1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
<title>Mu</title>
With apologies to <a href='http://en.wikipedia.org/wiki/Mu_%28negative%29#In_popular_culture'>Robert Pirsig</a>:
<p>
<div style='font-style: italic; margin-left:2em'>
Is it a language, or an operating system, or a virtual machine?
<p>
Mu.
</div>
Read these first: <b><a href='http://akkartik.name/about'>problem statement</a></b>,
<b><a href='http://github.com/akkartik/mu#readme'>trying out Mu</a></b>.
(Mu requires minimal dependencies.)
<p>
Mu's code looks quite alien, requiring editors to be specially configured to
colorize it in a sane manner. So this page provides links to the source files
showing how it currently looks in my <a href='https://github.com/akkartik/mu/blob/master/mu.vim'>custom setup</a>.
<p>Whetting your appetite, some example programs:
<ul>
<li><a href='html/x.mu.html'>x.mu</a>: a simple program to add two numbers
together. Shows that at bottom Mu is a simple VM bytecode designed to convert
directly to machine code.
<li><a href='html/factorial.mu.html'>factorial.mu</a>: everyone's favorite
example, showing how Mu supports conditionals and loops without any special
syntax, using the special labels '{' and '}'.
<li><a href='html/tangle.mu.html'>tangle.mu</a>: another (contrived) version
of factorial showing Mu's ability to 'tangle' code from multiple places into a
single function or <em>recipe</em>.
<li>simple examples showing off support for concurrency: <a href='html/fork.mu.html'>fork.mu</a>,
<a href='html/channel.mu.html'>channel.mu</a>
<li>simple examples showing off hardware control: <a href='html/display.mu.html'>display.mu</a>,
<a href='html/console.mu.html'>console.mu</a>.
<li><a href='html/screen.mu.html'>screen.mu</a>: example program showing
print primitives that inject a 'screen' <em>dependency</em> which can be faked
for testing.
<li><a href='html/filesystem.mu.html'>filesystem.mu</a>: example program
showing file primitives that inject a 'filesystem' dependency which can be
faked for testing.
<li><a href='html/http-client.mu.html'>http-client.mu</a> and <a href='html/http-server.mu.html'>http-server.mu</a>,
examples of Mu's testable high-level interfaces to the network.
<li><a href='html/static-dispatch.mu.html'>static-dispatch.mu</a>: example
program showing Mu's ability to define recipes with headers, and thereby to
allow functions with the same name but arguments of different types to
coexist.
<li><a href='html/counters.mu.html'>counters.mu</a>: lexical scope
<li><a href='html/chessboard.mu.html'>chessboard.mu</a>: a little program for
2 people to play chess, with thorough tests of its behavior including both
screen and keyboard handling.
<li><a href='html/nqueens.mu.html'>nqueens.mu</a>: a solution to the <a href='http://rosettacode.org/wiki/N-queens_problem'>N queens problem</a>.
<li>Example programs using delimited continuations:
<a href='html/continuation1.mu.html'>1</a>,
<a href='html/continuation2.mu.html'>2</a>,
<a href='html/continuation3.mu.html'>3</a>,
<a href='html/continuation4.mu.html'>4</a>,
<a href='html/continuation5.mu.html'>5</a>.
<li>A code essay: <a href='http://akkartik.name/coroutines-in-mu'>“Coroutines in Mu”</a>
<li><a href='html/same-fringe.mu.html'>same-fringe.mu</a>: a solution to the
<a href='http://wiki.c2.com/?SameFringeProblem'>‘same fringe’</a>
problem, demonstrating Mu's coroutines and generic functions.
<li>Two klunky ways to build exceptions out of continuations in Mu:
<a href='html/exception1.mu.html'>1</a>,
<a href='html/exception2.mu.html'>2</a>.
Since Mu is statically typed, there's no way to implement a <tt>try</tt>
primitive that can wrap arbitrary functions.
</ul>
Now a listing of every layer in Mu. Recall that you can <a href='http://akkartik.name/post/wart-layers'>stop
loading at any layer and get a valid program to run with a subset of features,
that passes all its tests</a>.
