about summary refs log tree commit diff stats
path: root/mu.arc.t
blob: 57e806d9db708f652e9beb5b376b79b870390683 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
; Mu: An exploration on making the global structure of programs more accessible.
;
;   "Is it a language, or an operating system, or a virtual machine? Mu."
;   (with apologies to Robert Pirsig: http://en.wikipedia.org/wiki/Mu_%28negative%29#In_popular_culture)
;
; I want to live in a world where I can have an itch to tweak a program, clone
; its open-source repository, orient myself on how it's organized, and make
; the simple change I envisioned, all in an afternoon. This codebase tries to
; make this possible for its readers. (More details: http://akkartik.name/about)
;
; What helps comprehend the global structure of programs? For starters, let's
; enumerate what doesn't: idiomatic code, adherence to a style guide or naming
; convention, consistent indentation, API documentation for each class, etc.
; These conventional considerations improve matters in the small, but don't
; help understand global organization. They help existing programmers manage
; day-to-day operations, but they can't turn outsider programmers into
; insiders. (Elaboration: http://akkartik.name/post/readable-bad)
;
; In my experience, two things have improved matters so far: version control
; and automated tests. Version control lets me rewind back to earlier, simpler
; times when the codebase was simpler, when its core skeleton was easier to
; ascertain. Indeed, arguably what came first is by definition the skeleton of
; a program, modulo major rewrites. Once you understand the skeleton, it
; becomes tractable to 'play back' later major features one by one. (Previous
; project that fleshed out this idea: http://akkartik.name/post/wart-layers)
;
; The second and biggest boost to comprehension comes from tests. Tests are
; good for writers for well-understood reasons: they avoid regressions, and
; they can influence code to be more decoupled and easier to change. In
; addition, tests are also good for the outsider reader because they permit
; active reading. If you can't build a program and run its tests it can't help
; you understand it. It hangs limp at best, and might even be actively
; misleading. If you can run its tests, however, it comes alive. You can step
; through scenarios in a debugger. You can add logging and scan logs to make
; sense of them. You can run what-if scenarios: "why is this line not written
; like this?" Make a change, rerun tests: "Oh, that's why." (Elaboration:
; http://akkartik.name/post/literate-programming)
;
; However, tests are only useful to the extent that they exist. Think back to
; your most recent codebase. Do you feel comfortable releasing a new version
; just because the tests pass? I'm not aware of any such project. There's just
; too many situations envisaged by the authors that were never encoded in a
; test. Even disciplined authors can't test for performance or race conditions
; or fault tolerance. If a line is phrased just so because of some subtle
; performance consideration, it's hard to communicate to newcomers.
;
; This isn't an arcane problem, and it isn't just a matter of altruism. As
; more and more such implicit considerations proliferate, and as the original
; authors are replaced by latecomers for day-to-day operations, knowledge is
; actively forgotten and lost. The once-pristine codebase turns into legacy
; code that is hard to modify without expensive and stress-inducing
; regressions.
;
; How to write tests for performance, fault tolerance, race conditions, etc.?
; How can we state and verify that a codepath doesn't ever perform memory
; allocation, or write to disk? It requires better, more observable primitives
; than we currently have. Modern operating systems have their roots in the
; 70s. Their interfaces were not designed to be testable. They provide no way
; to simulate a full disk, or a specific sequence of writes from different
; threads. We need something better.
;
; This project tries to move, groping, towards that 'something better', a
; platform that is both thoroughly tested and allows programs written for it
; to be thoroughly tested. It tries to answer the question:
;
;   If Denis Ritchie and Ken Thompson were to set out today to co-design unix
;   and C, knowing what we know about automated tests, what would they do
;   differently?
;
; To try to impose *some* constraints on this gigantic yak-shave, we'll try to
; keep both language and OS as simple as possible, focused entirely on
; permitting more kinds of tests, on first *collecting* all the information
; about implicit considerations in some form so that readers and tools can
; have at least some hope of making sense of it.
;
; The initial language will be just assembly. We'll try to make it convenient
; to program in with some simple localized rewrite rules inspired by lisp
; macros and literate programming. Programmers will have to do their own
; memory management and register allocation, but we'll provide libraries to
; help with them.
;
; The initial OS will provide just memory management and concurrency
; primitives. No users or permissions (we don't live on mainframes anymore),
; no kernel- vs user-mode, no virtual memory or process abstraction, all
; threads sharing a single address space (use VMs for security and
; sandboxing). The only use case we care about is getting a test harness to
; run some code, feed it data through blocking channels, stop it and observe
; its internals. The code under test is expected to cooperate in such testing,
; by logging important events for the test harness to observe. (More info:
; http://akkartik.name/post/tracing-tests)
;
; The common thread here is elimination of abstractions, and it's not an
; accident. Abstractions help insiders manage the evolution of a codebase, but
; they actively hinder outsiders in understanding it from scratch. This
; matters, because the funnel to turn outsiders into insiders is critical to
; the long-term life of a codebase. Perhaps authors should raise their
; estimation of the costs of abstraction, and go against their instincts for
; introducing it. That's what I'll be trying to do: question every abstraction
; before I introduce it. We'll see how it goes.

; ---

; Mu is currently built atop Racket and Arc, but this is temporary and
; contingent. We want to keep our options open, whether to port to a different
; host language, and easy to rewrite to native code for any platform. So we'll
; try to avoid 'cheating': relying on the host platform for advanced
; functionality.
;
; Other than that, we'll say no more about the code, and focus in the rest of
; this file on the scenarios the code cares about.

