1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
|
; Mu: An exploration on making the global structure of programs more accessible.
;
; "Is it a language, or an operating system, or a virtual machine? Mu."
; (with apologies to Robert Pirsig: http://en.wikipedia.org/wiki/Mu_%28negative%29#In_popular_culture)
;
;; Motivation
;
; I want to live in a world where I can have an itch to tweak a program, clone
; its open-source repository, orient myself on how it's organized, and make
; the simple change I envisioned, all in an afternoon. This codebase tries to
; make this possible for its readers. (More details: http://akkartik.name/about)
;
; What helps comprehend the global structure of programs? For starters, let's
; enumerate what doesn't: idiomatic code, adherence to a style guide or naming
; convention, consistent indentation, API documentation for each class, etc.
; These conventional considerations improve matters in the small, but don't
; help understand global organization. They help existing programmers manage
; day-to-day operations, but they can't turn outsider programmers into
; insiders. (Elaboration: http://akkartik.name/post/readable-bad)
;
; In my experience, two things have improved matters so far: version control
; and automated tests. Version control lets me rewind back to earlier, simpler
; times when the codebase was simpler, when its core skeleton was easier to
; ascertain. Indeed, arguably what came first is by definition the skeleton of
; a program, modulo major rewrites. Once you understand the skeleton, it
; becomes tractable to 'play back' later major features one by one. (Previous
; project that fleshed out this idea: http://akkartik.name/post/wart-layers)
;
; The second and biggest boost to comprehension comes from tests. Tests are
; good for writers for well-understood reasons: they avoid regressions, and
; they can influence code to be more decoupled and easier to change. In
; addition, tests are also good for the outsider reader because they permit
; active reading. If you can't build a program and run its tests it can't help
; you understand it. It hangs limp at best, and might even be actively
; misleading. If you can run its tests, however, it comes alive. You can step
; through scenarios in a debugger. You can add logging and scan logs to make
; sense of them. You can run what-if scenarios: "why is this line not written
; like this?" Make a change, rerun tests: "Oh, that's why." (Elaboration:
; http://akkartik.name/post/literate-programming)
;
; However, tests are only useful to the extent that they exist. Think back to
; your most recent codebase. Do you feel comfortable releasing a new version
; just because the tests pass? I'm not aware of any such project. There's just
; too many situations envisaged by the authors that were never encoded in a
; test. Even disciplined authors can't test for performance or race conditions
; or fault tolerance. If a line is phrased just so because of some subtle
; performance consideration, it's hard to communicate to newcomers.
;
; This isn't an arcane problem, and it isn't just a matter of altruism. As
; more and more such implicit considerations proliferate, and as the original
; authors are replaced by latecomers for day-to-day operations, knowledge is
; actively forgotten and lost. The once-pristine codebase turns into legacy
; code that is hard to modify without expensive and stress-inducing
; regressions.
;
; How to write tests for performance, fault tolerance, race conditions, etc.?
; How can we state and verify that a codepath doesn't ever perform memory
; allocation, or write to disk? It requires better, more observable primitives
; than we currently have. Modern operating systems have their roots in the
; 70s. Their interfaces were not designed to be testable. They provide no way
; to simulate a full disk, or a specific sequence of writes from different
; threads. We need something better.
;
; This project tries to move, groping, towards that 'something better', a
; platform that is both thoroughly tested and allows programs written for it
; to be thoroughly tested. It tries to answer the question:
;
; If Denis Ritchie and Ken Thompson were to set out today to co-design unix
; and C, knowing what we know about automated tests, what would they do
; differently?
;
; To try to impose *some* constraints on this gigantic yak-shave, we'll try to
; keep both language and OS as simple as possible, focused entirely on
; permitting more kinds of tests, on first *collecting* all the information
; about implicit considerations in some form so that readers and tools can
; have at least some hope of making sense of it.
;
; The initial language will be just assembly. We'll try to make it convenient
; to program in with some simple localized rewrite rules inspired by lisp
; macros and literate programming. Programmers will have to do their own
; memory management and register allocation, but we'll provide libraries to
; help with them.
;
; The initial OS will provide just memory management and concurrency
; primitives. No users or permissions (we don't live on mainframes anymore),
; no kernel- vs user-mode, no virtual memory or process abstraction, all
; threads sharing a single address space (use VMs for security and
; sandboxing). The only use case we care about is getting a test harness to
; run some code, feed it data through blocking channels, stop it and observe
; its internals. The code under test is expected to cooperate in such testing,
; by logging important events for the test harness to observe. (More info:
; http://akkartik.name/post/tracing-tests)
;
; The common thread here is elimination of abstractions, and it's not an
; accident. Abstractions help insiders manage the evolution of a codebase, but
; they actively hinder outsiders in understanding it from scratch. This
; matters, because the funnel to turn outsiders into insiders is critical to
; the long-term life of a codebase. Perhaps authors should raise their
; estimation of the costs of abstraction, and go against their instincts for
; introducing it. That's what I'll be trying to do: question every abstraction
; before I introduce it. We'll see how it goes.
; ---
;; Getting started
;
; Mu is currently built atop Racket and Arc, but this is temporary and
; contingent. We want to keep our options open, whether to port to a different
; host language, and easy to rewrite to native code for any platform. So we'll
; try to avoid 'cheating': relying on the host platform for advanced
; functionality.
;
; Other than that, we'll say no more about the code, and focus in the rest of
; this file on the scenarios the code cares about.
(load "mu.arc")
; Our language is assembly-like in that functions consist of series of
; statements, and statements consist of an operation and its arguments (input
; and output).
;
; oarg1, oarg2, ... <- op arg1, arg2, ...
;
; Args must be atomic, like an integer or a memory address, they can't be
; expressions doing arithmetic or function calls. But we can have any number
; of them.
;
; Since we're building on lisp, our code samples won't look quite like the
; idealized syntax above. For now they will be lists of lists:
;
; (function-name
; ((oarg1 oarg2 ... <- op arg1 arg2 ...)
; ...
; ...))
;
; Each arg/oarg is itself a list, with the payload value at the head, and
; various metadata in the rest. In this first example the only metadata is types:
; 'integer' for a memory location containing an integer, and 'literal' for a
; value included directly in code. (Assembly languages traditionally call them
; 'immediate' operands.) In the future a simple tool will check that the types
; line up as expected in each op. A different tool might add types where they
; aren't provided. Instead of a monolithic compiler I want to build simple,
; lightweight tools that can be combined in various ways, say for using
; different typecheckers in different subsystems.
;
; In our tests we'll define such mu functions using a call to 'add-code', so
; look for it. Everything outside 'add-code' is just test-harness details.
(reset)
;? (set dump-trace*)
(new-trace "literal")
(add-code
'((def main [
((1 integer) <- copy (23 literal))
])))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (~is memory*.1 23)
(prn "F - 'copy' writes its lone 'arg' after the instruction name to its lone 'oarg' or output arg before the arrow. After this test, the value 23 is stored in memory address 1."))
;? (quit)
; Our basic arithmetic ops can operate on memory locations or literals.
; (Ignore hardware details like registers for now.)
(reset)
(new-trace "add")
(add-code
'((def main [
((1 integer) <- copy (1 literal))
((2 integer) <- copy (3 literal))
((3 integer) <- add (1 integer) (2 integer))
])))
(run 'main)
(if (~iso memory* (obj 1 1 2 3 3 4))
(prn "F - 'add' operates on two addresses"))
(reset)
(new-trace "add-literal")
(add-code
'((def main [
((1 integer) <- add (2 literal) (3 literal))
])))
(run 'main)
(if (~is memory*.1 5)
(prn "F - ops can take 'literal' operands (but not return them)"))
(reset)
(new-trace "sub-literal")
(add-code
'((def main [
((1 integer) <- sub (1 literal) (3 literal))
])))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 -2)
(prn "F - 'sub' subtracts the second arg from the first"))
(reset)
(new-trace "mul-literal")
(add-code
'((def main [
((1 integer) <- mul (2 literal) (3 literal))
])))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 6)
(prn "F - 'mul' multiplies like 'add' adds"))
(reset)
(new-trace "div-literal")
(add-code
'((def main [
((1 integer) <- div (8 literal) (3 literal))
])))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 (/ real.8 3))
(prn "F - 'div' divides like 'sub' subtracts"))
(reset)
(new-trace "idiv-literal")
(add-code
'((def main [
((1 integer) (2 integer) <- idiv (23 literal) (6 literal))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 3 2 5))
(prn "F - 'idiv' performs integer division, returning quotient and remainder"))
(reset)
(new-trace "dummy-oarg")
;? (set dump-trace*)
(add-code
'((def main [
(_ (2 integer) <- idiv (23 literal) (6 literal))
])))
(run 'main)
(if (~iso memory* (obj 2 5))
(prn "F - '_' oarg can ignore some results"))
;? (quit)
; Basic boolean operations: and, or, not
; There are easy ways to encode booleans in binary, but we'll skip past those
; details for now.