<p><b>Part I</b>: basic infrastructure
<p/><a href='html/000organization.cc.html'>000organization.cc</a>: the basic
skeleton program. Compiles and runs but doesn't do much. Later <em>layers</em>
hook into this skeleton to add functionality. Mu's guarantee: you can <a href='http://youtube.com/watch?v=c8N72t7aScY'>load
features</a> up until any layer, and it will compile and pass all tests until
that point. <a href='http://akkartik.name/post/wart-layers'>More details →</a>
<br/><a href='html/001help.cc.html'>001help.cc</a>: just a simple test layer
to show how to hook into the skeleton. Also summarizes how to invoke Mu,
behaviors that later layers will be providing.
<br/><a href='html/002test.cc.html'>002test.cc</a>: Mu's minimalist test
harness, relying on a couple of one-liners in the <tt>build</tt> script to
auto-generate lists of tests to run.
<br/><a href='html/003trace.cc.html'>003trace.cc</a>: support for logging
facts about our program, and for <a href='http://akkartik.name/post/tracing-tests'>checking the facts logged in tests</a>.
(<a href='html/003trace.test.cc.html'>tests for the tracing system</a>)
<p><b>Part II</b>: the core Mu virtual machine, designed to compile easily to
machine language.
<p/><a href='html/010vm.cc.html'>010vm.cc</a>: core data structures:
recipes, instructions and <em>reagents</em> (operands).
<br/><a href='html/011load.cc.html'>011load.cc</a>: the textual representation
of recipes and how it's turned into the data structures.
<br/><a href='html/012transform.cc.html'>012transform.cc</a>: after Mu
programs are loaded but before they are run they can be transformed in an
extensible manner akin to lisp macros. Think of this as the core of Mu's
‘compiler’ for providing high-level features atop the core.
<br/><a href='html/013update_operation.cc.html'>013update_operation.cc</a>:
our first transform: check for unknown recipes before the program runs.
<br/><a href='html/014literal_string.cc.html'>014literal_string.cc</a>: extend
the loader to support literal strings in various instructions.
<br/><a href='html/015literal_noninteger.cc.html'>015literal_noninteger.cc</a>:
extend the loader to support non-integer numbers.
<br/><a href='html/016dilated_reagent.cc.html'>016dilated_reagent.cc</a>:
allowing whitespace in reagents.
<br/><a href='html/017parse_tree.cc.html'>017parse_tree.cc</a>: a new syntax
for representing complex types as trees using whitespace and parentheses
(s-expressions).
<br/><a href='html/018type_abbreviations.cc.html'>018type_abbreviations.cc</a>:
the core types of Mu are designed to be fully explicit and familiar to
non-programmers at the cost of some verbosity: <tt>number</tt>,
<tt>character</tt>, <tt>boolean</tt>, etc. Once learners get acclimatized,
we can teach them abbreviated forms that are familiar to veteran programmers:
<tt>num</tt>, <tt>char</tt>, <tt>bool</tt>. Mu's facility for type
abbreviations is extensible: learners can abbreviate <tt>number</tt> to
<tt>n</tt> if they so choose, thereby exploring such trade-offs. You can also
create abbreviations suitable for a specific program, like abbreviating
<tt>address:array:address:array:character</tt> to <tt>board</tt> for say a
tic-tac-toe or chess program. Think C's <tt>typedef</tt> statement.
<br/><a href='html/020run.cc.html'>020run.cc</a>: executing Mu recipes by
executing the list of instructions they contain. Future layers will define
more primitive operations that can be used in instructions.
<br/><a href='html/021check_instruction.cc.html'>021check_instruction.cc</a>:
harness for adding per-primitive checks to run before running a program.
<p/>Various primitive operations: on <a href='html/022arithmetic.cc.html'>numbers</a>,
<a href='html/023boolean.cc.html'>booleans</a>, for <a href='html/024jump.cc.html'>control flow</a>,
and <a href='html/025compare.cc.html'>comparing values</a>.
<p/>Support for <a href='html/026call.cc.html'>defining new recipes</a>. In
Mu calls to functions look just like primitive operations, with the ability to
<a href='html/027call_ingredient.cc.html'>pass in ingredients</a>, and to
<a href='html/028call_return.cc.html'>return products</a>. In particular, Mu
supports returning multiple values, and uses this ability far more pervasively
than high-level languages can.