(load "mu.arc")

; Our language is assembly-like in that functions consist of series of
; statements, and statements consist of an operation and its arguments (input
; and output).
;
;   oarg1, oarg2, ... <- op arg1, arg2, ...
;
; Args must be atomic, like an integer or a memory address, they can't be
; expressions doing arithmetic or function calls. But we can have any number
; of them.
;
; Since we're building on lisp, our code samples won't look quite like the
; idealized syntax above. For now they will be lists of lists:
;
;   (function-name
;     ((oarg1 oarg2 ... <- op arg1 arg2 ...)
;      ...
;      ...))
;
; Each arg/oarg is itself a list, with the payload value at the head, and
; various metadata in the rest. In this first example the only metadata is types:
; 'integer' for a memory location containing an integer, and 'literal' for a
; value included directly in code. (Assembly languages traditionally call them
; 'immediate' operands.) In the future a simple tool will check that the types
; line up as expected in each op. A different tool might add types where they
; aren't provided. Instead of a monolithic compiler I want to build simple,
; lightweight tools that can be combined in various ways, say for using
; different typecheckers in different subsystems.

(reset)
(new-trace "literal")
(add-fns
  '((main
      ((1 integer) <- copy (23 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 23)
  (prn "F - 'copy' writes its lone 'arg' after the instruction name to its lone 'oarg' or output arg before the arrow. After this test, the value 23 is stored in memory address 1."))
;? (quit)

; Our basic arithmetic ops can operate on memory locations or literals.
; (Ignore hardware details like registers for now.)

(reset)
(new-trace "add")
(add-fns
  '((main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      ((3 integer) <- add (1 integer) (2 integer)))))
(run 'main)
(if (~iso memory* (obj 1 1  2 3  3 4))
  (prn "F - 'add' operates on two addresses"))

(reset)
(new-trace "add-literal")
(add-fns
  '((main
      ((1 integer) <- add (2 literal) (3 literal)))))
(run 'main)
(if (~is memory*.1 5)
  (prn "F - ops can take 'literal' operands (but not return them)"))

(reset)
(new-trace "sub-literal")
(add-fns
  '((main
      ((1 integer) <- sub (1 literal) (3 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 -2)
  (prn "F - 'sub' subtracts the second arg from the first"))

(reset)
(new-trace "mul-literal")
(add-fns
  '((main
      ((1 integer) <- mul (2 literal) (3 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 6)
  (prn "F - 'mul' multiplies like 'add' adds"))

(reset)
(new-trace "div-literal")
(add-fns
  '((main
      ((1 integer) <- div (8 literal) (3 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 (/ real.8 3))
  (prn "F - 'div' divides like 'sub' subtracts"))

(reset)
(new-trace "idiv-literal")
(add-fns
  '((main
      ((1 integer) (2 integer) <- idiv (8 literal) (3 literal)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 2))
  (prn "F - 'idiv' performs integer division, returning quotient and remainder"))

; Basic boolean operations: and, or, not
; There are easy ways to encode booleans in binary, but we'll skip past those
; details.

(reset)
(new-trace "and-literal")
(add-fns
  '((main
      ((1 boolean) <- and (t literal) (nil literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 nil)
  (prn "F - logical 'and' for booleans"))

; Basic comparison operations: lt, le, gt, ge, eq, neq

(reset)
(new-trace "lt-literal")
(add-fns
  '((main
      ((1 boolean) <- lt (4 literal) (3 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 nil)
  (prn "F - 'lt' is the less-than inequality operator"))

(reset)
(new-trace "le-literal-false")
(add-fns
  '((main
      ((1 boolean) <- le (4 literal) (3 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 nil)
  (prn "F - 'le' is the <= inequality operator"))

(reset)
(new-trace "le-literal-true")
(add-fns
  '((main
      ((1 boolean) <- le (4 literal) (4 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 t)
  (prn "F - 'le' returns true for equal operands"))

(reset)
(new-trace "le-literal-true-2")
(add-fns
  '((main
      ((1 boolean) <- le (4 literal) (5 literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 t)
  (prn "F - le is the <= inequality operator - 2"))

; Control flow operations: jump, jump-if
; These introduce a new type -- 'offset' -- for literals that refer to memory
; locations relative to the current location.

(reset)
(new-trace "jump-skip")
(add-fns
  '((main
      ((1 integer) <- copy (8 literal))
      (jump (1 offset))
      ((2 integer) <- copy (3 literal))  ; should be skipped
      (reply))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 8))
  (prn "F - 'jump' skips some instructions"))

(reset)
(new-trace "jump-target")
(add-fns
  '((main
      ((1 integer) <- copy (8 literal))
      (jump (1 offset))
      ((2 integer) <- copy (3 literal))  ; should be skipped
      (reply)
      ((3 integer) <- copy (34 literal)))))  ; never reached
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 8))
  (prn "F - 'jump' doesn't skip too many instructions"))
;? (quit)

(reset)
(new-trace "jump-if-skip")
(add-fns
  '((main
      ((2 integer) <- copy (1 literal))
      ((1 boolean) <- eq (1 literal) (2 integer))
      (jump-if (1 boolean) (1 offset))
      ((2 integer) <- copy (3 literal))
      (reply)
      ((3 integer) <- copy (34 literal)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 t  2 1))
  (prn "F - 'jump-if' is a conditional 'jump'"))

(reset)
(new-trace "jump-if-fallthrough")
(add-fns
  '((main
      ((1 boolean) <- eq (1 literal) (2 literal))
      (jump-if (3 boolean) (1 offset))
      ((2 integer) <- copy (3 literal))
      (reply)
      ((3 integer) <- copy (34 literal)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 nil  2 3))
  (prn "F - if 'jump-if's first arg is false, it doesn't skip any instructions"))

(reset)
(new-trace "jump-if-backward")
(add-fns
  '((main
      ((1 integer) <- copy (2 literal))
      ((2 integer) <- copy (1 literal))
      ; loop
      ((2 integer) <- add (2 integer) (2 integer))
      ((3 boolean) <- eq (1 integer) (2 integer))
      (jump-if (3 boolean) (-3 offset))  ; to loop
      ((4 integer) <- copy (3 literal))
      (reply)
      ((3 integer) <- copy (34 literal)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 4  3 nil  4 3))
  (prn "F - 'jump-if' can take a negative offset to make backward jumps"))

; Data movement relies on addressing modes:
;   'direct' - refers to a memory location; default for most types.
;   'literal' - directly encoded in the code; implicit for some types like 'offset'.