(reset)
(new-trace "and-literal")
(add-code
'((def main [
((1 boolean) <- and (t literal) (nil literal))
])))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 nil)
(prn "F - logical 'and' for booleans"))
; Basic comparison operations: lt, le, gt, ge, eq, neq
(reset)
(new-trace "lt-literal")
(add-code
'((def main [
((1 boolean) <- lt (4 literal) (3 literal))
])))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 nil)
(prn "F - 'lt' is the less-than inequality operator"))
(reset)
(new-trace "le-literal-false")
(add-code
'((def main [
((1 boolean) <- le (4 literal) (3 literal))
])))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 nil)
(prn "F - 'le' is the <= inequality operator"))
(reset)
(new-trace "le-literal-true")
(add-code
'((def main [
((1 boolean) <- le (4 literal) (4 literal))
])))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 t)
(prn "F - 'le' returns true for equal operands"))
(reset)
(new-trace "le-literal-true-2")
(add-code
'((def main [
((1 boolean) <- le (4 literal) (5 literal))
])))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 t)
(prn "F - le is the <= inequality operator - 2"))
; Control flow operations: jump, jump-if, jump-unless
; These introduce a new type -- 'offset' -- for literals that refer to memory
; locations relative to the current location.
(reset)
(new-trace "jump-skip")
(add-code
'((def main [
((1 integer) <- copy (8 literal))
(jump (1 offset))
((2 integer) <- copy (3 literal)) ; should be skipped
(reply)
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 8))
(prn "F - 'jump' skips some instructions"))
(reset)
(new-trace "jump-target")
(add-code
'((def main [
((1 integer) <- copy (8 literal))
(jump (1 offset))
((2 integer) <- copy (3 literal)) ; should be skipped
(reply)
((3 integer) <- copy (34 literal))
]))) ; never reached
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 8))
(prn "F - 'jump' doesn't skip too many instructions"))
;? (quit)
(reset)
(new-trace "jump-if-skip")
(add-code
'((def main [
((2 integer) <- copy (1 literal))
((1 boolean) <- eq (1 literal) (2 integer))
(jump-if (1 boolean) (1 offset))
((2 integer) <- copy (3 literal))
(reply)
((3 integer) <- copy (34 literal))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 t 2 1))
(prn "F - 'jump-if' is a conditional 'jump'"))
(reset)
(new-trace "jump-if-fallthrough")
(add-code
'((def main [
((1 boolean) <- eq (1 literal) (2 literal))
(jump-if (3 boolean) (1 offset))
((2 integer) <- copy (3 literal))
(reply)
((3 integer) <- copy (34 literal))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 nil 2 3))
(prn "F - if 'jump-if's first arg is false, it doesn't skip any instructions"))
(reset)
(new-trace "jump-if-backward")
(add-code
'((def main [
((1 integer) <- copy (2 literal))
((2 integer) <- copy (1 literal))
; loop
((2 integer) <- add (2 integer) (2 integer))
((3 boolean) <- eq (1 integer) (2 integer))
(jump-if (3 boolean) (-3 offset)) ; to loop
((4 integer) <- copy (3 literal))
(reply)
((3 integer) <- copy (34 literal))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2 2 4 3 nil 4 3))
(prn "F - 'jump-if' can take a negative offset to make backward jumps"))
(reset)
(new-trace "jump-label")
(add-code
'((def main [
((1 integer) <- copy (2 literal))
((2 integer) <- copy (1 literal))
loop
((2 integer) <- add (2 integer) (2 integer))
((3 boolean) <- eq (1 integer) (2 integer))
(jump-if (3 boolean) (loop offset))
((4 integer) <- copy (3 literal))
(reply)
((3 integer) <- copy (34 literal))
])))
;? (set dump-trace*)
;? (= dump-trace* (obj whitelist '("-")))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2 2 4 3 nil 4 3))
(prn "F - 'jump-if' can take a negative offset to make backward jumps"))
; Data movement relies on addressing modes:
; 'direct' - refers to a memory location; default for most types.
; 'literal' - directly encoded in the code; implicit for some types like 'offset'.
(reset)
(new-trace "direct-addressing")
(add-code
'((def main [
((1 integer) <- copy (34 literal))
((2 integer) <- copy (1 integer))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34 2 34))
(prn "F - 'copy' performs direct addressing"))
; 'Indirect' addressing refers to an address stored in a memory location.
; Indicated by the metadata 'deref'. Usually requires an address type.
; In the test below, the memory location 1 contains '2', so an indirect read
; of location 1 returns the value of location 2.
(reset)
(new-trace "indirect-addressing")
(add-code
'((def main [
((1 integer-address) <- copy (2 literal)) ; unsafe; can't do this in general
((2 integer) <- copy (34 literal))
((3 integer) <- copy (1 integer-address deref))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2 2 34 3 34))
(prn "F - 'copy' performs indirect addressing"))
; Output args can use indirect addressing. In the test below the value is
; stored at the location stored in location 1 (i.e. location 2).
(reset)
(new-trace "indirect-addressing-oarg")
(add-code
'((def main [
((1 integer-address) <- copy (2 literal))
((2 integer) <- copy (34 literal))
((1 integer-address deref) <- add (2 integer) (2 literal))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2 2 36))
(prn "F - instructions can perform indirect addressing on output arg"))
;; Compound data types
;
; Until now we've dealt with scalar types like integers and booleans and
; addresses, where mu looks like other assembly languages. In addition, mu
; provides first-class support for compound types: arrays and records.
;
; 'get' accesses fields in records
; 'index' accesses indices in arrays
;
; Both operations require knowledge about the types being worked on, so all
; types used in mu programs are defined in a single global system-wide table
; (see types* in mu.arc for the complete list of types; we'll add to it over
; time).
; first a sanity check that the table of types is consistent
(reset)
(each (typ typeinfo) types*
(when typeinfo!record
(assert (is typeinfo!size (len typeinfo!elems)))
(when typeinfo!fields
(assert (is typeinfo!size (len typeinfo!fields))))))
(reset)
(new-trace "get-record")
(add-code
'((def main [
((1 integer) <- copy (34 literal))
((2 boolean) <- copy (nil literal))
((3 boolean) <- get (1 integer-boolean-pair) (1 offset))
((4 integer) <- get (1 integer-boolean-pair) (0 offset))
])))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34 2 nil 3 nil 4 34))
(prn "F - 'get' accesses fields of records"))
(reset)
(new-trace "get-indirect")
(add-code
'((def main [
((1 integer) <- copy (34 literal))
((2 boolean) <- copy (nil literal))
((3 integer-boolean-pair-address) <- copy (1 literal))
((4 boolean) <- get (3 integer-boolean-pair-address deref) (1 offset))
((5 integer) <- get (3 integer-boolean-pair-address deref) (0 offset))
])))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34 2 nil 3 1 4 nil 5 34))
(prn "F - 'get' accesses fields of record address"))
(reset)
(new-trace "get-indirect-repeated")
(add-code
'((def main [
((1 integer) <- copy (34 literal))
((2 integer) <- copy (35 literal))
((3 integer) <- copy (36 literal))
((4 integer-point-pair-address) <- copy (1 literal)) ; unsafe
((5 integer-point-pair-address-address) <- copy (4 literal)) ; unsafe
((6 integer-integer-pair) <- get (5 integer-point-pair-address-address deref deref) (1 offset))
((8 integer) <- get (5 integer-point-pair-address-address deref deref) (0 offset))
])))
(run 'main)
(if (or (~is memory*.6 35)
(~is memory*.7 36)
(~is memory*.8 34))
(prn "F - 'get' can deref multiple times"))
(reset)
(new-trace "get-compound-field")
(add-code
'((def main [
((1 integer) <- copy (34 literal))
((2 integer) <- copy (35 literal))
((3 integer) <- copy (36 literal))
((4 integer-integer-pair) <- get (1 integer-point-pair) (1 offset))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34 2 35 3 36 4 35 5 36))
(prn "F - 'get' accesses fields spanning multiple locations"))
(reset)
(new-trace "get-address")
(add-code
'((def main [
((1 integer) <- copy (34 literal))
((2 boolean) <- copy (t literal))
((3 boolean-address) <- get-address (1 integer-boolean-pair) (1 offset))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34 2 t 3 2))
(prn "F - 'get-address' returns address of fields of records"))
(reset)
(new-trace "get-address-indirect")
(add-code
'((def main [
((1 integer) <- copy (34 literal))
((2 boolean) <- copy (t literal))
((3 integer-boolean-pair-address) <- copy (1 literal))
((4 boolean-address) <- get-address (3 integer-boolean-pair-address deref) (1 offset))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34 2 t 3 1 4 2))
(prn "F - 'get-address' accesses fields of record address"))
(reset)
(new-trace "index-literal")
(add-code
'((def main [
((1 integer) <- copy (2 literal))
((2 integer) <- copy (23 literal))
((3 boolean) <- copy (nil literal))
((4 integer) <- copy (24 literal))
((5 boolean) <- copy (t literal))
((6 integer-boolean-pair) <- index (1 integer-boolean-pair-array) (1 literal))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2 2 23 3 nil 4 24 5 t 6 24 7 t))
(prn "F - 'index' accesses indices of arrays"))
;? (quit)
(reset)
(new-trace "index-direct")
(add-code
'((def main [
((1 integer) <- copy (2 literal))
((2 integer) <- copy (23 literal))
((3 boolean) <- copy (nil literal))
((4 integer) <- copy (24 literal))
((5 boolean) <- copy (t literal))
((6 integer) <- copy (1 literal))
((7 integer-boolean-pair) <- index (1 integer-boolean-pair-array) (6 integer))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2 2 23 3 nil 4 24 5 t 6 1 7 24 8 t))
