2Tdvn3b+w0hpMGG9DP2LBgT+UxGR0fdMI5nqlar+bYO9vVonxHjwvjRZgQZht1yXOApo+gPKSnGoItQbRAMbAQHGEKsL8VU8ty48Zo8esz37OVR5qKf856Z9955bYm/I33ZG6PGWFx4BFERMcmmPJL5cN0nn3xi4+PjGQM2u3lZ1Gyx1+MeYShILfKZcHRns9lyS/b399vKyor953/+p2//LxaLNjw8nPEKmZnH1GBQrdfrHtA1NDRko6Oj9md/9mf2i1/8IpP/VBlDJ/taO8N4qkT7CkUFhQaVaWyIxlk1m0178OCBPXjwINPXjE2pVLI3b97Y69evbWlpybdPALakkOjt7bVarWa3b9+2mZkZ+/rrr91Vi31oZmbG45XYcMj5NoA6QoB9QswdVE3Awaylys3MzFij0fA0jKjDqLh63AoMhtgVbGIZRtIunuJdy7sMZrxPY09ol9nbAKDXKAOJ76CsRCdOHojkvU87JhVBqZ09Jt6nz6aeUqnkHpZnz555eDZGyWq16iwDt+r+/r4Vi0W7efOm3b592w1oytCKxVY+EkK92cl8fn7u2cLJCUoAH1GqeH+IhdEkT2Ts39zc9Fwj0GkCp2A8k5OTngh7aGjIbt68aZ9++qnr8+jgsd9T46O/5QFNO2N6alx1TsKMIlABJClGUyhcGFZxEbNwOf4Bdzvu35GREevv7/c9TWbmR7Ti0Rn833OrR0dHXeXRbH0bGxveHvLp4ukDaLDHNBoNt7GwGZO5sr+/7ylAAVLtM1hQvV73+Ja3VJsfykDeteTpr3nxLLoo3rVOtXVoTErq/rx+0H0lseh3dLqyKa6JE57nKUXlOjanHRwc2KtXr+zJkydmZjY0NOSp/NBbOeqSXb20V13rZhfej2vXrlmpVPIzbIja3Nra8s1jHO949+5dOzs7s52dncxu5HK57HlWzVoZvIiyJUcqe1Cmp6ddBydr2a1bt+z+/fueSDilBrdjdar2xH5uN6btgL6dMKUfFYguU4rFoo2Pj9vHH3/si69SqbhBfGRkJJMY7PT01A/Smp2dteHhYbt+/bqVSq2zd9mDpWkuEUJsLcALR3a0UqnkAE/Z39+3L7/80tkioKc5Y8rlsg0MDLgNbHV11bcbnJ+ft9I/XqoXvkdpt9DzpEoEiLjYY0Aa/nIFiDg5os4c3b4pfTpOFr0eadOJRivYKJikgEQZlzIStQ9w4Pf4+LhtbW3Z2tqaexPMWpKT825JK0DErKpleHugt3Nzc34sx+rqqr333ntWq9U8PBvQ6O3t9cO4+Z/9PgTE4cJG6k1NTfmmO45vIGT79u3b9vHHH9vdu3fbqr+peZL3vf6ugNzuvvjMTgIqBUB5TElZJobVqakpP9OI0mw2fay1veVy2T777DM3ZMNGOYgNAytZ6XSLQXzn9fV1azQadvfuXT/uFRUN2xd9hk2kUCj4ZsCJiQl3lZNVcWFhwcHq/wRINKaCjtIOjkW9LHzWnK5mF7YS9eKoQVSfEyUT16DjqbeGuhSkkJiptkZGFD0/OoE0mA4dOyUFuV7tQLRB1byurtZRjrVazaanp219fd0P1H7//fc9eEzVQ/aRmF2cxwzNxjD4+PFj31uBbURjIrCFrK+v+xGYhE7j4uQoDdJQsrGRyMinT5+aWSsVwIcffmiPHz/20+EATh3DlEDQ/orgERdz6u92qmYnkIpCJrLc2MZUPakFzt9qlzEzt0WR6oExZF4R9To/P28rKytuBMYuQ+IhdeOy05fja4nJYb9doVDwiFc1CheLrf00uHphT0RT1+v1/ztG0s4wljKeNZvNzM5fcjSolOY6XfQgsA6S7qdJsZMIRgpc2j7u0aAebV+z2fSQ87yJov2BKpA3oVTFyWsPbenr67Oenh4/ORBPQTRQ8mxlXtQDc7h79641m0178+