(reset)
(new-trace "direct-addressing")
(add-fns
  '((main
      ((1 integer) <- copy (34 literal))
      ((2 integer) <- copy (1 integer)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 34))
  (prn "F - 'copy' performs direct addressing"))

; 'Indirect' addressing refers to an address stored in a memory location.
; Indicated by the metadata 'deref'. Usually requires an address type.
; In the test below, the memory location 1 contains '2', so an indirect read
; of location 1 returns the value of location 2.

(reset)
(new-trace "indirect-addressing")
(add-fns
  '((main
      ((1 integer-address) <- copy (2 literal))
      ((2 integer) <- copy (34 literal))
      ((3 integer) <- copy (1 integer-address deref)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 34  3 34))
  (prn "F - 'copy' performs indirect addressing"))

; Output args can use indirect addressing. In the test below the value is
; stored at the location stored in location 1 (i.e. location 2).

(reset)
(new-trace "indirect-addressing-oarg")
(add-fns
  '((main
      ((1 integer-address) <- copy (2 literal))
      ((2 integer) <- copy (34 literal))
      ((1 integer-address deref) <- add (2 integer) (2 literal)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 36))
  (prn "F - instructions can perform indirect addressing on output arg"))

; Until now we've dealt with scalar types like integers and booleans and
; addresses, where mu looks like other assembly languages. In addition, mu
; provides first-class support for compound types: arrays and records.
;
; 'get' accesses fields in records
; 'index' accesses indices in arrays
;
; Both operations require knowledge about the types being worked on, so all
; types used in mu programs are defined in a single global system-wide table
; (see types* in mu.arc for the complete list of types; we'll add to it over
; time).

(reset)
(new-trace "get-record")
(add-fns
  '((main
      ((1 integer) <- copy (34 literal))
      ((2 boolean) <- copy (nil literal))
      ((3 boolean) <- get (1 integer-boolean-pair) (1 offset))
      ((4 integer) <- get (1 integer-boolean-pair) (0 offset)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 nil  3 nil  4 34))
  (prn "F - 'get' accesses fields of records"))

(reset)
(new-trace "get-indirect")
(add-fns
  '((main
      ((1 integer) <- copy (34 literal))
      ((2 boolean) <- copy (nil literal))
      ((3 integer-boolean-pair-address) <- copy (1 literal))
      ((4 boolean) <- get (3 integer-boolean-pair-address deref) (1 offset))
      ((5 integer) <- get (3 integer-boolean-pair-address deref) (0 offset)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 nil  3 1  4 nil  5 34))
  (prn "F - 'get' accesses fields of record address"))

(reset)
(new-trace "get-compound-field")
(add-fns
  '((main
      ((1 integer) <- copy (34 literal))
      ((2 integer) <- copy (35 literal))
      ((3 integer) <- copy (36 literal))
      ((4 integer-integer-pair) <- get (1 integer-point-pair) (1 offset)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 35  3 36  4 35  5 36))
  (prn "F - 'get' accesses fields spanning multiple locations"))

(reset)
(new-trace "get-address")
(add-fns
  '((main
      ((1 integer) <- copy (34 literal))
      ((2 boolean) <- copy (t literal))
      ((3 boolean-address) <- get-address (1 integer-boolean-pair) (1 offset)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 t  3 2))
  (prn "F - 'get-address' returns address of fields of records"))

(reset)
(new-trace "get-address-indirect")
(add-fns
  '((main
      ((1 integer) <- copy (34 literal))
      ((2 boolean) <- copy (t literal))
      ((3 integer-boolean-pair-address) <- copy (1 literal))
      ((4 boolean-address) <- get-address (3 integer-boolean-pair-address deref) (1 offset)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 t  3 1  4 2))
  (prn "F - 'get-address' accesses fields of record address"))

(reset)
(new-trace "index-array-literal")
(add-fns
  '((main
      ((1 integer) <- copy (2 literal))
      ((2 integer) <- copy (23 literal))
      ((3 boolean) <- copy (nil literal))
      ((4 integer) <- copy (24 literal))
      ((5 boolean) <- copy (t literal))
      ((6 integer-boolean-pair) <- index (1 integer-boolean-pair-array) (1 literal)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 23 3 nil  4 24 5 t  6 24 7 t))
  (prn "F - 'index' accesses indices of arrays"))

(reset)
(new-trace "index-array-direct")
(add-fns
  '((main
      ((1 integer) <- copy (2 literal))
      ((2 integer) <- copy (23 literal))
      ((3 boolean) <- copy (nil literal))
      ((4 integer) <- copy (24 literal))
      ((5 boolean) <- copy (t literal))
      ((6 integer) <- copy (1 literal))
      ((7 integer-boolean-pair) <- index (1 integer-boolean-pair-array) (6 integer)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 23 3 nil  4 24 5 t  6 1  7 24 8 t))
  (prn "F - 'index' accesses indices of arrays"))

(reset)
(new-trace "index-address")
(add-fns
  '((main
      ((1 integer) <- copy (2 literal))
      ((2 integer) <- copy (23 literal))
      ((3 boolean) <- copy (nil literal))
      ((4 integer) <- copy (24 literal))
      ((5 boolean) <- copy (t literal))
      ((6 integer) <- copy (1 literal))
      ((7 integer-boolean-pair-address) <- index-address (1 integer-boolean-pair-array) (6 integer)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 23 3 nil  4 24 5 t  6 1  7 4))
  (prn "F - 'index-address' returns addresses of indices of arrays"))

; Array values know their length. Record lengths are saved in the types table.

(reset)
(new-trace "len-array")
(add-fns
  '((main
      ((1 integer) <- copy (2 literal))
      ((2 integer) <- copy (23 literal))
      ((3 boolean) <- copy (nil literal))
      ((4 integer) <- copy (24 literal))
      ((5 boolean) <- copy (t literal))
      ((6 integer) <- len (1 integer-boolean-pair-array)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2  2 23 3 nil  4 24 5 t  6 2))
  (prn "F - 'len' accesses length of array"))

; 'sizeof' is a helper to determine the amount of memory required by a type.