(prn "F - 'index' accesses indices of arrays"))
;? (quit)
(reset)
(new-trace "index-indirect")
(add-code
'((def main [
((1 integer) <- copy (2 literal))
((2 integer) <- copy (23 literal))
((3 boolean) <- copy (nil literal))
((4 integer) <- copy (24 literal))
((5 boolean) <- copy (t literal))
((6 integer) <- copy (1 literal))
((7 integer-boolean-pair-array-address) <- copy (1 literal))
((8 integer-boolean-pair) <- index (7 integer-boolean-pair-array-address deref) (6 integer))
])))
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "cvt0" "cvt1")))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2 2 23 3 nil 4 24 5 t 6 1 7 1 8 24 9 t))
(prn "F - 'index' accesses indices of array address"))
;? (quit)
(reset)
(new-trace "index-indirect-multiple")
(add-code
'((def main [
((1 integer) <- copy (4 literal))
((2 integer) <- copy (23 literal))
((3 integer) <- copy (24 literal))
((4 integer) <- copy (25 literal))
((5 integer) <- copy (26 literal))
((6 integer-array-address) <- copy (1 literal)) ; unsafe
((7 integer-array-address-address) <- copy (6 literal)) ; unsafe
((8 integer) <- index (7 integer-array-address-address deref deref) (1 literal))
])))
(run 'main)
(if (~is memory*.8 24)
(prn "F - 'index' can deref multiple times"))
(reset)
(new-trace "index-address")
(add-code
'((def main [
((1 integer) <- copy (2 literal))
((2 integer) <- copy (23 literal))
((3 boolean) <- copy (nil literal))
((4 integer) <- copy (24 literal))
((5 boolean) <- copy (t literal))
((6 integer) <- copy (1 literal))
((7 integer-boolean-pair-address) <- index-address (1 integer-boolean-pair-array) (6 integer))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2 2 23 3 nil 4 24 5 t 6 1 7 4))
(prn "F - 'index-address' returns addresses of indices of arrays"))
(reset)
(new-trace "index-address-indirect")
(add-code
'((def main [
((1 integer) <- copy (2 literal))
((2 integer) <- copy (23 literal))
((3 boolean) <- copy (nil literal))
((4 integer) <- copy (24 literal))
((5 boolean) <- copy (t literal))
((6 integer) <- copy (1 literal))
((7 integer-boolean-pair-array-address) <- copy (1 literal))
((8 integer-boolean-pair-address) <- index-address (7 integer-boolean-pair-array-address deref) (6 integer))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2 2 23 3 nil 4 24 5 t 6 1 7 1 8 4))
(prn "F - 'index-address' returns addresses of indices of array addresses"))
; Array values know their length. Record lengths are saved in the types table.
(reset)
(new-trace "len-array")
(add-code
'((def main [
((1 integer) <- copy (2 literal))
((2 integer) <- copy (23 literal))
((3 boolean) <- copy (nil literal))
((4 integer) <- copy (24 literal))
((5 boolean) <- copy (t literal))
((6 integer) <- len (1 integer-boolean-pair-array))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2 2 23 3 nil 4 24 5 t 6 2))
(prn "F - 'len' accesses length of array"))
(reset)
(new-trace "len-array-indirect")
(add-code
'((def main [
((1 integer) <- copy (2 literal))
((2 integer) <- copy (23 literal))
((3 boolean) <- copy (nil literal))
((4 integer) <- copy (24 literal))
((5 boolean) <- copy (t literal))
((6 integer-address) <- copy (1 literal))
((7 integer) <- len (6 integer-boolean-pair-array-address deref))
])))
;? (set dump-trace*)
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "cvt0" "cvt1")))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 2 2 23 3 nil 4 24 5 t 6 1 7 2))
(prn "F - 'len' accesses length of array address"))
; 'sizeof' is a helper to determine the amount of memory required by a type.
; Only for non-arrays.
(reset)
(new-trace "sizeof-record")
(add-code
'((def main [
((1 integer) <- sizeof (integer-boolean-pair literal))
])))
(run 'main)
;? (prn memory*)
(if (~is memory*.1 2)
(prn "F - 'sizeof' returns space required by arg"))
(reset)
(new-trace "sizeof-record-not-len")
(add-code
'((def main [
((1 integer) <- sizeof (integer-point-pair literal))
])))
(run 'main)
;? (prn memory*)
(if (is memory*.1 2)
(prn "F - 'sizeof' is different from number of elems"))
; Regardless of a type's length, you can move it around just like a primitive.
(reset)
(new-trace "copy-record")
(add-code
'((def main [
((1 integer) <- copy (34 literal))
((2 boolean) <- copy (nil literal))
((4 boolean) <- copy (t literal))
((3 integer-boolean-pair) <- copy (1 integer-boolean-pair))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34 2 nil 3 34 4 nil))
(prn "F - ops can operate on records spanning multiple locations"))
(reset)
(new-trace "copy-record2")
(add-code
'((def main [
((1 integer) <- copy (34 literal))
((2 integer) <- copy (35 literal))
((3 integer) <- copy (36 literal))
((4 integer) <- copy (0 literal))
((5 integer) <- copy (0 literal))
((6 integer) <- copy (0 literal))
((4 integer-point-pair) <- copy (1 integer-point-pair))
])))
;? (= dump-trace* (obj whitelist '("run" "sizeof")))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34 2 35 3 36
; result
4 34 5 35 6 36))
(prn "F - ops can operate on records with fields spanning multiple locations"))
; A special kind of record is the 'tagged type'. It lets us represent
; dynamically typed values, which save type information in memory rather than
; in the code to use them. This will let us do things like create heterogenous
; lists containing both integers and strings. Tagged values admit two
; operations:
;
; 'save-type' - turns a regular value into a tagged-value of the appropriate type
; 'maybe-coerce' - turns a tagged value into a regular value if the type matches
(reset)
(new-trace "tagged-value")
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "cvt0" "cvt1")))
(add-code
'((def main [
((1 type) <- copy (integer-address literal))
((2 integer-address) <- copy (34 literal)) ; pointer to nowhere
((3 integer-address) (4 boolean) <- maybe-coerce (1 tagged-value) (integer-address literal))
])))
(run 'main)
;? (prn memory*)
;? (prn completed-routines*)
(each routine completed-routines*
(aif rep.routine!error (prn "error - " it)))
(if (or (~is memory*.3 34) (~is memory*.4 t))
(prn "F - 'maybe-coerce' copies value only if type tag matches"))
;? (quit)
(reset)
(new-trace "tagged-value-2")
;? (set dump-trace*)
(add-code
'((def main [
((1 type) <- copy (integer-address literal))
((2 integer-address) <- copy (34 literal)) ; pointer to nowhere
((3 integer-address) (4 boolean) <- maybe-coerce (1 tagged-value) (boolean-address literal))
])))
(run 'main)
;? (prn memory*)
(if (or (~is memory*.3 0) (~is memory*.4 nil))
(prn "F - 'maybe-coerce' doesn't copy value when type tag doesn't match"))
(reset)
(new-trace "save-type")
(add-code
'((def main [
((1 integer-address) <- copy (34 literal)) ; pointer to nowhere
((2 tagged-value) <- save-type (1 integer-address))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34 2 'integer-address 3 34))
(prn "F - 'save-type' saves the type of a value at runtime, turning it into a tagged-value"))
(reset)
(new-trace "new-tagged-value")
(add-code
'((def main [
((1 integer-address) <- copy (34 literal)) ; pointer to nowhere
((2 tagged-value-address) <- new-tagged-value (integer-address literal) (1 integer-address))
((3 integer-address) (4 boolean) <- maybe-coerce (2 tagged-value-address deref) (integer-address literal))
])))
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "cvt0" "cvt1" "sizeof")))
(run 'main)
;? (prn memory*)
(if (or (~is memory*.3 34) (~is memory*.4 t))
(prn "F - 'new-tagged-value' is the converse of 'maybe-coerce'"))
;? (quit)
; Now that we can record types for values we can construct a dynamically typed
; list.
(reset)
(new-trace "list")
;? (set dump-trace*)
(add-code
'((def main [
; 1 points at first node: tagged-value (int 34)
((1 list-address) <- new (list literal))
((2 tagged-value-address) <- list-value-address (1 list-address))
((3 type-address) <- get-address (2 tagged-value-address deref) (0 offset))
((3 type-address deref) <- copy (integer literal))
((4 location) <- get-address (2 tagged-value-address deref) (1 offset))
((4 location deref) <- copy (34 literal))
((5 list-address-address) <- get-address (1 list-address deref) (1 offset))
((5 list-address-address deref) <- new (list literal))
; 6 points at second node: tagged-value (boolean t)
((6 list-address) <- copy (5 list-address-address deref))
((7 tagged-value-address) <- list-value-address (6 list-address))
((8 type-address) <- get-address (7 tagged-value-address deref) (0 offset))
((8 type-address deref) <- copy (boolean literal))
((9 location) <- get-address (7 tagged-value-address deref) (1 offset))
((9 location deref) <- copy (t literal))
((10 list-address) <- get (6 list-address deref) (1 offset))
])))
(let first Memory-in-use-until
(run 'main)
;? (prn memory*)
(if (or (~all first (map memory* '(1 2 3)))
(~is memory*.first 'integer)
(~is memory*.4 (+ first 1))
(~is (memory* (+ first 1)) 34)
(~is memory*.5 (+ first 2))
(let second memory*.6
(or
(~is (memory* (+ first 2)) second)
(~all second (map memory* '(6 7 8)))
(~is memory*.second 'boolean)
(~is memory*.9 (+ second 1))
(~is (memory* (+ second 1)) t)
(~is memory*.10 nil))))
(prn "F - lists can contain elements of different types")))
(add-code
'((def test2 [
((10 list-address) <- list-next (1 list-address))
])))
(run 'test2)
;? (prn memory*)
(if (~is memory*.10 memory*.6)
(prn "F - 'list-next can move a list pointer to the next node"))
; 'new-list' takes a variable number of args and constructs a list containing
; them.