aNSxk1Fp6fn3sYP2fdbm1t2X/913+5i3RwcNBu3rxpx8fHnreC/KIYZ2u1mt2/f9/u3LnjEbJxjFL98X1U0FQ9eeoNn3/Mkle3jq8KFhVw8TvGlznB+PT19dmDBw+sp6fHnj9/bmYXuVXU60VsDzE8bJ3gYDEM7dhOSqWSqz944vCskfSs0WjYtWvX3EbzowFJnrrCb1FFoaOgRtA0Og8pjsszpbZE4KDT6fCo8kSWFBeYfoa9MCAMfHwnBTqeEeMe1JIfQU1ZF32SqjcuOp6lwVpKa3nvqPoBftSFIfH8/NzPSibfCWHgZBgnpmB5ednPUiZ1gR7BQAZyVKwbN27Y/fv3M0Y99Xik5s1lgCTOs7zf8pigPifOgR+jKDOkfi0ar8RnFbIIK/oAj5eC0dnZmY2Pj/tmQ/LRoroSo2N2sem02WzaycmJjY+P2+PHj21nZ8e+/vpr++1vf5sJNms2m54QnDpgPqy5g4MDW1hY+HEZSbQz6IJI/U5nEIqroMFi1q3/Km35P9or2rEC/Z1nq+cnLjjaohni4mLlOwqITn15faQLPbrAU0XfWYGRiZFaKLH/qUffGeBjYc/Oztrr169td3fXpR/7TugHPDQvX750bxIpCGFFlUrr/KCJiQn76KOPMvEJPCtPJcgTGO3sHbG/45jmzQv9jrmYxyQo0YDeri2pMaFEtVjVYdYEAoyxqNfrGXuKBsHBGBCC8T24rtFo+H4nNuk1m0178uSJb5XRTGoUjlS5evWq56fFPvZOQJKH1ikbR5zE6pGgo3QB4U7kmpTdgs/cp4hPx+mi0AkY98xEUNMJFxdmBC8WsEoQs+yZOnkTPk6W1DvynNi/qoLBlvTalCE5JWXjJNedyVeuXLFf/vKXtrq66tGaxFFg1SfDPtG3SDFObpubm7PHjx/b+Pi4x5aQLiG2QRmZ/pZaxAqC7QSG2dsHtGk9qZKab3ntSZU8EFfWp+xQ1XEVWLE9sA4KLA9mSa7beL2OF89HCBKVq3aZ69ev26effmpff/21ra+vm5l5djUSXWssCvuECLxLRrbmlXZAAhVDXYkTGeBQmqcSQOmdlnbIn4pBoW5tqy5ArksZzJRpRLuLSu7Ub+0WRl4fRnCNLsVo59C+g7Ep6MXSSXrnUf1qterpAmZmZjyr1vz8vG1tbXmWeVIdTE9P29TUlH3wwQf20UcfWX9/v7sam81mxq2Z15bLlste+y51UjoxnnctAJ+CCmOsql0UuLSF99DPMdIXRsK8JFtds9n0/o82vPg/beOYkn/6p3/yw780RSb2sJOTEyuVSvbdd9/Z9evXzcyyQHJZEFF05W9FQmwdylQAEU1VwOKIxszIBnRx0omwAkqMv+AZZvYWG+F63fYfVZQ4gNSjdUdwySsxR0pkcHFA+ayJsLVduiij0S7vOi0qGePvqiphpOOYikqlYr/5zW/MrMVc7t69a319fXb79m379NNPrb+/P5MyQRle3tx6VwDMK7H/U2DebozUXvFj2ElSLCqCfp7qz5iiekQVOM79eKICc5r31WujEOU37rl586b9wz/8g/3617+2g4MDt4GR2Io2aM6YRqNhhV/96lfea4rI8WWj2qK0XEGCz0oTla1EqUrHRCrK/dENq+ngAAI1TLEAzS50QhZy3gShY3FpMQgRlGgnA6QAFMEkBRyU2Edx4WmKglhfVKcoEQRTHoCon+s4xxIlY6PRinj84osvPLnx6OioPXjwwHPVcj2LhrYqWH7fkhq7FHP7vkVVAxWSsQ0RgNsBtrZb56CuKfXQKWAwDxQQVfXHcEobVDXSNaNjoPOZ+6PRW1kSbSF26Fe/+pU9efLEM+LpBsRySj9NoSQvkQIT/RcHXA2qcVHrtbwYg6K0nRfWBZtqYwQpfW4cXL2fOgEk6KKCZblcdltAZEvtJnn