(reset)
(new-trace "sizeof-record")
(add-fns
  '((main
      ((1 integer) <- sizeof (integer-boolean-pair literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 2)
  (prn "F - 'sizeof' returns space required by arg"))

(reset)
(new-trace "sizeof-record-not-len")
(add-fns
  '((main
      ((1 integer) <- sizeof (integer-point-pair literal)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 3)
  (prn "F - 'sizeof' is different from number of elems"))

; Regardless of a type's length, you can move it around just like a primitive.

(reset)
(new-trace "compound-operand-copy")
(add-fns
  '((main
      ((1 integer) <- copy (34 literal))
      ((2 boolean) <- copy (nil literal))
      ((4 boolean) <- copy (t literal))
      ((3 integer-boolean-pair) <- copy (1 integer-boolean-pair)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 nil  3 34  4 nil))
  (prn "F - ops can operate on records spanning multiple locations"))

(reset)
(new-trace "compound-arg")
(add-fns
  '((test1
      ((4 integer-boolean-pair) <- arg))
    (main
      ((1 integer) <- copy (34 literal))
      ((2 boolean) <- copy (nil literal))
      (test1 (1 integer-boolean-pair)))))
(run 'main)
(if (~iso memory* (obj 1 34  2 nil  4 34  5 nil))
  (prn "F - 'arg' can copy records spanning multiple locations"))

(reset)
(new-trace "compound-arg")
;? (set dump-trace*)
(add-fns
  '((test1
      ((4 integer-boolean-pair) <- arg))
    (main
      ((1 integer) <- copy (34 literal))
      ((2 boolean) <- copy (nil literal))
      ((3 integer-boolean-pair-address) <- copy (1 literal))
      (test1 (3 integer-boolean-pair-address deref)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34  2 nil  3 1  4 34  5 nil))
  (prn "F - 'arg' can copy records spanning multiple locations in indirect mode"))

; A special kind of record is the 'tagged type'. It lets us represent
; dynamically typed values, which save type information in memory rather than
; in the code to use them. This will let us do things like create heterogenous
; lists containing both integers and strings. Tagged values admit two
; operations:
;
;   'save-type' - turns a regular value into a tagged-value of the appropriate type
;   'maybe-coerce' - turns a tagged value into a regular value if the type matches

(reset)
(new-trace "tagged-value")
;? (set dump-trace*)
(add-fns
  '((main
      ((1 type) <- copy (integer-address literal))
      ((2 integer-address) <- copy (34 literal))  ; pointer to nowhere
      ((3 integer-address) (4 boolean) <- maybe-coerce (1 tagged-value) (integer-address literal)))))
(run 'main)
;? (prn memory*)
(if (or (~is memory*.3 34) (~is memory*.4 t))
  (prn "F - 'maybe-coerce' copies value only if type tag matches"))

(reset)
(new-trace "tagged-value-2")
;? (set dump-trace*)
(add-fns
  '((main
      ((1 type) <- copy (integer-address literal))
      ((2 integer-address) <- copy (34 literal))  ; pointer to nowhere
      ((3 integer-address) (4 boolean) <- maybe-coerce (1 tagged-value) (boolean-address literal)))))
(run 'main)
;? (prn memory*)
(if (or (~is memory*.3 0) (~is memory*.4 nil))
  (prn "F - 'maybe-coerce' doesn't copy value when type tag doesn't match"))

(reset)
(new-trace "save-type")
(add-fns
  '((main
      ((1 integer-address) <- copy (34 literal))  ; pointer to nowhere
      ((2 tagged-value) <- save-type (1 integer-address)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj  1 34  2 'integer-address  3 34))
  (prn "F - 'save-type' saves the type of a value at runtime, turning it into a tagged-value"))

(reset)
(new-trace "new-tagged-value")
;? (set dump-trace*)
(add-fns
  '((main
      ((1 integer-address) <- copy (34 literal))  ; pointer to nowhere
      ((2 tagged-value-address) <- new-tagged-value (integer-address literal) (1 integer-address))
      ((3 integer-address) (4 boolean) <- maybe-coerce (2 tagged-value-address deref) (integer-address literal)))))
(run 'main)
;? (prn memory*)
(if (or (~is memory*.3 34) (~is memory*.4 t))
  (prn "F - 'new-tagged-value' is the converse of 'maybe-coerce'"))

; Now that we can record types for values we can construct a dynamically typed
; list.

(reset)
(new-trace "list")
;? (set dump-trace*)
(add-fns
  '((test1
      ; 1 points at first node: tagged-value (int 34)
      ((1 list-address) <- new (list literal))
      ((2 tagged-value-address) <- list-value-address (1 list-address))
      ((3 type-address) <- get-address (2 tagged-value-address deref) (0 offset))
      ((3 type-address deref) <- copy (integer literal))
      ((4 location) <- get-address (2 tagged-value-address deref) (1 offset))
      ((4 location deref) <- copy (34 literal))
      ((5 list-address-address) <- get-address (1 list-address deref) (1 offset))
      ((5 list-address-address deref) <- new (list literal))
      ; 6 points at second node: tagged-value (boolean t)
      ((6 list-address) <- copy (5 list-address-address deref))
      ((7 tagged-value-address) <- list-value-address (6 list-address))
      ((8 type-address) <- get-address (7 tagged-value-address deref) (0 offset))
      ((8 type-address deref) <- copy (boolean literal))
      ((9 location) <- get-address (7 tagged-value-address deref) (1 offset))
      ((9 location deref) <- copy (t literal))
      ((10 list-address) <- get (6 list-address deref) (1 offset))
      )))
(let first Memory-in-use-until
  (run 'test1)
;?   (prn memory*)
  (if (or (~all first (map memory* '(1 2 3)))
          (~is memory*.first  'integer)
          (~is memory*.4 (+ first 1))
          (~is (memory* (+ first 1))  34)
          (~is memory*.5 (+ first 2))
          (let second memory*.6
            (or
              (~is (memory* (+ first 2)) second)
              (~all second (map memory* '(6 7 8)))
              (~is memory*.second 'boolean)
              (~is memory*.9 (+ second 1))
              (~is (memory* (+ second 1)) t)
              (~is memory*.10 nil))))
    (prn "F - lists can contain elements of different types")))
(add-fns
  '((test2
      ((10 list-address) <- list-next (1 list-address)))))
(run 'test2)
;? (prn memory*)
(if (~is memory*.10 memory*.6)
  (prn "F - 'list-next can move a list pointer to the next node"))

; 'new-list' takes a variable number of args and constructs a list containing
; them.