(reset)
(new-trace "new-list")
(add-code
'((def main [
((1 integer) <- new-list (3 literal) (4 literal) (5 literal))
])))
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "cvt0" "cvt1" "sizeof")))
(run 'main)
;? (prn memory*)
(let first memory*.1
;? (prn first)
(if (or (~is memory*.first 'integer)
(~is (memory* (+ first 1)) 3)
(let second (memory* (+ first 2))
;? (prn second)
(or (~is memory*.second 'integer)
(~is (memory* (+ second 1)) 4)
(let third (memory* (+ second 2))
;? (prn third)
(or (~is memory*.third 'integer)
(~is (memory* (+ third 1)) 5)
(~is (memory* (+ third 2) nil)))))))
(prn "F - 'new-list' can construct a list of integers")))
;; Functions
;
; Just like the table of types is centralized, functions are conceptualized as
; a centralized table of operations just like the "primitives" we've seen so
; far. If you create a function you can call it like any other op.
(reset)
(new-trace "new-fn")
(add-code
'((def test1 [
((3 integer) <- add (1 integer) (2 integer))
])
(def main [
((1 integer) <- copy (1 literal))
((2 integer) <- copy (3 literal))
(test1)
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1 2 3 3 4))
(prn "F - calling a user-defined function runs its instructions"))
;? (quit)
(reset)
(new-trace "new-fn-once")
(add-code
'((def test1 [
((1 integer) <- copy (1 literal))
])
(def main [
(test1)
])))
;? (= dump-trace* (obj whitelist '("run")))
(run 'main)
(if (~is 2 curr-cycle*)
(prn "F - calling a user-defined function runs its instructions exactly once " curr-cycle*))
;? (quit)
; User-defined functions communicate with their callers through two
; primitives:
;
; 'arg' - to access inputs
; 'reply' - to return outputs
(reset)
(new-trace "new-fn-reply")
(add-code
'((def test1 [
((3 integer) <- add (1 integer) (2 integer))
(reply)
((4 integer) <- copy (34 literal))
])
(def main [
((1 integer) <- copy (1 literal))
((2 integer) <- copy (3 literal))
(test1)
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1 2 3 3 4))
(prn "F - 'reply' stops executing the current function"))
;? (quit)
(reset)
(new-trace "new-fn-reply-nested")
(add-code
'((def test1 [
((3 integer) <- test2)
])
(def test2 [
(reply (2 integer))
])
(def main [
((2 integer) <- copy (34 literal))
(test1)
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 2 34 3 34))
(prn "F - 'reply' stops executing any callers as necessary"))
;? (quit)
(reset)
(new-trace "new-fn-reply-once")
(add-code
'((def test1 [
((3 integer) <- add (1 integer) (2 integer))
(reply)
((4 integer) <- copy (34 literal))
])
(def main [
((1 integer) <- copy (1 literal))
((2 integer) <- copy (3 literal))
(test1)
])))
;? (= dump-trace* (obj whitelist '("run")))
(run 'main)
(if (~is 5 curr-cycle*)
(prn "F - 'reply' executes instructions exactly once " curr-cycle*))
;? (quit)
(reset)
(new-trace "new-fn-arg-sequential")
(add-code
'((def test1 [
((4 integer) <- arg)
((5 integer) <- arg)
((3 integer) <- add (4 integer) (5 integer))
(reply)
((4 integer) <- copy (34 literal))
])
(def main [
((1 integer) <- copy (1 literal))
((2 integer) <- copy (3 literal))
(test1 (1 integer) (2 integer))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1 2 3 3 4
; test1's temporaries
4 1 5 3))
(prn "F - 'arg' accesses in order the operands of the most recent function call (the caller)"))
;? (quit)
(reset)
(new-trace "new-fn-arg-random-access")
;? (set dump-trace*)
(add-code
'((def test1 [
((5 integer) <- arg (1 literal))
((4 integer) <- arg (0 literal))
((3 integer) <- add (4 integer) (5 integer))
(reply)
((4 integer) <- copy (34 literal)) ; should never run
])
(def main [
((1 integer) <- copy (1 literal))
((2 integer) <- copy (3 literal))
(test1 (1 integer) (2 integer))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1 2 3 3 4
; test's temporaries
4 1 5 3))
(prn "F - 'arg' with index can access function call arguments out of order"))
;? (quit)
(reset)
(new-trace "new-fn-arg-random-then-sequential")
;? (set dump-trace*)
(add-code
'((def test1 [
(_ <- arg (1 literal))
((1 integer) <- arg) ; takes next arg after index 1
]) ; should never run
(def main [
(test1 (1 literal) (2 literal) (3 literal))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 3))
(prn "F - 'arg' with index resets index for later calls"))
;? (quit)
(reset)
(new-trace "new-fn-arg-status")
(add-code
'((def test1 [
((4 integer) (5 boolean) <- arg)
])
(def main [
(test1 (1 literal))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 4 1 5 t))
(prn "F - 'arg' sets a second oarg when arg exists"))
;? (quit)
(reset)
(new-trace "new-fn-arg-missing")
(add-code
'((def test1 [
((4 integer) <- arg)
((5 integer) <- arg)
])
(def main [
(test1 (1 literal))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 4 1))
(prn "F - missing 'arg' doesn't cause error"))
;? (quit)
(reset)
(new-trace "new-fn-arg-missing-2")
(add-code
'((def test1 [
((4 integer) <- arg)
((5 integer) (6 boolean) <- arg)
])
(def main [
(test1 (1 literal))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 4 1 6 nil))
(prn "F - missing 'arg' wipes second oarg when provided"))
;? (quit)
(reset)
(new-trace "new-fn-arg-missing-3")
(add-code
'((def test1 [
((4 integer) <- arg)
((5 integer) <- copy (34 literal))
((5 integer) (6 boolean) <- arg)
])
(def main [
(test1 (1 literal))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 4 1 6 nil))
(prn "F - missing 'arg' consistently wipes its oarg"))
;? (quit)
(reset)
(new-trace "new-fn-arg-missing-4")
(add-code
'((def test1 [
; if given two args, adds them; if given one arg, increments
((4 integer) <- arg)
((5 integer) (6 boolean) <- arg)
{ begin
(break-if (6 boolean))
((5 integer) <- copy (1 literal))
}
((7 integer) <- add (4 integer) (5 integer))
])
(def main [
(test1 (34 literal))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 4 34 5 1 6 nil 7 35))
(prn "F - function with optional second arg"))
;? (quit)
(reset)
(new-trace "new-fn-arg-by-value")
(add-code
'((def test1 [
((1 integer) <- copy (0 literal)) ; overwrite caller memory
((2 integer) <- arg)
]) ; arg not clobbered
(def main [
((1 integer) <- copy (34 literal))
(test1 (1 integer))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 0 2 34))
(prn "F - 'arg' passes by value"))
(reset)
(new-trace "arg-record")
(add-code
'((def test1 [
((4 integer-boolean-pair) <- arg)
])
(def main [
((1 integer) <- copy (34 literal))
((2 boolean) <- copy (nil literal))
(test1 (1 integer-boolean-pair))
])))
(run 'main)
(if (~iso memory* (obj 1 34 2 nil 4 34 5 nil))
(prn "F - 'arg' can copy records spanning multiple locations"))
(reset)
(new-trace "arg-record-indirect")
;? (set dump-trace*)
(add-code
'((def test1 [
((4 integer-boolean-pair) <- arg)
])
(def main [
((1 integer) <- copy (34 literal))
((2 boolean) <- copy (nil literal))
((3 integer-boolean-pair-address) <- copy (1 literal))
(test1 (3 integer-boolean-pair-address deref))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 34 2 nil 3 1 4 34 5 nil))
(prn "F - 'arg' can copy records spanning multiple locations in indirect mode"))
(reset)
(new-trace "new-fn-reply-oarg")
(add-code
'((def test1 [
((4 integer) <- arg)
((5 integer) <- arg)
((6 integer) <- add (4 integer) (5 integer))
(reply (6 integer))
((4 integer) <- copy (34 literal))
])
(def main [
((1 integer) <- copy (1 literal))
((2 integer) <- copy (3 literal))
((3 integer) <- test1 (1 integer) (2 integer))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1 2 3 3 4
; test1's temporaries
4 1 5 3 6 4))
(prn "F - 'reply' can take aguments that are returned, or written back into output args of caller"))
(reset)
(new-trace "new-fn-reply-oarg-multiple")
(add-code
'((def test1 [
((4 integer) <- arg)
((5 integer) <- arg)
((6 integer) <- add (4 integer) (5 integer))
(reply (6 integer) (5 integer))
((4 integer) <- copy (34 literal))
])
(def main [
((1 integer) <- copy (1 literal))
((2 integer) <- copy (3 literal))
((3 integer) (7 integer) <- test1 (1 integer) (2 integer))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1 2 3 3 4 7 3
; test1's temporaries
4 1 5 3 6 4))
(prn "F - 'reply' permits a function to return multiple values at once"))
(reset)
(new-trace "new-fn-prepare-reply")
(add-code
'((def test1 [
((4 integer) <- arg)
((5 integer) <- arg)
((6 integer) <- add (4 integer) (5 integer))
(prepare-reply (6 integer) (5 integer))
(reply)
((4 integer) <- copy (34 literal))
])
(def main [
((1 integer) <- copy (1 literal))
((2 integer) <- copy (3 literal))
((3 integer) (7 integer) <- test1 (1 integer) (2 integer))
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 1 2 3 3 4 7 3
; test1's temporaries
4 1 5 3 6 4))
(prn "F - without args, 'reply' returns values from previous 'prepare-reply'."))