<p/>Support for various data structures: heterogeneous compound types called
<a href='html/030container.cc.html'><em>containers</em></a>, akin to records
or structs, homogeneous <a href='html/032array.cc.html'>arrays</a> of a single
type of value (type <tt>array</tt> conventionally abbreviated as <tt>@</tt>),
and <a href='html/033exclusive_container.cc.html'><em>exclusive containers</em></a>,
akin to C unions but with a tag so each value knows its ‘kind’.
Out of these primitive types, Mu builds the usual and growing menagerie of
data structures: <a href='html/064list.mu.html'>linked lists</a> permitting
fast insertion and deletion and unidirectional scanning but slow search;
<a href='html/065duplex_list.mu.html'><em>duplex lists</em></a> that permit
bidirectional scanning; <a href='html/070table.mu.html'>associative arrays or <em>tables</em></a>
for fast insertion, deletion and search using <a href='html/069hash.cc.html'>hash</a>
functions; <a href='html/066stream.mu.html'><em>streams</em></a> for scanning
through strings incrementally; and <a href='html/061text.mu.html'><em>buffers</em></a>
for gradually constructing long strings in a piecemeal fashion.
<p/>Dynamic memory management: Mu supports <a href='html/034address.cc.html'>allocating</a>
space at run-time as pointers or <em>addresses</em>. All Mu instructions can
dereference or <a href='html/035lookup.cc.html'><em>lookup</em></a> addresses
of values in addition to operating on regular values. These addresses are
manually managed like C, and can be reclaimed using the <a href='html/037abandon.cc.html'><tt>abandon</tt></a>
instruction. To ensure that stale addresses aren't used after being
abandoned/reused, each allocation gets a unique <em>alloc id</em> that is also
stored in the address returned. The lookup operation ensures that the alloc id
of an address matches that of its payload. This eliminates a whole class of
undefined behavior and security vulnerabilities that plague C. Compared to
Rust, Mu pays some additional runtime cost in exchange for C-like flexibility
(you can copy addresses around all you like, and write from any copy of an
address) and simpler implementation (no static analysis). Mu by convention
abbreviates type <tt>address</tt> to <tt>&</tt>.
<p/>Support for higher-order recipes that can pass <a href='html/072recipe.cc.html'>recipes</a>
around like any other value.
<p/>Support for running multiple functions concurrently using <a href='html/073scheduler.cc.html'><em>routines</em></a>,
for communicating between routines using <a href='html/075channel.mu.html'><em>channels</em></a>,
and for <a href='html/074wait.cc.html'>synchronizing</a> between routines.
Channels are Mu's only synchronization primitive, queues that can cause the
routine reading or writing from them to stall without taking up CPU resources.
Mu provides safe concurrency by forbidding routines from sharing addresses;
writing to a channel always performs a <a href='html/071deep_copy.cc.html'>deep copy</a>
that preserves all internal aliasing.
<p/>Support for <a href='html/076continuation.cc.html'>delimited continuations</a>
that let one pause and resume sub-computations.
<p><b>Part III</b>: transforms to make Mu a little more expressive, and give
it some of the benefits of a high-level language.
<p/><a href='html/040brace.cc.html'>040brace.cc</a> and
<a href='html/041jump_target.cc.html'>041jump_target.cc</a>: how Mu provides
structured goto-less programming without introducing the syntax of
conditionals and loops other languages require.
<br/><a href='html/042name.cc.html'>042name.cc</a>: how Mu transforms variable
names to raw memory addresses.
<br/><a href='html/043space.cc.html'>043space.cc</a>: how variables in
different routines are isolated from each other using <em>spaces</em>. Mu
‘local variables’ are allocated on the heap.
<br/><a href='html/044space_surround.cc.html'>044space_surround.cc</a>:
Chaining spaces together to accomodate variables with varying lifetimes and
ownership properties.
<br/><a href='html/045closure_name.cc.html'>045closure_name.cc</a>: how spaces
can implement lexical scope.
<br/><a href='html/046check_type_by_name.cc.html'>046check_type_by_name.cc</a>:
a transform to deduce missing types in instructions on the basis of
previous instructions in the same function.