(reset)
(new-trace "new-list")
(add-fns
  '((main
      ((1 integer) <- new-list (3 literal) (4 literal) (5 literal)))))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(let first memory*.1
;?   (prn first)
  (if (or (~is memory*.first  'integer)
          (~is (memory* (+ first 1))  3)
          (let second (memory* (+ first 2))
;?             (prn second)
            (or (~is memory*.second 'integer)
                (~is (memory* (+ second 1)) 4)
                (let third (memory* (+ second 2))
;?                   (prn third)
                  (or (~is memory*.third 'integer)
                      (~is (memory* (+ third 1)) 5)
                      (~is (memory* (+ third 2) nil)))))))
    (prn "F - 'new-list' can construct a list of integers")))

; Just like the table of types is centralized, functions are conceptualized as
; a centralized table of operations just like the 'primitives' we've seen so
; far. If you create a function you can call it like any other op.

(reset)
(new-trace "new-fn")
(add-fns
  '((test1
      ((3 integer) <- add (1 integer) (2 integer)))
    (main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      (test1))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1  2 3  3 4))
  (prn "F - calling a user-defined function runs its instructions"))
;? (quit)

(reset)
(new-trace "new-fn-once")
(add-fns
  '((test1
      ((1 integer) <- copy (1 literal)))
    (main
      (test1))))
(if (~is 2 (run 'main))
  (prn "F - calling a user-defined function runs its instructions exactly once"))
;? (quit)

; User-defined functions communicate with their callers through two
; primitives:
;
;   'arg' - to access inputs
;   'reply' - to return outputs

(reset)
(new-trace "new-fn-reply")
(add-fns
  '((test1
      ((3 integer) <- add (1 integer) (2 integer))
      (reply)
      ((4 integer) <- copy (34 literal)))
    (main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      (test1))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1  2 3  3 4))
  (prn "F - 'reply' stops executing the current function"))
;? (quit)

(reset)
(new-trace "new-fn-reply-nested")
(add-fns
  `((test1
      ((3 integer) <- test2))
    (test2
      (reply (2 integer)))
    (main
      ((2 integer) <- copy (34 literal))
      (test1))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 2 34  3 34))
  (prn "F - 'reply' stops executing any callers as necessary"))
;? (quit)

(reset)
(new-trace "new-fn-reply-once")
(add-fns
  '((test1
      ((3 integer) <- add (1 integer) (2 integer))
      (reply)
      ((4 integer) <- copy (34 literal)))
    (main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      (test1))))
(if (~is 4 (run 'main))  ; last reply sometimes not counted. worth fixing?
  (prn "F - 'reply' executes instructions exactly once"))
;? (quit)

(reset)
(new-trace "new-fn-arg-sequential")
(add-fns
  '((test1
      ((4 integer) <- arg)
      ((5 integer) <- arg)
      ((3 integer) <- add (4 integer) (5 integer))
      (reply)
      ((4 integer) <- copy (34 literal)))
    (main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      (test1 (1 integer) (2 integer))
    )))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1  2 3  3 4
                       ; add-fn's temporaries
                       4 1  5 3))
  (prn "F - 'arg' accesses in order the operands of the most recent function call (the caller)"))
;? (quit)

(reset)
(new-trace "new-fn-arg-random-access")
(add-fns
  '((test1
      ((5 integer) <- arg 1)
      ((4 integer) <- arg 0)
      ((3 integer) <- add (4 integer) (5 integer))
      (reply)
      ((4 integer) <- copy (34 literal)))  ; should never run
    (main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      (test1 (1 integer) (2 integer))
    )))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1  2 3  3 4
                       ; add-fn's temporaries
                       4 1  5 3))
  (prn "F - 'arg' with index can access function call arguments out of order"))
;? (quit)

(reset)
(new-trace "new-fn-arg-status")
(add-fns
  '((test1
      ((4 integer) (5 boolean) <- arg))
    (main
      (test1 (1 literal))
    )))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 4 1  5 t))
  (prn "F - 'arg' sets a second oarg when arg exists"))
;? (quit)

(reset)
(new-trace "new-fn-arg-missing")
(add-fns
  '((test1
      ((4 integer) <- arg)
      ((5 integer) <- arg))
    (main
      (test1 (1 literal))
    )))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 4 1))
  (prn "F - missing 'arg' doesn't cause error"))
;? (quit)

(reset)
(new-trace "new-fn-arg-missing-2")
(add-fns
  '((test1
      ((4 integer) <- arg)
      ((5 integer) (6 boolean) <- arg))
    (main
      (test1 (1 literal))
    )))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 4 1  6 nil))
  (prn "F - missing 'arg' wipes second oarg when provided"))
;? (quit)

(reset)
(new-trace "new-fn-arg-missing-3")
(add-fns
  '((test1
      ((4 integer) <- arg)
      ((5 integer) <- copy (34 literal))
      ((5 integer) (6 boolean) <- arg))
    (main
      (test1 (1 literal))
    )))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 4 1  6 nil))
  (prn "F - missing 'arg' consistently wipes its oarg"))
;? (quit)

(reset)
(new-trace "new-fn-arg-missing-3")
(add-fns
  '((test1
      ; if given two args, adds them; if given one arg, increments
      ((4 integer) <- arg)
      ((5 integer) (6 boolean) <- arg)
      { begin
        (break-if (6 boolean))
        ((5 integer) <- copy (1 literal))
      }
      ((7 integer) <- add (4 integer) (5 integer)))
    (main
      (test1 (34 literal))
    )))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 4 34  5 1  6 nil  7 35))
  (prn "F - function with optional second arg"))
;? (quit)

; how should errors be handled? will be unclear until we support concurrency and routine trees.