8rDq+TrTYtniN9rGyMuqOLm81+Go7td7U87UNWpCQDx8+9NwjJEzutJh+KIjwHp1+/yFMIgJeCsTj5xRbjNcp4HSaJ6oyqwpkdgEial87Pz/3oLJYt4YDRFucCiNV5Wm3zg/W4djYmP3t3/6tmZm9fPnSXr9+7Ye3Dw0NWTlvIiswpP7RoFSHKGig8uRRe71fB1L3/QAmqubQqSk9U69J2RH0d+qncxmUmM2ekooDUbaS6o8UYJql4zt0cLWoG1HrZaKwK1cNvtyXaku7RdcOHMmEhtHv/5fyQ0DE7KLPVZXI64f43WXUs5SHhsJeGNaN9mtK+PIdmfCYk9zL/ZphrxMQs0ZS78fcHh8ft7//+7+3L774wl6/fu1Z9d7y2sRGp5hGZB2RqrEA+Yxb18zcp02Do3dF64y5VZG4ROrlUbEIgrFj1MMTO1HVGp4R1SfS7qXUkZR1PjUwFH1HnSAMHu+gkkkHPBbaEa3//Bb141hSYKzSigmfssWk3jOqx+1YS16Ji/nHUGNSJYJIBO7UXGJ+xDamGFpst85fZZpxDquHknrUVkddUZDzvzL9GD2cV+K7oGIVi0UbHBy0zz//3OsjYDEDJJGBUGmKoaRsHfpyqmvyArrYaKSG/sZJFi3bUZWIKkNK9dKBUKmjlF+NpljFcZHp4laaqnYV6GXc+xPBKk7G1MLL80SlXLwAh7qieZ/I+KK3QEten8Z30P6Lv6cWk37O++2HlssCS7u2ptrFWLTzwFFXXomMO4/BX6ZO5poKuFgYW8LfUdFTrKSdQIrP1bazLih+BpaqC5E+8cA8FSf+rkjJd0rli8ViJuOVGrdSIKasQtUP0FEnh+qJfBct3QCGAoL+T4YqRXGtg8HiHt5FpUqKIl6mTy9DP9WzpGCm/ahFbSnaX50kUifmon2WB4pRcufd36nocyKo/pgl9R70Q55wjdd3qv8yYBoZrXp9VBDwfQSrKDi1pARDfH++TzEsM3uLQPB3Ob4klaQmXIqqpSzcAIh6OfQFoUp6On00LJqZx6PwOwuund6nqoAaIPX7WI/aSnSRw0zUyGqWNc5Gqc+zlGlRVM3Q7/QdleZqzIACc+x/PYM3jpOZZXToCLZxjJVF5k32Tmpbijm2u+5dJWMnlTFVOgGbjhdt0n9xHPNUZ+7tpELyTvF7rTPFonReFgoXSZq13VxPkCeOAlImar156z2PmSqgaHvL0Q6SGihFxQgcOkFBxEajkYkw5e9ms+kgwsRPLS5VOVITO2VZjwOh6onq+qpmRTerAh8lZcfh2WrI5fvUBIoDpPqw3pv6Z2bJDYzKTthawDt0Alr6Vr+Lti9lV6n+jtIsNRZ5kzFK9vi+sUQm8i4Aou1WphtLfIe8Z0QmmAJil9LiIIj15n0X62Ss+V13d2PwjltJFPy0T1PzLa8NcSxS80kFcBmprZRFF7ICRcqVqtJHg5FUamtnFAoFz6sAO4l14noFdSM112fr59hR2C5YuGpL0GAfrV87LP6f6vQ8Npe38BSs1VCnqhfSEfCIYB8lfpSO+lyNFQDo4+KKxmudB3yXWujatvgeUZLGCa39ZZYFwFguq8qkVLt24KHvkQeGtFO/oy+inYK+jaAZx6tT/RFstF9ilCpggj0wetIiCGu90SmQmrfxHi0qoF21iYsmPph/7QZEJ5Dq5zQu2hDoGBrF87kGAMjzWETJoAE81EMnp94HkAH0ogSJ6kC7Tk2huz6La1T9UCDVyVEqlTzjmJZU5K32d1yMaqxm0FMU2MzectFjz4qLWOcCIKS7rdVwnXr/PMCK0lRLSn2MJTUv8+Zq3nimxjrvmal2RoGp/+u8zCsp1qbtUlU3AhbPVpbNvI/emhSAaV1KCFLtUKLh98RKtIHRIKhSNBp5qDx6YfQ3lfqwEr6PcSJmb+eQVQkT2xolT6lUytTP+2muhmq16lKE78wuVIUU+CDVFY3zJBZ/4/5WW0VU/7SuOHg8T1VBSvSCxbGJXqR4P2pms9nMRE7msRDapEZoNfTSRlyP2h76juvizmWuuYzh+V1LBIhoyM+7VkE4rz8oKihS9UVQjUwFphztD1F4pphbFCw67+MzohmB71Pvrp/pCwUnSlkHML58tNDGRa0TQztHf6doABM6v9mFJ0I9O8TvAwZMcEXWqOrEQVaarcZeclxifIpsDCOwSgBVN2Knqqqg7mPei7rUWBoBKiWFVLIoM0p5bSIdTsUeRANhqsR6yEkR7USqDqfUrigJ9TcFu+h9i2ORYskR4Kk/1ZfxXeNvKZYQWW+sJwJBHsDk/Z3HerhGhYtZ2gisfaZ9hADUcdYFr2sygmME9LySYSESs1RO3ZgCjtRLRyqHZE8tdAULAKLRaLitQg2zOhnVkISHgkXOzkTOidV7kYik1qejSGwbkVsRGxWJJC46uVQPpS1x8qudoFwuZ4yhPCNSf50o7SRkpLapMYkqWWSLWg+TTu0k/K8AHiUZDEZVIvqSz1GdUuDT73ViphhRZFN5akz8PrJXfefU9Smhqt/F9uaV1LgoE43ti9I+rp3LrMfUOysjV4EQr9c5Fdudet+4dszMyqkJHZFab9SOiDEZkZorDdI9MrqQdHKy4CuVik9QFitJXmgjqfI5qlDpP9F21EXeyUjjYgAZ79Hf358xzjIIjUYjYxyG0fCuSkkzhqj/db9FyZ43UVLUU5/DNfE+BRIWHguefk8ZzFNMJTIHbQPjyfaHlLoVKbhKQn2eLhrqwzYT+ypK4tRCpKQWXWTYKSBJMSO9J5Z2bEXv511ToJBqS2rh6zvrdQrE+m7q4VEg1/Z0YiGdQJNSVkYR84XwMJUyisrxRdXAqi+CZG5HX83etmvEjWgcc9jV1WUjIyPW29ubyWlycnJi1Wo1w0RIrBNBJGXjSE1UlRK6QNWAGyVVBEtN4qz9qszsXUtUFfQ7nqNqIW1ORfrmTdA42WP9SrWjaqO2EIAlCiSYUGRSKRCKgKQMRetUwPo+fRrfK/ZF7Le8elLPj/elwEnvVTUuz+itTFmL2iO1r3Qet+uDTgAa7y/rw5AycVBS6JyqTBuv7t84QaKLShcFf+txCtRHYBhHWxILwoJhQWhoMItI2xX1bJ6LpCXIJ2WI1QkfQTVO/jip1Wagg6m0WftE60n1eQSC1KRS4NTNlHFS8F7KWuJiimPGOzG2KVDUsVGBkqqTa2lH3MqAmqULQ8chBXx5JY6PXsvz9bso/FJAkvdePCOPAdDXKhC4BxW93TMVmFPtY4Mf64rAtNiGCJjvUspxUbMwtRFMFLP0no88FUev18maKvE3NZACIqgoMWcINJBEyKpiqQ6vO3dTjEs7VL0Syi60vSmVImUIi/fqoo+glFoUKdanvwGOUeIrI2EMSTql3h7NYxHbr/2lE17bqIsuTxLru2s/81mN0NFOpvenDLSp1BR5izV+p//r9/yL8zcCSnyXy5YIkGbZuYAgY6w0HkjNESokI5NIzRu11aTG5fuWcoqesyA0Q5cudF4wbl1PdZbeqxMv7wW4Tie3Tg6VVmbm7EE7WNtvlvUM6eTgN0onz4ZOHpVaKSkQpUec/EjVSM9TYKITLMVIlGEgfTCE6rEZOmHjO9MexlSNzLrNQUE2BmApM9GFqGMTF7OqYYyH2rtiv1FnjFVRNVhL3tzUvuwkfXXe6XdaV6eSsk9E4Isgjc2IA80i66VOFfaa00fHLwr41DumwPaypRxvjp0SJ65KMV14Spfi4kq9QOy4WL9OvAhyMcAmtYijZNUOTnkG4qSPXhbti/hOqcWt96bYFtfGWBmVkpfV87WPAFbczspOtOj3KZUAGgwVbjabDlDxPbTdFHVb6kSO76j9p4ZvHYPYpyqxo+0l9n1KnUgt/BTT07bE3yPrTgmE+Kw4j+L78z8AQgJnTaGhwoXkRXwH+Fcqlbf69TJg1w5kOl1X1uQnUWLFSU4lLEzVu7Xowo+LPF6nDdNJrAucayIaq61DgQZ1DU9J3ssrIKQkfnRlx4kdVRbtu/jueYORApHYj5cpTLZqtZpRa9jQl1ci4Kt6USxebBxMLX4Fwth/+n2qf1QV0u/4Wz0OqfYqSEbhouPEfFAGqQsrxZK5N69EwahzIaoNKc+Qgnhc5OTwUWZJlDPCW5mfsmK2laQiU5W1qa1Q53eqXJahZICEG1N6vk4Kle71ej1XsuYtogggqUbrvSnJxHcAWjSommWBUAdMJYB+1vanJnGUKCm/fIod5YGY9kVeyfu9ndTr6enxYxePj489sCyqADrh1UWvC5BIyxh4mFIP+R7JqDtTFaii+sK93BOFRGQVcauAvnuKeUVbG9+nJHWqX+P6UCDT71LtUBUmCl71plGnnsOLMKD/sJdEQzNxSqhA5+etIzo1E59uZchzdvyQUj45OXHJqztiKbqY4+Jg0vJdio7rIEbJnwKaOLF0MCJz4rfUBIodk5JYkRanvCmx5AGD/hbv/yFA0q6oLYJdoPpuPT09duXKFTewHh8f+/mvEQw0qXahUPCAP9hBjJaNEZiMl44f9Fw9Cgo0hULhrY2JZheb3+Iii/OE7wALQEqFD/WpLUZVgshIWLw6NlGwKjBoW1I2KOqBWQCUtIu20ze0Vd32Wm/MxKfMA6EBE9WAShUEOh4/VilrB2mIN3oaUilSJT7Hha9AoQ1+lwWTtxDzGAKfU+pEil7neVHa6cmxbfp73m+pd4r3xfZdtp9UaipT1MziuugbjUZmbHWCFgoFP/xIWR336yRUtqdh/LrYub9SqWQOPuN7XXgRqDD2xndIMWXq0cTI1Wo146mL76FqWkqAmV0cth7HIwodflOjqAbrmV04A2AaujZU7ST+CcBREFNQjN4WQF+/Oz8/t4ODA6vX6w4mrG/ajxrUTjC+SylrshPNCqYITlh4u0kfB1fBQwcgtdjzpHOe3pqyTeTV2amTOi3cdrpzJ3byY9yXV1KAHuk3v2lUbrVazagdZub7jqIthM+a14UxzLM9xXdT6RnbH+0rGBYVaBSYovG02Wy+pbbp3GMRahxGlOoKfrQ7xSyUNen5TfV6PXNGNWEIpVLrIG4FBR2TaLtqNBo+NikbD+1R+6X2h+YlUaaqDCuOR5z7PwRQPI2AGhSjS1D/bvdgXlwHQikjJWVJv4wawOe8F26nlnzfTuoECJe9LwKSXvd926Z16vjk6fiqX6tlPzJGBXzq1fiiQuEiehVQ0X5PMT5+U/tAfB7nAyO8UkFU2s7j42OXyNHor23S52tfaD+p0T01drRJGcbR0ZEdHh666sgzOJ/X7CI9gz5L3137P7VlI9X2uK6oH8al6yCq7zpvou1R680rcZ44G1bEji+qEyK62pR95DEV7ZBoqIzXxd8iIKXYhpZOUv5dFv1lQSj1Lqln/hA7SLuSB2qxvXE8dPJFINCiQVF6D0xAo46RkBodrZJeP0egS7Ub6s0iZ2HqQtP6omFX90HxNzQ/RszqOKkKn1rElEaj4d4V7Vf9TVWJlIqkayOuNX2O2QWT0D6PO4P5DPCrqYLnqSs7RkBfRqDlzeWyJjDWzoxGTNVpowTS/5X+0rmxo7S0k9yRqncCknZ/p66/TD2dEFrvS02Wy7Ql73lRHdBr2tXZSQVNXaPjqLp/BBJiG3BJMjFVRdbx5rfokszrK31H3Q0caT31cL6tqgrRO0NdutUhzymgGzVjQb1HXdDzaEgcHhmeehXpQ+0LbWOqH+iraM+IuVqVbagdCzUrtYbiXMhjZHlF2WVZdWPQlYvyJrJKhYjsSm3prMuiXarkgceP8