about summary refs log tree commit diff stats
path: root/mandelbrot-fixed.mu
blob: 59b616996411bbc51cbffc9007d801909302e957 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Mandelbrot set using fixed-point numbers.
#
# To build:
#   $ ./translate mandelbrot-fixed.mu
# To run:
#   $ qemu-system-i386 code.img

fn main screen: (addr screen), keyboard: (addr keyboard), data-disk: (addr disk) {
  mandelbrot screen
}

# Since they still look like int types, we'll append a '-f' suffix to variable
# names to designate fixed-point numbers.

fn int-to-fixed in: int -> _/eax: int {
  var result-f/eax: int <- copy in
  result-f <- shift-left 8/fixed-precision
  {
    break-if-not-overflow
    abort "int-to-fixed: overflow"
  }
  return result-f
}

fn fixed-to-int in-f: int -> _/eax: int {
  var result/eax: int <- copy in-f
  result <- shift-right-signed 8/fixed-precision
  return result
}

# The process of throwing bits away always adjusts a number towards -infinity.
fn test-fixed-conversion {
  # 0
  var f/eax: int <- int-to-fixed 0
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, 0, "F - test-fixed-conversion - 0"
  # 1
  var f/eax: int <- int-to-fixed 1
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, 1, "F - test-fixed-conversion - 1"
  # -1
  var f/eax: int <- int-to-fixed -1
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, -1, "F - test-fixed-conversion - -1"
  # 0.5 = 1/2
  var f/eax: int <- int-to-fixed 1
  f <- shift-right-signed 1
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, 0, "F - test-fixed-conversion - 0.5"
  # -0.5 = -1/2
  var f/eax: int <- int-to-fixed -1
  f <- shift-right-signed 1
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, -1, "F - test-fixed-conversion - -0.5"
  # 1.5 = 3/2
  var f/eax: int <- int-to-fixed 3
  f <- shift-right-signed 1
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, 1, "F - test-fixed-conversion - 1.5"
  # -1.5 = -3/2
  var f/eax: int <- int-to-fixed -3
  f <- shift-right-signed 1
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, -2, "F - test-fixed-conversion - -1.5"
  # 1.25 = 5/4
  var f/eax: int <- int-to-fixed 5
  f <- shift-right-signed 2
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, 1, "F - test-fixed-conversion - 1.25"
  # -1.25 = -5/4
  var f/eax: int <- int-to-fixed -5
  f <- shift-right-signed 2
  var result/eax: int <- fixed-to-int f
  check-ints-equal result, -2, "F - test-fixed-conversion - -1.25"
}

# special routines for multiplying and dividing fixed-point numbers

fn multiply-fixed a: int, b: int -> _/eax: int {
  var result/eax: int <- copy a
  result <- multiply b
  {
    break-if-not-overflow
    abort "multiply-fixed: overflow"
  }
  result <- shift-right-signed 8/fixed-precision
  return result
}

fn divide-fixed a-f: int, b-f: int -> _/eax: int {
  var result-f/eax: int <- copy a-f
  result-f <- shift-left 8/fixed-precision
  {
    break-if-not-overflow
    abort "divide-fixed: overflow"
  }
  var dummy-remainder/edx: int <- copy 0
  result-f, dummy-remainder <- integer-divide result-f, b-f
  return result-f
}

# multiplying or dividing by an integer can use existing instructions.

# adding and subtracting two fixed-point numbers can use existing instructions.

fn mandelbrot screen: (addr screen) {
  var a/eax: int <- copy 0
  var b/ecx: int <- copy 0
  a, b <- screen-size screen
  var width-f/esi: int <- copy a
  width-f <- shift-left 0xb/log2-font-width-and-fixed-precision  # 3 + 8 = 11
  var height-f/edi: int <- copy b
  height-f <- shift-left 0xc/log2-font-height-and-fixed-precision  # 4 + 8 = 12
  var y/ecx: int <- copy 0
  {
    compare y, height-f
    break-if->=
    var imaginary-f/ebx: int <- viewport-to-imaginary-f y, width-f, height-f
    var x/eax: int <- copy 0
    {
      compare x, width-f
      break-if->=
      var real-f/edx: int <- viewport-to-real-f x, width-f
      var iterations/esi: int <- mandelbrot-iterations-for-point real-f, imaginary-f, 0x400/max
      compare iterations, 0x400/max
      {
        break-if->=
        pixel screen, x, y, 0xf/white
      }
      compare iterations, 0x400/max
      {
        break-if-<
        pixel screen, x, y, 0/black
      }
      x <- increment
      loop
    }
    y <- increment
    loop
  }
}

fn mandelbrot-iterations-for-point real-f: int, imaginary-f: int, max: int -> _/esi: int {
  var x-f/esi: int <- copy 0
  var y-f/edi: int <- copy 0
  var iterations/ecx: int <- copy 0
  {
    var done?/eax: boolean <- mandelbrot-done? x-f, y-f
    compare done?, 0/false
    break-if-!=
    compare iterations, max
    break-if->=
    var x2-f/edx: int <- mandelbrot-x x-f, y-f, real-f
    var y2-f/ebx: int <- mandelbrot-y x-f, y-f, imaginary-f
    x-f <- copy x2-f
    y-f <- copy y2-f
    iterations <- increment
    loop
  }
  return iterations
}

fn mandelbrot-done? x-f: int, y-f: int -> _/eax: boolean {
  # x*x + y*y > 4
  var tmp-f/eax: int <- multiply-fixed x-f, x-f
  var result-f/ecx: int <- copy tmp-f
  tmp-f <- multiply-fixed y-f, y-f
  result-f <- add tmp-f
  compare result-f, 0x400/4
  {
    break-if->
    return 0/false
  }
  return 1/true
}

fn mandelbrot-x x-f: int, y-f: int, real-f: int -> _/edx: int {
  # x*x - y*y + real
  var tmp-f/eax: int <- multiply-fixed x-f, x-f
  var result-f/ecx: int <- copy tmp-f
  tmp-f <- multiply-fixed y-f, y-f
  result-f <- subtract tmp-f
  result-f <- add real-f
  return result-f
}

fn mandelbrot-y x-f: int, y-f: int, imaginary-f: int -> _/ebx: int {
  # 2*x*y + imaginary
  var result-f/eax: int <- copy x-f
  result-f <- shift-left 1/log2
  result-f <- multiply-fixed result-f, y-f
  result-f <- add imaginary-f
  return result-f
}

# Scale (x, y) pixel coordinates to a complex plane where the viewport width
# ranges from -2 to +2. Viewport height just follows the viewport's aspect
# ratio.

fn viewport-to-real-f x: int, width-f: int -> _/edx: int {
  # (x - width/2)*4/width
  var result-f/eax: int <- int-to-fixed x
  var half-width-f/ecx: int <- copy width-f
  half-width-f <- shift-right-signed 1/log2
  result-f <- subtract half-width-f
  result-f <- shift-left 2/log4
  result-f <- divide-fixed result-f, width-f
  return result-f
}

fn viewport-to-imaginary-f y: int, width-f: int, height-f: int -> _/ebx: int {
  # (y - height/2)*4/width
  var result-f/eax: int <- int-to-fixed y
  shift-right-signed height-f, 1/log2
  result-f <- subtract height-f
  result-f <- shift-left 2/log4
  result-f <- divide-fixed result-f, width-f
  return result-f
}