(reset)
(new-trace "new-fn-reply-oarg")
(add-fns
  '((test1
      ((4 integer) <- arg)
      ((5 integer) <- arg)
      ((6 integer) <- add (4 integer) (5 integer))
      (reply (6 integer))
      ((4 integer) <- copy (34 literal)))
    (main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      ((3 integer) <- test1 (1 integer) (2 integer)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1  2 3  3 4
                       ; add-fn's temporaries
                       4 1  5 3  6 4))
  (prn "F - 'reply' can take aguments that are returned, or written back into output args of caller"))

(reset)
(new-trace "new-fn-reply-oarg-multiple")
(add-fns
  '((test1
      ((4 integer) <- arg)
      ((5 integer) <- arg)
      ((6 integer) <- add (4 integer) (5 integer))
      (reply (6 integer) (5 integer))
      ((4 integer) <- copy (34 literal)))
    (main
      ((1 integer) <- copy (1 literal))
      ((2 integer) <- copy (3 literal))
      ((3 integer) (7 integer) <- test1 (1 integer) (2 integer)))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1  2 3  3 4    7 3
                         ; add-fn's temporaries
                         4 1  5 3  6 4))
  (prn "F - 'reply' permits a function to return multiple values at once"))

; Our control operators are quite inconvenient to use, so mu provides a
; lightweight tool called 'convert-braces' to work in a slightly more
; convenient format with nested braces:
;
;   {
;     some instructions
;     {
;       more instructions
;     }
;   }
;
; Braces are just labels, they require no special parsing. The operations
; 'break' and 'continue' jump to just after the enclosing '}' and '{'
; respectively.
;
; Conditional and unconditional 'break' and 'continue' should give us 80% of
; the benefits of the control-flow primitives we're used to in other
; languages, like 'if', 'while', 'for', etc.

(reset)
(new-trace "convert-braces")
(if (~iso (convert-braces
            '(((1 integer) <- copy (4 literal))
              ((2 integer) <- copy (2 literal))
              ((3 integer) <- add (2 integer) (2 integer))
              { begin  ; 'begin' is just a hack because racket turns curlies into parens
              ((4 boolean) <- neq (1 integer) (3 integer))
              (break-if (4 boolean))
              ((5 integer) <- copy (34 literal))
              }
              (reply)))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (2 literal))
            ((3 integer) <- add (2 integer) (2 integer))
            ((4 boolean) <- neq (1 integer) (3 integer))
            (jump-if (4 boolean) (1 offset))
            ((5 integer) <- copy (34 literal))
            (reply)))
  (prn "F - convert-braces replaces break-if with a jump-if to after the next close curly"))

(reset)
(new-trace "convert-braces-empty-block")
(if (~iso (convert-braces
            '(((1 integer) <- copy (4 literal))
              ((2 integer) <- copy (2 literal))
              ((3 integer) <- add (2 integer) (2 integer))
              { begin
              (break)
              }
              (reply)))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (2 literal))
            ((3 integer) <- add (2 integer) (2 integer))
            (jump (0 offset))
            (reply)))
  (prn "F - convert-braces works for degenerate blocks"))

(reset)
(new-trace "convert-braces-nested-break")
(if (~iso (convert-braces
            '(((1 integer) <- copy (4 literal))
              ((2 integer) <- copy (2 literal))
              ((3 integer) <- add (2 integer) (2 integer))
              { begin
                ((4 boolean) <- neq (1 integer) (3 integer))
                (break-if (4 boolean))
                { begin
                  ((5 integer) <- copy (34 literal))
                }
              }
              (reply)))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (2 literal))
            ((3 integer) <- add (2 integer) (2 integer))
            ((4 boolean) <- neq (1 integer) (3 integer))
            (jump-if (4 boolean) (1 offset))
            ((5 integer) <- copy (34 literal))
            (reply)))
  (prn "F - convert-braces balances curlies when converting break"))

(reset)
(new-trace "convert-braces-nested-continue")
(if (~iso (convert-braces
            '(((1 integer) <- copy (4 literal))
              ((2 integer) <- copy (2 literal))
              { begin
                ((3 integer) <- add (2 integer) (2 integer))
                { begin
                  ((4 boolean) <- neq (1 integer) (3 integer))
                }
                (continue-if (4 boolean))
                ((5 integer) <- copy (34 literal))
              }
              (reply)))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (2 literal))
            ((3 integer) <- add (2 integer) (2 integer))
            ((4 boolean) <- neq (1 integer) (3 integer))
            (jump-if (4 boolean) (-3 offset))
            ((5 integer) <- copy (34 literal))
            (reply)))
  (prn "F - convert-braces balances curlies when converting continue"))

(reset)
(new-trace "continue")
;? (set dump-trace*)
(add-fns
  '((main
      ((1 integer) <- copy (4 literal))
      ((2 integer) <- copy (1 literal))
      { begin
        ((2 integer) <- add (2 integer) (2 integer))
        ((3 boolean) <- neq (1 integer) (2 integer))
        (continue-if (3 boolean))
        ((4 integer) <- copy (34 literal))
      }
      (reply))))
;? (each stmt function*!main
;?   (prn stmt))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 4  2 4  3 nil  4 34))
  (prn "F - continue correctly loops"))

; todo: fuzz-test invariant: convert-braces offsets should be robust to any
; number of inner blocks inside but not around the continue block.