<br/><a href='html/050scenario.cc.html'>050scenario.cc</a>: Mu's first syntax
— not for code but for tests. (<a href='html/051scenario_test.mu.html'>example</a>)
<br/><a href='html/052tangle.cc.html'>052tangle.cc</a>: support for layers in
Mu programs. They've been so good to us.
<br/><a href='html/053recipe_header.cc.html'>053recipe_header.cc</a>:
a new syntax for summarizing the number and types of ingredients and products
a function expects at the top next to its name, in a <em>header</em>.
<br/><a href='html/054static_dispatch.cc.html'>054static_dispatch.cc</a>:
allowing multiple variants of a function to coexist as long as each has a
unique header.
<br/>Support for generic or <em>shape-shifting</em> <a href='html/055shape_shifting_container.cc.html'>data structures</a>
and <a href='html/056shape_shifting_recipe.cc.html'>recipes</a>, containing
wildcard type ingredients that start with an ‘_’. Everytime you
use a shape-shifting recipe with a new set of ‘concrete’ types
for its type ingredients, it creates a new variant of the recipe for you
matching those types.
<br/><a href='html/057immutable.cc.html'>057immutable.cc</a>, a static analysis to
ensure that functions never modify anything but their products.
<p><b>Part IV</b>: Miscellaneous.
<p/><a href='html/061text.mu.html'>061text.mu</a>: strings in Mu are
bounds-checked rather than null-terminated. They're also unicode-aware (code
points only; no control characters, no combining characters, no
normalization). Mu recipes that take strings can take literal strings thanks
to a <a href='html/060rewrite_literal_string.cc.html'>transform</a> that
allocates them on the heap.
<br/><a href='html/062convert_ingredients_to_text.cc.html'>062convert_ingredients_to_text.cc</a>:
a convenience transform primarily intended to provide the illusion of dynamic
typing when adding to the trace. The <span style='font-family:courier,fixed'>stash</span>
command can print any number of ingredients of any type into the trace. Its
default output format is fairly simplistic, but it can be overridden for
arbitrary types by defining a variant of the <a href='html/058to_text.cc.html'><span style='font-family:courier,fixed'>to-text</span></a>
function with an ingredient of the appropriate type. For example, see
<a href='html/064list.mu.html'>064list.mu</a> which defines how we trace
lists.
<br/><a href='html/067random.cc.html'>067random.cc</a>: a random-number
generator with a <a href='html/068random.mu.html'>testable</a> interface.
<p><b>Part V</b>: Primitives for interfacing with hardware.
<p/><a href='html/080display.cc.html'>080display.cc</a>: primitives for
accessing the keyboard and screen.
<br/><a href='html/081print.mu.html'>081print.mu</a>: helpers that can swap
the real screen with fake ones for testing.
<br/><a href='html/082scenario_screen.cc.html'>082scenario_screen.cc</a>:
writing tests that check what is printed to screen.
(<a href='html/083scenario_screen_test.mu.html'>examples</a>)
<br/><a href='html/084console.mu.html'>084console.mu</a>: helpers that can
swap the real keyboard and mouse with fake ones for testing.
<br/><a href='html/085scenario_console.cc.html'>085scenario_console.cc</a>:
writing tests for keyboard and mouse using the fakes.
(<a href='html/086scenario_console_test.mu.html'>examples</a>)
<br/><a href='html/087file.cc.html'>087file.cc</a>: primitives for accessing
the file system.
<br/><a href='html/088file.mu.html'>088file.mu</a>: helpers that permit
swapping a fake filesystem or <tt>resources</tt> object for testing.
<br/><a href='html/089scenario_filesystem.cc.html'>089scenario_filesystem.cc</a>:
writing tests for filesystem using the fakes.
(<a href='html/090scenario_filesystem_test.mu.html'>examples</a>)
<br/><a href='html/091socket.cc.html'>091socket.cc</a>: primitives for
accessing the network.
<br/><a href='html/092socket.mu.html'>092socket.mu</a>: helpers for the
network. In Mu you create a fake network ‘neighborhood’ the same
way you create a fake local file system.
<p/><a href='html/029tools.cc.html'>029tools.cc</a>: various primitive
operations to help with testing and debugging.