;; Structured programming
;
; Our jump operators are quite inconvenient to use, so mu provides a
; lightweight tool called 'convert-braces' to work in a slightly more
; convenient format with nested braces:
;
; {
; some instructions
; {
; more instructions
; }
; }
;
; Braces are like labels in assembly language, they require no special
; parsing. The operations 'loop' and 'break' jump to just after the enclosing
; '{' and '}' respectively.
;
; Conditional and unconditional 'loop' and 'break' should give us 80% of the
; benefits of the control-flow primitives we're used to in other languages,
; like 'if', 'while', 'for', etc.
;
; Compare 'unquoted blocks' using {} with 'quoted blocks' using [] that we've
; gotten used to seeing. Quoted blocks are used by top-level instructions to
; provide code without running it.
(reset)
(new-trace "convert-braces")
(= traces* (queue))
;? (= dump-trace* (obj whitelist '("c{0" "c{1")))
(if (~iso (convert-braces
'(((1 integer) <- copy (4 literal))
((2 integer) <- copy (2 literal))
((3 integer) <- add (2 integer) (2 integer))
{ begin ; 'begin' is just a hack because racket turns braces into parens
((4 boolean) <- neq (1 integer) (3 integer))
(break-if (4 boolean))
((5 integer) <- copy (34 literal))
}
(reply)))
'(((1 integer) <- copy (4 literal))
((2 integer) <- copy (2 literal))
((3 integer) <- add (2 integer) (2 integer))
((4 boolean) <- neq (1 integer) (3 integer))
(jump-if (4 boolean) (1 offset))
((5 integer) <- copy (34 literal))
(reply)))
(prn "F - convert-braces replaces break-if with a jump-if to after the next close-brace"))
;? (quit)
(reset)
(new-trace "convert-braces-empty-block")
(= traces* (queue))
;? (= dump-trace* (obj whitelist '("c{0" "c{1")))
(if (~iso (convert-braces
'(((1 integer) <- copy (4 literal))
((2 integer) <- copy (2 literal))
((3 integer) <- add (2 integer) (2 integer))
{ begin
(break)
}
(reply)))
'(((1 integer) <- copy (4 literal))
((2 integer) <- copy (2 literal))
((3 integer) <- add (2 integer) (2 integer))
(jump (0 offset))
(reply)))
(prn "F - convert-braces works for degenerate blocks"))
;? (quit)
(reset)
(new-trace "convert-braces-nested-break")
(= traces* (queue))
(if (~iso (convert-braces
'(((1 integer) <- copy (4 literal))
((2 integer) <- copy (2 literal))
((3 integer) <- add (2 integer) (2 integer))
{ begin
((4 boolean) <- neq (1 integer) (3 integer))
(break-if (4 boolean))
{ begin
((5 integer) <- copy (34 literal))
}
}
(reply)))
'(((1 integer) <- copy (4 literal))
((2 integer) <- copy (2 literal))
((3 integer) <- add (2 integer) (2 integer))
((4 boolean) <- neq (1 integer) (3 integer))
(jump-if (4 boolean) (1 offset))
((5 integer) <- copy (34 literal))
(reply)))
(prn "F - convert-braces balances braces when converting break"))
(reset)
(new-trace "convert-braces-repeated-jump")
(= traces* (queue))
;? (= dump-trace* (obj whitelist '("c{0" "c{1")))
(if (~iso (convert-braces
'(((1 integer) <- copy (4 literal))
{ begin
(break)
((2 integer) <- copy (5 literal))
}
{ begin
(break)
((3 integer) <- copy (6 literal))
}
((4 integer) <- copy (7 literal))))
'(((1 integer) <- copy (4 literal))
(jump (1 offset))
((2 integer) <- copy (5 literal))
(jump (1 offset))
((3 integer) <- copy (6 literal))
((4 integer) <- copy (7 literal))))
(prn "F - convert-braces handles jumps on jumps"))
;? (quit)
(reset)
(new-trace "convert-braces-nested-loop")
(= traces* (queue))
(if (~iso (convert-braces
'(((1 integer) <- copy (4 literal))
((2 integer) <- copy (2 literal))
{ begin
((3 integer) <- add (2 integer) (2 integer))
{ begin
((4 boolean) <- neq (1 integer) (3 integer))
}
(loop-if (4 boolean))
((5 integer) <- copy (34 literal))
}
(reply)))
'(((1 integer) <- copy (4 literal))
((2 integer) <- copy (2 literal))
((3 integer) <- add (2 integer) (2 integer))
((4 boolean) <- neq (1 integer) (3 integer))
(jump-if (4 boolean) (-3 offset))
((5 integer) <- copy (34 literal))
(reply)))
(prn "F - convert-braces balances braces when converting 'loop'"))
(reset)
(new-trace "convert-braces-label")
(= traces* (queue))
(if (~iso (convert-braces
'(((1 integer) <- copy (4 literal))
foo
((2 integer) <- copy (2 literal))))
'(((1 integer) <- copy (4 literal))
foo
((2 integer) <- copy (2 literal))))
(prn "F - convert-braces skips past labels"))
;? (quit)
(reset)
(new-trace "convert-braces-label-increments-offset")
(= traces* (queue))
(if (~iso (convert-braces
'(((1 integer) <- copy (4 literal))
{ begin
(break)
foo
}
((2 integer) <- copy (2 literal))))
'(((1 integer) <- copy (4 literal))
(jump (1 offset))
foo
((2 integer) <- copy (2 literal))))
(prn "F - convert-braces treats labels as instructions"))
;? (quit)
(reset)
(new-trace "convert-braces-label-increments-offset2")
(= traces* (queue))
;? (= dump-trace* (obj whitelist '("c{0" "c{1")))
(if (~iso (convert-braces
'(((1 integer) <- copy (4 literal))
{ begin
(break)
foo
}
((2 integer) <- copy (5 literal))
{ begin
(break)
((3 integer) <- copy (6 literal))
}
((4 integer) <- copy (7 literal))))
'(((1 integer) <- copy (4 literal))
(jump (1 offset))
foo
((2 integer) <- copy (5 literal))
(jump (1 offset))
((3 integer) <- copy (6 literal))
((4 integer) <- copy (7 literal))))
(prn "F - convert-braces treats labels as instructions - 2"))
;? (quit)
(reset)
(new-trace "break-multiple")
(= traces* (queue))
;? (= dump-trace* (obj whitelist '("-")))
(if (~iso (convert-braces
'(((1 integer) <- copy (0 literal))
{ begin
{ begin
(break (2 blocks))
}
((2 integer) <- copy (0 literal))
((3 integer) <- copy (0 literal))
((4 integer) <- copy (0 literal))
((5 integer) <- copy (0 literal))
}))
'(((1 integer) <- copy (0 literal))
(jump (4 offset))
((2 integer) <- copy (0 literal))
((3 integer) <- copy (0 literal))
((4 integer) <- copy (0 literal))
((5 integer) <- copy (0 literal))))
(prn "F - 'break' can take an extra arg with number of nested blocks to exit"))
;? (quit)
(reset)
(new-trace "loop")
;? (set dump-trace*)
(add-code
'((def main [
((1 integer) <- copy (4 literal))
((2 integer) <- copy (1 literal))
{ begin
((2 integer) <- add (2 integer) (2 integer))
((3 boolean) <- neq (1 integer) (2 integer))
(loop-if (3 boolean))
((4 integer) <- copy (34 literal))
}
(reply)
])))
;? (each stmt function*!main
;? (prn stmt))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 4 2 4 3 nil 4 34))
(prn "F - 'loop' correctly loops"))
; todo: fuzz-test invariant: convert-braces offsets should be robust to any
; number of inner blocks inside but not around the loop block.