fdl6r0skKRUv+9bIotL/RbZnH6Xdw9FPWgq2amDhYLN4vT01NUMDHkk7mbidnd3+7lFMAj10CBQWFgRSOKk1smtjCBKfySzps5MMZY8Sh77MgrQ2I9qryiVWue6YAvRArjEOpvNpvcX/Ul9KngjA1TmCHDmFf1d+1/BNMWYVcPoJKgioLmvl8bT0JTBKQ5KCiAUWNSdmloUqYmvLi2tL69EyR8ZUuo6vTZPGubdlyo/VHXJM+jG9qkuzH30cycW0qk/1JB4fHzsC0QDpBgbZSSoDXrUabPZtMPDw0w+UZ0D0XOSakuUkCrl+burqyuzRUIBQGMmouoWn6fqQHQWxEXFsxHApVIrLSZt0cWpRthiseWO17ZyPR6wGOcB6KhWEIVzHlDi7qeOYrGYOV41pVXEPonzRQUAz2AelFXliBM4hVqpEidDp8Ufn9ep3hTraVdPp/akWIdO1PjsVIkGM+3HTsASwbJT2/PqTb3jZSVK6rvT01Pb2dmxer3uak29XvfFoNIQ25ouQvpBF5TSbyQ3E5p266SOBsC8MdA+Z9FGu4ayAe2vVN0pIZQCEZ4B8KoRW/eeATbq+m00Glav182s5e6tVCoe8Le7u+vGYzNzoIp7ZwAGjOWxPSpsVOhgsFZXcV6/xvrow8gWeSczy560147Gd2IF7RbAZUAlr85U+1ITol1bYhvie+apEJdlQpcpOjnz7EWdChJXbQ0aKBb15QiO3JOnsmod5+fndnJyYsfHxxmjnrIhSrSdaZg2C+zk5OQtr4MKBk0bweSl7erq1HeLUpVn8HeKjdD2lGTnXXSBUJd+VhcwQAH46gZHnq2JmlATNZ0ox9oq80M1vHLlilWr1UxmQIBEvS+0J74n7alWq747Pr5TnB/RLqaOllTAnFkAkrh42klAnQSdgCRVUos3b4Kn2tiOreQBUN7fecgcv38XQ1SqPv7PU0EipY7P41oWsw6k1qt1tuvTeH2j0bDu7m47OzvzgCZdVNqWqPrGDWb8ViwW7fDwMKP6sFAUlFQ6qzeh2WxmgqpSY5vakGmWDftXWk4dEUTyCm3SKFv6Xt9BQUgBu1QqWW9vr0eBb25uOgBpHWpXAUwJCsWY29fX50m7ACuM2dSlLJHo5E5F5xr2Fd5BjdjHx8cZhuXqWKrSPOqTAhK+b3dtu5JiCnn35oFIpKXRdpNqW6f2pUBVqWVK2uu9cZEqI0kVBQcWhD5L25CyiUTAyAOhyFYUnI6Ojmx3d9cODg7cRpJ6L01UxL0HBwe+cJGeHLYOZY8u3biJjEURz1qK5xsp8CBlYShm2VyztFNtgFpXBHiui4F0KoVVteM+GIQuQurr7u72tKC0U6NxeV/tT43RUSfI8fGxXblyJRO9W6lUXI1SEFEQpU0pwRLtHgogtI9rCMLjOYDKW8mf80Akfsdg5P3erqgkuOyCbscaIhhFgOsEiLG+Tu2IQEGnqsqSkoDxc2yDBiSpSzHS+shiIqikSlR59PtGo2EHBwcOIFDs+P5cSyyDBl0RN6Hb2jHExXciWTeFBaDeDPUS8T8R1qhBfX19Njw8bD09PRkgiH0W45H4HAWCUncd80jnWTy4mXXRHh4evnUqIiBzcnJiJycn3gY1KivDSTFA2nJ6emqHh4fW19fna5B+1+TqatNQENVAvDgXVZ2p1+t2dHSUcTOfn1+kp6Dfjo+PW8/PW2Sd6NBlQICSYgjvCiKRdbQDkcsAiQ7mZd5LJbx2eOp3nfhm6V3CqaJGXwUspZC0MdW++B6qsiApmXh6D0bAo6Ojt9zYnZiOXqP2GhYg7deFrYBJ23h3FlvMNcsiKhQubA5HR0e2t7dnV69e9dSbPEeNigrAefNa7Q3x/bFr6L28B3vR6Beic3l/M/MYG/WAqSBWYaBtTa0Z7oHBmbUAW8FM55C+XwQobDk6TmdnZ1av121/f9/29/czhnYFOuqArZRTHRsXo3aeXpM3GKn64nWdpLQ+L+UOjp2UaneKQVBvtEGk3lcXEderDsz1aojiWgWSvHeMhkHui4lsoi7OM1Ku8th3ZuYSVCdw3MCVYiBcG92PeAxYtOrB0OcDXhHUkObYNlgE6PO8PwZEJKlui+d3QHBvb88BplKpWHd3t129etXVK9qBShL7SP/WMdVxiCoIbINTDE5PT61SqWRcr8wXvo/gpvabCHT63uyTQqUDkBTMovoW50S04/Ab7n5VZY6OjtzNr0AS5wfg9b1Vm1g6Sd3Uy+WBiQ5EasNSvF+pKwOU5xnRCa2SMoKTLmCui9Zq2qduUG0P9WD11hI9MHl9GVmNLsp4bx7QK0ilQIO/9XAv1fe5Jk7SyMLiIojAQptVepM3AzUBO8ru7m6GjXCNulpVUDA2xHMQNFepVKy3t9fdn9gcoteG8WZMFEy4Dy8Wxk3tZ+0X4kfq9bodHh5apVKxvr6+t2xLan/RftME2bArNWp77Mb/GlixwzAGMehMx0jVFh1PjKhmltlsqKqse2jEuM36yQUSymUkXuzIVEkxiVivInNEzTyqqsxC26QTQn/j73jURZQWzebFzlLYBjqibgmPNhkFFvpPB4HrVDfW71L/9LdOfZz6GyldKBQyoe3UWS6Xrbe3N+NF6O7u9knEdej+ZhcGQQWQOMZ5LIxJXiy2grRIxMTixIDa1dWVMeyhugA4cSwxOhLchdsZVkLbNeKUeaXGRcY05QWhL9QAqbtu6bPolTk4OMgAYDTmKsDq+DH2CiBcjxeI33HVl0olu3LlStJWBMihwlCXqr8UtTmZWUaodwSSOOh5rKETcGjRCZZ3DwPEYKgOyPftVJ3YPn0H6ojvFAEp1RZVZUgMBA2MKgcLtqenx+tAIuqkiEASgVC/T4Fk6j1V/cjrd2IQWCzaz9Vq1SUu9x4dHWWiPdUQqEZZpbgRuGNb1CCrHgJKqVSywcFB6+3ttd3dXdvb23srQtSsBRoDAwMZcKxWq64GaF4PVDGN9FS6Tns1fsLMMmCknpM45ikDqY4l9eCVghVQF22KDI9x1STm2l5cwxhyMZrze3d3d2Yd6fvxXJ1jPJutDnt7ez5v9H3iezabCfdvHgPJA4LUpG7HVlIdHv9xTYwWVerJy6uRTNEzry2xPWqBpzDBkSRMpL29Pbdk60BDPVl8hIczyTSASNsZF5HWqe+sqohODIpmi4/2Gw0OU7WPRaDAyn4ZJmux2DqHGfDR7fzlctkXeZyIsd8VyGjP6elpxuMBXYYhFYtFGxkZsaGhIVd1YSd6bpGG4CswdHd3Z/rn6OjoLTsEY6zMkP5Xe4H2b9zPo++qjIV+VAO02lM08E5tF6pq6fzUuU59jDc5Uai7UCjY7u6unZ+3Ui7qetJxB2B5Z+ZWX1+fVatV297edsO3RjtT9O+y7rDM09mj1I/S8/uUKJG1PkVQPtNZ8cVjRrBo89B3gtKp/ghdZ3JiuDs+Ps7YQgqFgoMKVnyeF6VsvV73/RdMVig329m1b/WzgolOaJWUTALeQym59i/1aP/qIshjnNRz9epV6+7u9omP0ZB+PTk5yWzXV8kc7U4EZdEHCiAkVorSjrEslUoZlqfuyKg6ah/oAoSNxexnSPaUwZ5FhBBpNpvW19eXOa9a35X7UbGq1aoH+AFC2DIKhYIdHh5mVOYUOKmgpJ0RVHQzHl4jBAfRvrx3V1eXB8dRJ3Oadvf09FhXV5eNjY3Z0dGRra+vv/We/A1LKsegoMuWdurEuxReOKVe6P8kklHWohOtUCh4BGQ0aiFR9/f37eDgwCdYb2+vLxAMf/V63ba3t516ajuRxEgJNQDzXGURUXVqNBpv5cTVou+vklDtFPpMfQ6LBEmsE1Ennfa3ljwVFhbB8/R3ZXURrKPahB2ERaACDAbSaS4piCggon6oYDk5ObH9/X0f297e3rcC1tSoCFApGz08PHTbBiof/aFt1+M6NAiMQ92wlyiLrlar1tvba/V63Q4ODvx+Ze4KVpqHBEGipyQwroAKz+Fd1G4HW9KwfsBc0w6YmffD/v6+jxtjr6BWVkpHx1ymXBZIUqpFqh79m5c3u5CouLxY4EwgOp/JHg1GCgC6s9XMnHWoikFnqe4b7RU8n7YeHR1lbARqFIQ58Dnm14yF5wGcLEz6Eb2XxaD9rAMbQVm/R8qmpFsseQwGNSiC+vn5uat/9GV3d3dmv4l6iehzZaSd5pQagVlIOi7MHx0/VB7sLQgXnQPU1Wi0NtFB7c0uPBUqRLhWz5tW5si7Mj9V7TS7sDNxrbIi2AECT4EMGwZ1M56aZpF5EsdStQ/YP2DPZ8YHmxkABdgBaBqb9P8AMYw93xqTIAEAAAAASUVORK5CYII=" y="-288.73474"/> </g> <g id="text_6"> <!-- Min Filtered --> <g transform="translate(644.350037 283.42526)scale(0.12 -0.12)"> <use xlink:href="#DejaVuSans-77"/> <use x="86.279297" xlink:href="#DejaVuSans-105"/> <use x="114.0625" xlink:href="#DejaVuSans-110"/> <use x="177.441406" xlink:href="#DejaVuSans-32"/> <use x="209.228516" xlink:href="#DejaVuSans-70"/> <use x="259.498047" xlink:href="#DejaVuSans-105"/> <use x="287.28125" xlink:href="#DejaVuSans-108"/> <use x="315.064453" xlink:href="#DejaVuSans-116"/> <use x="354.273438" xlink:href="#DejaVuSans-101"/> <use x="415.796875" xlink:href="#DejaVuSans-114"/> <use x="454.660156" xlink:href="#DejaVuSans-101"/> <use x="516.183594" xlink:href="#DejaVuSans-100"/> </g> </g> </g> </g> <defs> <clipPath id="p4c5018efbc"> <rect height="148.349481" width="196.941176" x="108" y="93.754671"/> </clipPath> <clipPath id="pae448a8be2"> <rect height="148.349481" width="196.941176" x="344.329412" y="93.754671"/> </clipPath> <clipPath id="p643ac974ba"> <rect height="148.349481" width="196.941176" x="580.658824" y="93.754671"/> </clipPath> <clipPath id="p93e70cae39"> <rect height="148.349481" width="196.941176" x="108" y="289.42526"/> </clipPath> <clipPath id="pb53cb8de5d"> <rect height="148.349481" width="196.941176" x="344.329412" y="289.42526"/> </clipPath> <clipPath id="p04da8cff64"> <rect height="148.349481" width="196.941176" x="580.658824" y="289.42526"/> </clipPath> </defs> </svg>