<br/><a href='html/100trace_browser.cc.html'>100trace_browser.cc</a>: a
zoomable UI for inspecting traces generated by Mu programs. Allows both
scanning a high-level view and drilling down into selective details.
<p><b>Part VI</b>: An environment that watches programmers as they
manually test their code, and turns these interactive sessions into reproducible
test scenarios. The <a href='https://github.com/akkartik/mu/blob/master/edit/Readme.md'>readme for the app</a>
contains instructions for running it. Stop loading after each of these layers
to get a working version with just fewer features.
<p/><a href='html/edit/001-editor.mu.html'>edit/001-editor.mu</a>: data
structures for a text editor widget. Load just this layer to see just the
rendering and line-wrapping at work.
<br/><a href='html/edit/002-typing.mu.html'>edit/002-typing.mu</a>: support
for moving the cursor anywhere with the mouse and typing text in there.
<br/><a href='html/edit/003-shortcuts.mu.html'>edit/003-shortcuts.mu</a>:
support for various keyboard shortcuts for manipulating text you've typed in.
<br/><a href='html/edit/004-programming-environment.mu.html'>edit/004-programming-environment.mu</a>:
combining two text editor widgets, one on the left, one on the right.
<br/><a href='html/edit/005-sandbox.mu.html'>edit/005-sandbox.mu</a>: support
for running Mu code in the right-hand widget using code from the left, and
displaying results in a <em>sandbox</em> below on the right. You can have
multiple sandboxes, and hit F4 to rerun them all at any time with the latest
version of the code on the left side.
<br/><a href='html/edit/006-sandbox-copy.mu.html'>edit/006-sandbox-edit.mu</a>:
click on the 'copy' button in each sandbox to duplicate its contents.
<br/><a href='html/edit/007-sandbox-delete.mu.html'>edit/007-sandbox-delete.mu</a>:
support for the 'delete' button in each sandbox.
<br/><a href='html/edit/008-sandbox-edit.mu.html'>edit/008-sandbox-edit.mu</a>:
click on the 'edit' button of each sandbox to pop its back into the sandbox
editor. Basically like copying and then deleting a sandbox.
<br/><a href='html/edit/009-sandbox-test.mu.html'>edit/009-sandbox-test.mu</a>:
click on the results of a sandbox to turn them green and save the output as
golden/expected. Any future changes to the output will then be flagged in red.
<br/><a href='html/edit/010-sandbox-trace.mu.html'>edit/010-sandbox-trace.mu</a>:
click on code in a sandbox to open up a drawer containing its trace. The trace
can be added to using the <span style='font-family:courier,fixed'>stash</span>
command, which can be extended to render arbitrary data structures by creating
new variants of the <span style='font-family:courier,fixed'>to-text</span>
recipe for the appropriate types.
<br/><a href='html/edit/011-errors.mu.html'>edit/011-errors.mu</a>:
support for rendering errors on both the left and in each sandbox.
<br/><a href='html/edit/012-editor-undo.mu.html'>edit/012-editor-undo.mu</a>:
support for undo in the editor widget.
<hr>
<p>
The zen of Mu:
<ul>
<li>traces, not interfaces
<li>be rewrite-friendly, not backwards-compatible
<li>be easy to port rather than portable
<li>global structure matters more than local hygiene
</ul>
<p>
Mu's vision of utopia:
<ul>
<li>Run your devices in 1/1000th the code.
<li>1000x more forks for open source projects.
<li>Make simple changes to any project in an afternoon, no matter how large it is.
<li>Projects don't slow down with age, they continue to evolve just as fast as
when they were first started.
<li>All software rewards curiosity, allowing anyone to query its design
decisions, gradually learn how to tweak it, try out increasingly radical
redesign ideas in a sandbox. People learn programming as an imperceptible side
effect of tinkering with the projects they care about.
<li><a href='http://akkartik.name/post/habitability'>Habitable</a> digital environments.
<li>A <em>literate</em> digital society with widespread skills for
comprehending large-scale software structure and comparing-and-contrasting
similar solutions. (I don't think anybody is literate by this definition
today. All we can do easily is read our own programs that we wrote recently.)
</ul>
<p style='margin-bottom: 2em'/>
|