(reset)
(new-trace "loop-nested")
;? (set dump-trace*)
(add-code
'((def main [
((1 integer) <- copy (4 literal))
((2 integer) <- copy (1 literal))
{ begin
((2 integer) <- add (2 integer) (2 integer))
{ begin
((3 boolean) <- neq (1 integer) (2 integer))
}
(loop-if (3 boolean))
((4 integer) <- copy (34 literal))
}
(reply)
])))
;? (each stmt function*!main
;? (prn stmt))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 4 2 4 3 nil 4 34))
(prn "F - 'loop' correctly jumps back past nested braces"))
(reset)
(new-trace "loop-fail")
(add-code
'((def main [
((1 integer) <- copy (4 literal))
((2 integer) <- copy (2 literal))
{ begin
((2 integer) <- add (2 integer) (2 integer))
{ begin
((3 boolean) <- neq (1 integer) (2 integer))
}
(loop-if (3 boolean))
((4 integer) <- copy (34 literal))
}
(reply)
])))
(run 'main)
;? (prn memory*)
(if (~iso memory* (obj 1 4 2 4 3 nil 4 34))
(prn "F - 'loop-if' might never trigger"))
(reset)
(new-trace "loop-multiple")
(= traces* (queue))
;? (= dump-trace* (obj whitelist '("-")))
(if (~iso (convert-braces
'(((1 integer) <- copy (0 literal))
{ begin
((2 integer) <- copy (0 literal))
((3 integer) <- copy (0 literal))
{ begin
(loop (2 blocks))
}
}))
'(((1 integer) <- copy (0 literal))
((2 integer) <- copy (0 literal))
((3 integer) <- copy (0 literal))
(jump (-3 offset))))
(prn "F - 'loop' can take an extra arg with number of nested blocks to exit"))
;? (quit)
;; Variables
;
; A big convenience high-level languages provide is the ability to name memory
; locations. In mu, a lightweight tool called 'convert-names' provides this
; convenience.
(reset)
(new-trace "convert-names")
(= traces* (queue))
(if (~iso (convert-names
'(((x integer) <- copy (4 literal))
((y integer) <- copy (2 literal))
((z integer) <- add (x integer) (y integer))))
'(((1 integer) <- copy (4 literal))
((2 integer) <- copy (2 literal))
((3 integer) <- add (1 integer) (2 integer))))
(prn "F - convert-names renames symbolic names to integer locations"))
(reset)
(new-trace "convert-names-compound")
(= traces* (queue))
(if (~iso (convert-names
'(((x integer-boolean-pair) <- copy (4 literal))
((y integer) <- copy (2 literal))))
'(((1 integer-boolean-pair) <- copy (4 literal))
((3 integer) <- copy (2 literal))))
(prn "F - convert-names increments integer locations by the size of the type of the previous var"))
(reset)
(new-trace "convert-names-nil")
(= traces* (queue))
(if (~iso (convert-names
'(((x integer) <- copy (4 literal))
((y integer) <- copy (2 literal))
((nil integer) <- add (x integer) (y integer))))
'(((1 integer) <- copy (4 literal))
((2 integer) <- copy (2 literal))
((nil integer) <- add (1 integer) (2 integer))))
(prn "F - convert-names never renames nil"))
(reset)
(new-trace "convert-names-global")
(= traces* (queue))
(if (~iso (convert-names
'(((x integer) <- copy (4 literal))
((y integer global) <- copy (2 literal))
((default-scope integer) <- add (x integer) (y integer global))))
'(((1 integer) <- copy (4 literal))
((y integer global) <- copy (2 literal))
((default-scope integer) <- add (1 integer) (y integer global))))
(prn "F - convert-names never renames global operands"))
; kludgy support for 'fork' below
(reset)
(new-trace "convert-names-functions")
(= traces* (queue))
(if (~iso (convert-names
'(((x integer) <- copy (4 literal))
((y integer) <- copy (2 literal))
((z fn) <- add (x integer) (y integer))))
'(((1 integer) <- copy (4 literal))
((2 integer) <- copy (2 literal))
((z fn) <- add (1 integer) (2 integer))))
(prn "F - convert-names never renames nil"))
(reset)
(new-trace "convert-names-record-fields")
(= traces* (queue))
(if (~iso (convert-names
'(((x integer) <- get (34 integer-boolean-pair) (bool offset))))
'(((1 integer) <- get (34 integer-boolean-pair) (1 offset))))
(prn "F - convert-names replaces record field offsets"))
(reset)
(new-trace "convert-names-record-fields-ambiguous")
(= traces* (queue))
(if (errsafe (convert-names
'(((bool boolean) <- copy (t literal))
((x integer) <- get (34 integer-boolean-pair) (bool offset)))))
(prn "F - convert-names doesn't allow offsets and variables with the same name in a function"))
(reset)
(new-trace "convert-names-record-fields-ambiguous-2")
(= traces* (queue))
(if (errsafe (convert-names
'(((x integer) <- get (34 integer-boolean-pair) (bool offset))
((bool boolean) <- copy (t literal)))))
(prn "F - convert-names doesn't allow offsets and variables with the same name in a function - 2"))
(reset)
(new-trace "convert-names-record-fields-indirect")
(= traces* (queue))
(if (~iso (convert-names
'(((x integer) <- get (34 integer-boolean-pair-address deref) (bool offset))))
'(((1 integer) <- get (34 integer-boolean-pair-address deref) (1 offset))))
(prn "F - convert-names replaces field offsets for record addresses"))
(reset)
(new-trace "convert-names-record-fields-multiple")
(= traces* (queue))
(if (~iso (convert-names
'(((2 boolean) <- get (1 integer-boolean-pair) (bool offset))
((3 boolean) <- get (1 integer-boolean-pair) (bool offset))))
'(((2 boolean) <- get (1 integer-boolean-pair) (1 offset))
((3 boolean) <- get (1 integer-boolean-pair) (1 offset))))
(prn "F - convert-names replaces field offsets with multiple mentions"))
;? (quit)
(reset)
(new-trace "convert-names-label")
(= traces* (queue))
(if (~iso (convert-names
'(((1 integer) <- copy (4 literal))
foo))
'(((1 integer) <- copy (4 literal))
foo))
(prn "F - convert-names skips past labels"))
;? (quit)
; A rudimentary memory allocator. Eventually we want to write this in mu.
;
; No deallocation yet; let's see how much code we can build in mu before we
; feel the need for it.
(reset)
(new-trace "new-primitive")
(add-code
'((def main [
((1 integer-address) <- new (integer literal))
])))
(let before Memory-in-use-until
(run 'main)
;? (prn memory*)
(if (~iso memory*.1 before)
(prn "F - 'new' returns current high-water mark"))
(if (~iso Memory-in-use-until (+ before 1))
(prn "F - 'new' on primitive types increments high-water mark by their size")))
(reset)
(new-trace "new-array-literal")
(add-code
'((def main [
((1 type-array-address) <- new (type-array literal) (5 literal))
])))
(let before Memory-in-use-until
(run 'main)
;? (prn memory*)
(if (~iso memory*.1 before)
(prn "F - 'new' on array with literal size returns current high-water mark"))
(if (~iso Memory-in-use-until (+ before 6))
(prn "F - 'new' on primitive arrays increments high-water mark by their size")))
(reset)
(new-trace "new-array-direct")
(add-code
'((def main [
((1 integer) <- copy (5 literal))
((2 type-array-address) <- new (type-array literal) (1 integer))
])))
(let before Memory-in-use-until
(run 'main)
;? (prn memory*)
(if (~iso memory*.2 before)
(prn "F - 'new' on array with variable size returns current high-water mark"))
(if (~iso Memory-in-use-until (+ before 6))
(prn "F - 'new' on primitive arrays increments high-water mark by their (variable) size")))
; Even though our memory locations can now have names, the names are all
; globals, accessible from any function. To isolate functions from their
; callers we need local variables, and mu provides them using a special
; variable called default-scope. When you initialize such a variable (likely
; with a call to our just-defined memory allocator) mu interprets memory
; locations as offsets from its value. If default-scope is set to 1000, for
; example, reads and writes to memory location 1 will really go to 1001.
;
; 'default-scope' is itself hard-coded to be function-local; it's nil in a new
; function, and it's restored when functions return to their callers. But the
; actual scope allocation is independent. So you can define closures, or do
; even more funky things like share locals between two coroutines.