(reset)
(new-trace "continue-nested")
;? (set dump-trace*)
(add-fns
  '((main
      ((1 integer) <- copy (4 literal))
      ((2 integer) <- copy (1 literal))
      { begin
        ((2 integer) <- add (2 integer) (2 integer))
        { begin
          ((3 boolean) <- neq (1 integer) (2 integer))
        }
        (continue-if (3 boolean))
        ((4 integer) <- copy (34 literal))
      }
      (reply))))
;? (each stmt function*!main
;?   (prn stmt))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 4  2 4  3 nil  4 34))
  (prn "F - continue correctly loops"))

(reset)
(new-trace "continue-fail")
(add-fns
  '((main
      ((1 integer) <- copy (4 literal))
      ((2 integer) <- copy (2 literal))
      { begin
        ((2 integer) <- add (2 integer) (2 integer))
        { begin
          ((3 boolean) <- neq (1 integer) (2 integer))
        }
        (continue-if (3 boolean))
        ((4 integer) <- copy (34 literal))
      }
      (reply))))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 4  2 4  3 nil  4 34))
  (prn "F - continue might never trigger"))

; using tagged-values you can define generic functions that run different code
; based on the types of their args.

(reset)
(new-trace "dispatch-clause")
;? (set dump-trace*)
(add-fns
  '((test1
      ((4 tagged-value-address) <- arg)
      { begin
        ((5 integer) (6 boolean) <- maybe-coerce (4 tagged-value-address deref) (integer literal))
        (break-unless (6 boolean))
        ((7 tagged-value-address) <- arg)
        ((8 integer) (9 boolean) <- maybe-coerce (7 tagged-value-address deref) (integer literal))
        ((9 integer) <- add (5 integer) (8 integer))
        (reply (9 integer))
      }
      (reply (nil literal)))
    (main
      ((1 tagged-value-address) <- new-tagged-value (integer literal) (34 literal))
      ((2 tagged-value-address) <- new-tagged-value (integer literal) (3 literal))
      ((3 integer) <- test1 (1 tagged-value-address) (2 tagged-value-address)))))
(run 'main)
;? (prn memory*)
(if (~is memory*.3 37)
  (prn "F - an example function that checks that its oarg is an integer"))
;? (quit)

; todo - test that reply increments pc for caller frame after popping current frame

(reset)
(new-trace "dispatch-multiple-clauses")
;? (set dump-trace*)
(add-fns
  '((test1
      ((4 tagged-value-address) <- arg)
      { begin
        ((5 integer) (6 boolean) <- maybe-coerce (4 tagged-value-address deref) (integer literal))
        (break-unless (6 boolean))
        ((7 tagged-value-address) <- arg)
        ((8 integer) (9 boolean) <- maybe-coerce (7 tagged-value-address deref) (integer literal))
        ((9 integer) <- add (5 integer) (8 integer))
        (reply (9 integer))
      }
      { begin
        ((5 boolean) (6 boolean) <- maybe-coerce (4 tagged-value-address deref) (boolean literal))
        (break-unless (6 boolean))
        ((7 tagged-value-address) <- arg)
        ((8 boolean) (9 boolean) <- maybe-coerce (7 tagged-value-address deref) (boolean literal))
        ((9 boolean) <- or (5 boolean) (8 boolean))
        (reply (9 boolean))
      }
      (reply (nil literal)))
    (main
      ((1 tagged-value-address) <- new-tagged-value (boolean literal) (t literal))
      ((2 tagged-value-address) <- new-tagged-value (boolean literal) (nil literal))
      ((3 boolean) <- test1 (1 tagged-value-address) (2 tagged-value-address)))))
;? (each stmt function*!test-fn
;?   (prn "  " stmt))
(run 'main)
;? (wipe dump-trace*)
;? (prn memory*)
(if (~is memory*.3 t)
  (prn "F - an example function that can do different things (dispatch) based on the type of its args or oargs"))
;? (quit)

(reset)
(new-trace "dispatch-multiple-calls")
(add-fns
  '((test1
      ((4 tagged-value-address) <- arg)
      { begin
        ((5 integer) (6 boolean) <- maybe-coerce (4 tagged-value-address deref) (integer literal))
        (break-unless (6 boolean))
        ((7 tagged-value-address) <- arg)
        ((8 integer) (9 boolean) <- maybe-coerce (7 tagged-value-address deref) (integer literal))
        ((9 integer) <- add (5 integer) (8 integer))
        (reply (9 integer))
      }
      { begin
        ((5 boolean) (6 boolean) <- maybe-coerce (4 tagged-value-address deref) (boolean literal))
        (break-unless (6 boolean))
        ((7 tagged-value-address) <- arg)
        ((8 boolean) (9 boolean) <- maybe-coerce (7 tagged-value-address deref) (boolean literal))
        ((9 boolean) <- or (5 boolean) (8 boolean))
        (reply (9 boolean))
      }
      (reply (nil literal)))
    (main
      ((1 tagged-value-address) <- new-tagged-value (boolean literal) (t literal))
      ((2 tagged-value-address) <- new-tagged-value (boolean literal) (nil literal))
      ((3 boolean) <- test1 (1 tagged-value-address) (2 tagged-value-address))
      ((10 tagged-value-address) <- new-tagged-value (integer literal) (34 literal))
      ((11 tagged-value-address) <- new-tagged-value (integer literal) (3 literal))
      ((12 integer) <- test1 (10 tagged-value-address) (11 tagged-value-address)))))
(run 'main)
;? (prn memory*)
(if (~and (is memory*.3 t) (is memory*.12 37))
  (prn "F - different calls can exercise different clauses of the same function"))

; A rudimentary memory allocator. Eventually we want to write this in mu.