(reset)
(new-trace "set-default-scope")
(add-code
'((def main [
((default-scope scope-address) <- new (scope literal) (2 literal))
((1 integer) <- copy (23 literal))
])))
(let before Memory-in-use-until
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (~and (~is 23 memory*.1)
(is 23 (memory* (+ before 1))))
(prn "F - default-scope implicitly modifies variable locations")))
(reset)
(new-trace "set-default-scope-skips-offset")
(add-code
'((def main [
((default-scope scope-address) <- new (scope literal) (2 literal))
((1 integer) <- copy (23 offset))
])))
(let before Memory-in-use-until
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (~and (~is 23 memory*.1)
(is 23 (memory* (+ before 1))))
(prn "F - default-scope skips 'offset' types just like literals")))
(reset)
(new-trace "default-scope-bounds-check")
(add-code
'((def main [
((default-scope scope-address) <- new (scope literal) (2 literal))
((2 integer) <- copy (23 literal))
])))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(let routine (car completed-routines*)
(if (no rep.routine!error)
(prn "F - default-scope checks bounds")))
(reset)
(new-trace "default-scope-and-get-indirect")
(add-code
'((def main [
((default-scope scope-address) <- new (scope literal) (5 literal))
((1 integer-boolean-pair-address) <- new (integer-boolean-pair literal))
((2 integer-address) <- get-address (1 integer-boolean-pair-address deref) (0 offset))
((2 integer-address deref) <- copy (34 literal))
((3 integer global) <- get (1 integer-boolean-pair-address deref) (0 offset))
])))
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "cvt0" "cvt1")))
(run 'main)
;? (prn memory*)
;? (prn completed-routines*)
(each routine completed-routines*
(aif rep.routine!error (prn "error - " it)))
(if (~is 34 memory*.3)
(prn "F - indirect 'get' works in the presence of default-scope"))
;? (quit)
(reset)
(new-trace "default-scope-and-index-indirect")
(add-code
'((def main [
((default-scope scope-address) <- new (scope literal) (5 literal))
((1 integer-array-address) <- new (integer-array literal) (4 literal))
((2 integer-address) <- index-address (1 integer-array-address deref) (2 offset))
((2 integer-address deref) <- copy (34 literal))
((3 integer global) <- index (1 integer-array-address deref) (2 offset))
])))
;? (= dump-trace* (obj whitelist '("run" "array-info")))
(run 'main)
;? (prn memory*)
;? (prn completed-routines*)
(each routine completed-routines*
(aif rep.routine!error (prn "error - " it)))
(if (~is 34 memory*.3)
(prn "F - indirect 'index' works in the presence of default-scope"))
;? (quit)
(reset)
(new-trace "convert-names-default-scope")
(= traces* (queue))
(if (~iso (convert-names
'(((x integer) <- copy (4 literal))
((y integer) <- copy (2 literal))
; unsafe in general; don't write random values to 'default-scope'
((default-scope integer) <- add (x integer) (y integer))))
'(((1 integer) <- copy (4 literal))
((2 integer) <- copy (2 literal))
((default-scope integer) <- add (1 integer) (2 integer))))
(prn "F - convert-names never renames default-scope"))
(reset)
(new-trace "suppress-default-scope")
(add-code
'((def main [
((default-scope scope-address) <- new (scope literal) (2 literal))
((1 integer global) <- copy (23 literal))
])))
(let before Memory-in-use-until
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (~and (is 23 memory*.1)
(~is 23 (memory* (+ before 1))))
(prn "F - default-scope skipped for locations with metadata 'global'")))
;; Dynamic dispatch
;
; Putting it all together, here's how you define generic functions that run
; different code based on the types of their args.
(reset)
(new-trace "dispatch-clause")
;? (set dump-trace*)
(add-code
'((def test1 [
; doesn't matter too much how many locals you allocate space for (here 20)
; if it's slightly too many -- memory is plentiful
; if it's too few -- mu will raise an error
((default-scope scope-address) <- new (scope literal) (20 literal))
((first-arg-box tagged-value-address) <- arg)
; if given integers, add them
{ begin
((first-arg integer) (match? boolean) <- maybe-coerce (first-arg-box tagged-value-address deref) (integer literal))
(break-unless (match? boolean))
((second-arg-box tagged-value-address) <- arg)
((second-arg integer) <- maybe-coerce (second-arg-box tagged-value-address deref) (integer literal))
((result integer) <- add (first-arg integer) (second-arg integer))
(reply (result integer))
}
(reply (nil literal))
])
(def main [
((1 tagged-value-address) <- new-tagged-value (integer literal) (34 literal))
((2 tagged-value-address) <- new-tagged-value (integer literal) (3 literal))
((3 integer) <- test1 (1 tagged-value-address) (2 tagged-value-address))
])))
(run 'main)
;? (prn memory*)
(if (~is memory*.3 37)
(prn "F - an example function that checks that its oarg is an integer"))
;? (quit)
; todo - test that reply increments pc for caller frame after popping current frame
(reset)
(new-trace "dispatch-multiple-clauses")
;? (set dump-trace*)
(add-code
'((def test1 [
((default-scope scope-address) <- new (scope literal) (20 literal))
((first-arg-box tagged-value-address) <- arg)
; if given integers, add them
{ begin
((first-arg integer) (match? boolean) <- maybe-coerce (first-arg-box tagged-value-address deref) (integer literal))
(break-unless (match? boolean))
((second-arg-box tagged-value-address) <- arg)
((second-arg integer) <- maybe-coerce (second-arg-box tagged-value-address deref) (integer literal))
((result integer) <- add (first-arg integer) (second-arg integer))
(reply (result integer))
}
; if given booleans, or them (it's a silly kind of generic function)
{ begin
((first-arg boolean) (match? boolean) <- maybe-coerce (first-arg-box tagged-value-address deref) (boolean literal))
(break-unless (match? boolean))
((second-arg-box tagged-value-address) <- arg)
((second-arg boolean) <- maybe-coerce (second-arg-box tagged-value-address deref) (boolean literal))
((result boolean) <- or (first-arg boolean) (second-arg boolean))
(reply (result integer))
}
(reply (nil literal))
])
(def main [
((1 tagged-value-address) <- new-tagged-value (boolean literal) (t literal))
((2 tagged-value-address) <- new-tagged-value (boolean literal) (nil literal))
((3 boolean) <- test1 (1 tagged-value-address) (2 tagged-value-address))
])))
;? (each stmt function*!test-fn
;? (prn " " stmt))
(run 'main)
;? (wipe dump-trace*)
;? (prn memory*)
(if (~is memory*.3 t)
(prn "F - an example function that can do different things (dispatch) based on the type of its args or oargs"))
;? (quit)
(reset)
(new-trace "dispatch-multiple-calls")
(add-code
'((def test1 [
((default-scope scope-address) <- new (scope literal) (20 literal))
((first-arg-box tagged-value-address) <- arg)
; if given integers, add them
{ begin
((first-arg integer) (match? boolean) <- maybe-coerce (first-arg-box tagged-value-address deref) (integer literal))
(break-unless (match? boolean))
((second-arg-box tagged-value-address) <- arg)
((second-arg integer) <- maybe-coerce (second-arg-box tagged-value-address deref) (integer literal))
((result integer) <- add (first-arg integer) (second-arg integer))
(reply (result integer))
}
; if given booleans, or them (it's a silly kind of generic function)
{ begin
((first-arg boolean) (match? boolean) <- maybe-coerce (first-arg-box tagged-value-address deref) (boolean literal))
(break-unless (match? boolean))
((second-arg-box tagged-value-address) <- arg)
((second-arg boolean) <- maybe-coerce (second-arg-box tagged-value-address deref) (boolean literal))
((result boolean) <- or (first-arg boolean) (second-arg boolean))
(reply (result integer))
}
(reply (nil literal))
])
(def main [
((1 tagged-value-address) <- new-tagged-value (boolean literal) (t literal))
((2 tagged-value-address) <- new-tagged-value (boolean literal) (nil literal))
((3 boolean) <- test1 (1 tagged-value-address) (2 tagged-value-address))
((10 tagged-value-address) <- new-tagged-value (integer literal) (34 literal))
((11 tagged-value-address) <- new-tagged-value (integer literal) (3 literal))
((12 integer) <- test1 (10 tagged-value-address) (11 tagged-value-address))
])))
(run 'main)
;? (prn memory*)
(if (~and (is memory*.3 t) (is memory*.12 37))
(prn "F - different calls can exercise different clauses of the same function"))
;; Concurrency
;
; A rudimentary process scheduler. You can 'run' multiple functions at once,
; and they share the virtual processor.
;
; There's also a 'fork' primitive to let functions create new threads of
; execution (we call them routines).
;
; Eventually we want to allow callers to influence how much of their CPU they
; give to their 'children', or to rescind a child's running privileges.