(reset)
(new-trace "new-primitive")
(add-fns
  '((main
      ((1 integer-address) <- new (integer literal)))))
(let before Memory-in-use-until
  (run 'main)
;?   (prn memory*)
  (if (~iso memory*.1 before)
    (prn "F - 'new' returns current high-water mark"))
  (if (~iso Memory-in-use-until (+ before 1))
    (prn "F - 'new' on primitive types increments high-water mark by their size")))

(reset)
(new-trace "new-array-literal")
(add-fns
  '((main
      ((1 type-array-address) <- new (type-array literal) (5 literal)))))
(let before Memory-in-use-until
  (run 'main)
;?   (prn memory*)
  (if (~iso memory*.1 before)
    (prn "F - 'new' on array with literal size returns current high-water mark"))
  (if (~iso Memory-in-use-until (+ before 6))
    (prn "F - 'new' on primitive arrays increments high-water mark by their size")))

(reset)
(new-trace "new-array-direct")
(add-fns
  '((main
      ((1 integer) <- copy (5 literal))
      ((2 type-array-address) <- new (type-array literal) (1 integer)))))
(let before Memory-in-use-until
  (run 'main)
;?   (prn memory*)
  (if (~iso memory*.2 before)
    (prn "F - 'new' on array with variable size returns current high-water mark"))
  (if (~iso Memory-in-use-until (+ before 6))
    (prn "F - 'new' on primitive arrays increments high-water mark by their (variable) size")))

; A rudimentary process scheduler. You can 'run' multiple functions at once,
; and they share the virtual processor.
; There's also a 'fork' primitive to let functions create new threads of
; execution (we call them routines).
; Eventually we want to allow callers to influence how much of their CPU they
; give to their 'children', or to rescind a child's running privileges.

(reset)
(new-trace "scheduler")
(add-fns
  '((f1
      ((1 integer) <- copy (3 literal)))
    (f2
      ((2 integer) <- copy (4 literal)))))
(let ninsts (run 'f1 'f2)
  (when (~iso 2 ninsts)
    (prn "F - scheduler didn't run the right number of instructions: " ninsts)))
(if (~iso memory* (obj 1 3  2 4))
  (prn "F - scheduler runs multiple functions: " memory*))
(check-trace-contents "scheduler orders functions correctly"
  '(("schedule" "f1")
    ("schedule" "f2")
  ))
(check-trace-contents "scheduler orders schedule and run events correctly"
  '(("schedule" "f1")
    ("run" "f1 0")
    ("schedule" "f2")
    ("run" "f2 0")
  ))

; The scheduler needs to keep track of the call stack for each routine.
; Eventually we'll want to save this information in mu's address space itself,
; along with the types array, the magic buffers for args and oargs, and so on.
;
; Eventually we want the right stack-management primitives to build delimited
; continuations in mu.

; Routines can throw errors.
(reset)
(new-trace "array-bounds-check")
(add-fns
  '((main
      ((1 integer) <- copy (2 literal))
      ((2 integer) <- copy (23 literal))
      ((3 integer) <- copy (24 literal))
      ((4 integer) <- index (1 integer-array) (2 literal)))))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(let last-routine (deq completed-routines*)
  (if (no rep.last-routine!error)
    (prn "F - 'index' throws an error if out of bounds")))

; ---

(reset)
(new-trace "convert-names-local")
(if (~iso (convert-names
            '(((x integer) <- copy (4 literal))
              ((y integer) <- copy (2 literal))
              ((z integer) <- add (x integer) (y integer))))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (2 literal))
            ((3 integer) <- add (1 integer) (2 integer))))
  (prn "F - convert-names renames symbolic names to integer offsets"))

(reset)
(new-trace "convert-names-nil")
(if (~iso (convert-names
            '(((x integer) <- copy (4 literal))
              ((y integer) <- copy (2 literal))
              ((nil integer) <- add (x integer) (y integer))))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (2 literal))
            ((nil integer) <- add (1 integer) (2 integer))))
  (prn "F - convert-names never renames nil"))

(reset)
(new-trace "convert-quotes-defer")
(if (~iso (convert-quotes
            '(((1 integer) <- copy (4 literal))
              (defer [
                       ((3 integer) <- copy (6 literal))
                     ])
              ((2 integer) <- copy (5 literal))))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (5 literal))
            ((3 integer) <- copy (6 literal))))
  (prn "F - convert-quotes can handle 'defer'"))

(reset)
(new-trace "set-default-scope")
(add-fns
  '((main
      ((default-scope scope-address) <- new (scope literal) (2 literal))
      ((1 integer) <- copy (23 literal)))))
(let before Memory-in-use-until
;?   (set dump-trace*)
  (run 'main)
;?   (prn memory*)
  (if (~and (~is 23 memory*.1)
            (is 23 (memory* (+ before 1))))
    (prn "F - default-scope implicitly modifies variable locations")))

(reset)
(new-trace "set-default-scope-skips-offset")
(add-fns
  '((main
      ((default-scope scope-address) <- new (scope literal) (2 literal))
      ((1 integer) <- copy (23 offset)))))
(let before Memory-in-use-until
;?   (set dump-trace*)
  (run 'main)
;?   (prn memory*)
  (if (~and (~is 23 memory*.1)
            (is 23 (memory* (+ before 1))))
    (prn "F - default-scope skips 'offset' types just like literals")))

(reset)
(new-trace "default-scope-bounds-check")
(add-fns
  '((main
      ((default-scope scope-address) <- new (scope literal) (2 literal))
      ((2 integer) <- copy (23 literal)))))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(let last-routine (deq completed-routines*)
  (if (no rep.last-routine!error)
    (prn "F - default-scope checks bounds")))

(reset)
(new-trace "convert-names-default-scope")
(if (~iso (convert-names
            '(((x integer) <- copy (4 literal))
              ((y integer) <- copy (2 literal))
              ((default-scope integer) <- add (x integer) (y integer))))
          '(((1 integer) <- copy (4 literal))
            ((2 integer) <- copy (2 literal))
            ((default-scope integer) <- add (1 integer) (2 integer))))
  (prn "F - convert-names never renames default-scope"))

(reset)
(new-trace "suppress-default-scope")
(add-fns
  '((main
      ((default-scope scope-address) <- new (scope literal) (2 literal))
      ((1 integer global) <- copy (23 literal)))))
(let before Memory-in-use-until
;?   (set dump-trace*)
  (run 'main)
;?   (prn memory*)
  (if (~and (is 23 memory*.1)
            (~is 23 (memory* (+ before 1))))
    (prn "F - default-scope skipped for locations with metadata 'global'")))

(reset)  ; end file with this to persist the trace for the final test