(reset)
(new-trace "scheduler")
(= traces* (queue))
(add-code
'((def f1 [
((1 integer) <- copy (3 literal))
])
(def f2 [
((2 integer) <- copy (4 literal))
])))
(run 'f1 'f2)
(when (~iso 2 curr-cycle*)
(prn "F - scheduler didn't run the right number of instructions: " curr-cycle*))
(if (~iso memory* (obj 1 3 2 4))
(prn "F - scheduler runs multiple functions: " memory*))
(check-trace-contents "scheduler orders functions correctly"
'(("schedule" "f1")
("schedule" "f2")
))
(check-trace-contents "scheduler orders schedule and run events correctly"
'(("schedule" "f1")
("run" "f1 0")
("schedule" "f2")
("run" "f2 0")
))
(reset)
(new-trace "scheduler-alternate")
(= traces* (queue))
(add-code
'((def f1 [
((1 integer) <- copy (3 literal))
((1 integer) <- copy (3 literal))
])
(def f2 [
((2 integer) <- copy (4 literal))
((2 integer) <- copy (4 literal))
])))
(= scheduling-interval* 1)
(run 'f1 'f2)
(check-trace-contents "scheduler alternates between routines"
'(("run" "f1 0")
("run" "f2 0")
("run" "f1 1")
("run" "f2 1")
))
(reset)
(new-trace "scheduler-sleep")
(= traces* (queue))
(add-code
'((def f1 [
((1 integer) <- copy (3 literal))
])
(def f2 [
((2 integer) <- copy (4 literal))
])))
; add one baseline routine to run (empty running-routines* handled below)
(enq make-routine!f1 running-routines*)
(assert (is 1 len.running-routines*))
; sleeping routine
(let routine make-routine!f2
(= rep.routine!sleep '(23 literal))
(set sleeping-routines*.routine))
; not yet time for it to wake up
(= curr-cycle* 23)
;? (set dump-trace*)
;? (= dump-trace* (obj whitelist '("run" "schedule")))
(update-scheduler-state)
(if (~is 1 len.running-routines*)
(prn "F - scheduler lets routines sleep"))
(reset)
(new-trace "scheduler-wakeup")
(= traces* (queue))
(add-code
'((def f1 [
((1 integer) <- copy (3 literal))
])
(def f2 [
((2 integer) <- copy (4 literal))
])))
; add one baseline routine to run (empty running-routines* handled below)
(enq make-routine!f1 running-routines*)
(assert (is 1 len.running-routines*))
; sleeping routine
(let routine make-routine!f2
(= rep.routine!sleep '(23 literal))
(set sleeping-routines*.routine))
; time for it to wake up
(= curr-cycle* 24)
(update-scheduler-state)
(if (~is 2 len.running-routines*)
(prn "F - scheduler wakes up sleeping routines at the right time"))
(reset)
(new-trace "scheduler-sleep-location")
(= traces* (queue))
(add-code
'((def f1 [
((1 integer) <- copy (3 literal))
])
(def f2 [
((2 integer) <- copy (4 literal))
])))
; add one baseline routine to run (empty running-routines* handled below)
(enq make-routine!f1 running-routines*)
(assert (is 1 len.running-routines*))
; blocked routine waiting for location 23 to change
(let routine make-routine!f2
(= rep.routine!sleep '(23 0))
(set sleeping-routines*.routine))
; leave memory location 23 unchanged
(= memory*.23 0)
;? (prn memory*)
;? (prn running-routines*)
;? (prn sleeping-routines*)
;? (set dump-trace*)
;? (= dump-trace* (obj whitelist '("run" "schedule")))
(update-scheduler-state)
;? (prn running-routines*)
;? (prn sleeping-routines*)
; routine remains blocked
(if (~is 1 len.running-routines*)
(prn "F - scheduler lets routines block on locations"))
;? (quit)
(reset)
(new-trace "scheduler-wakeup-location")
(= traces* (queue))
(add-code
'((def f1 [
((1 integer) <- copy (3 literal))
])
(def f2 [
((2 integer) <- copy (4 literal))
])))
; add one baseline routine to run (empty running-routines* handled below)
(enq make-routine!f1 running-routines*)
(assert (is 1 len.running-routines*))
; blocked routine waiting for location 23 to change
(let routine make-routine!f2
(= rep.routine!sleep '(23 0))
(set sleeping-routines*.routine))
; change memory location 23
(= memory*.23 1)
(update-scheduler-state)
; routine unblocked
(if (~is 2 len.running-routines*)
(prn "F - scheduler unblocks routines blocked on locations"))
(reset)
(new-trace "scheduler-skip")
(= traces* (queue))
(add-code
'((def f1 [
((1 integer) <- copy (3 literal))
])))
; running-routines* is empty
(assert (empty running-routines*))
; sleeping routine
(let routine make-routine!f1
(= rep.routine!sleep '(23 literal))
(set sleeping-routines*.routine))
; long time left for it to wake up
(= curr-cycle* 0)
(update-scheduler-state)
(assert (is curr-cycle* 24))
(if (~is 1 len.running-routines*)
(prn "F - scheduler skips ahead to earliest sleeping routines when nothing to run"))
(reset)
(new-trace "scheduler-deadlock")
(= traces* (queue))
(add-code
'((def f1 [
((1 integer) <- copy (3 literal))
])))
(assert (empty running-routines*))
(assert (empty completed-routines*))
; blocked routine
(let routine make-routine!f1
(= rep.routine!sleep '(23 0))
(set sleeping-routines*.routine))
; location it's waiting on is 'unchanged'
(= memory*.23 0)
(update-scheduler-state)
(assert (~empty completed-routines*))
;? (prn completed-routines*)
(let routine completed-routines*.0
(when (~posmatch "deadlock" rep.routine!error)
(prn "F - scheduler detects deadlock")))
;? (quit)
(reset)
(new-trace "scheduler-deadlock2")
(= traces* (queue))
(add-code
'((def f1 [
((1 integer) <- copy (3 literal))
])))
; running-routines* is empty
(assert (empty running-routines*))
; blocked routine
(let routine make-routine!f1
(= rep.routine!sleep '(23 0))
(set sleeping-routines*.routine))
; but is about to become ready
(= memory*.23 1)
(update-scheduler-state)
(when (~empty completed-routines*)
(prn "F - scheduler ignores sleeping but ready threads when detecting deadlock"))
(reset)
(new-trace "sleep")
(add-code
'((def f1 [
(sleep (1 literal))
((1 integer) <- copy (3 literal))
((1 integer) <- copy (3 literal))
])
(def f2 [
((2 integer) <- copy (4 literal))
((2 integer) <- copy (4 literal))
])))
;? (= dump-trace* (obj whitelist '("run" "schedule")))
(run 'f1 'f2)
(check-trace-contents "scheduler handles sleeping routines"
'(("run" "f1 0")
("run" "sleeping until 2")
("schedule" "pushing f1 to sleep queue")
("run" "f2 0")
("run" "f2 1")
("schedule" "waking up f1")
("run" "f1 1")
("run" "f1 2")
))
(reset)
(new-trace "sleep-long")
(add-code
'((def f1 [
(sleep (20 literal))
((1 integer) <- copy (3 literal))
((1 integer) <- copy (3 literal))
])
(def f2 [
((2 integer) <- copy (4 literal))
((2 integer) <- copy (4 literal))
])))
;? (= dump-trace* (obj whitelist '("run" "schedule")))
(run 'f1 'f2)
(check-trace-contents "scheduler progresses sleeping routines when there are no routines left to run"
'(("run" "f1 0")
("run" "sleeping until 21")
("schedule" "pushing f1 to sleep queue")
("run" "f2 0")
("run" "f2 1")
("schedule" "waking up f1")
("run" "f1 1")
("run" "f1 2")
))
(reset)
(new-trace "sleep-location")
(add-code
'((def f1 [
; waits for memory location 1 to be set, before computing its successor
((1 integer) <- copy (0 literal))
(sleep (1 integer))
((2 integer) <- add (1 integer) (1 literal))
])
(def f2 [
(sleep (30 literal))
((1 integer) <- copy (3 literal)) ; set to value
])))
;? (= dump-trace* (obj whitelist '("run" "schedule")))
;? (set dump-trace*)
(run 'f1 'f2)
;? (prn int-canon.memory*)
(each routine completed-routines*
(aif rep.routine!error (prn "error - " it)))
(if (~is memory*.2 4) ; successor of value
(prn "F - sleep can block on a memory location"))
;? (quit)
(reset)
(new-trace "sleep-scoped-location")
(add-code
'((def f1 [
; waits for memory location 1 to be changed, before computing its successor
((10 integer) <- copy (5 literal)) ; array of locals
((default-scope scope-address) <- copy (10 literal))
((1 integer) <- copy (23 literal)) ; really location 11
(sleep (1 integer))
((2 integer) <- add (1 integer) (1 literal))
])
(def f2 [
(sleep (30 literal))
((11 integer) <- copy (3 literal)) ; set to value
])))
;? (= dump-trace* (obj whitelist '("run" "schedule")))
(run 'f1 'f2)
(if (~is memory*.12 4) ; successor of value
(prn "F - sleep can block on a scoped memory location"))
;? (quit)
(reset)
(new-trace "fork")
(add-code
'((def f1 [
(fork (f2 fn))
])
(def f2 [
((2 integer) <- copy (4 literal))
])))
(run 'f1)
(if (~iso memory*.2 4)
(prn "F - fork works"))
(reset)
(new-trace "fork-with-args")
(add-code
'((def f1 [
(fork (f2 fn) (4 literal))
])
(def f2 [
((2 integer) <- arg)
])))
(run 'f1)
(if (~iso memory*.2 4)
(prn "F - fork can pass args"))
(reset)
(new-trace "fork-copies-args")
(add-code
'((def f1 [
((default-scope scope-address) <- new (scope literal) (5 literal))
((x integer) <- copy (4 literal))
(fork (f2 fn) (x integer))
((x integer) <- copy (0 literal)) ; should be ignored
])
(def f2 [
((2 integer) <- arg)
])))
(run 'f1)
(if (~iso memory*.2 4)
(prn "F - fork passes args by value"))
; The scheduler needs to keep track of the call stack for each routine.
; Eventually we'll want to save this information in mu's address space itself,
; along with the types array, the magic buffers for args and oargs, and so on.
;
; Eventually we want the right stack-management primitives to build delimited
; continuations in mu.
; Routines can throw errors.
(reset)
(new-trace "array-bounds-check")
(add-code
'((def main [
((1 integer) <- copy (2 literal))
((2 integer) <- copy (23 literal))
((3 integer) <- copy (24 literal))
((4 integer) <- index (1 integer-array) (2 literal))
])))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(let routine (car completed-routines*)
(if (no rep.routine!error)
(prn "F - 'index' throws an error if out of bounds")))
;; Synchronization
;
; Mu synchronizes using channels rather than locks, like Erlang and Go.
;
; The two ends of a channel will usually belong to different routines, but
; each end should only be used by a single one. Don't try to read from or
; write to it from multiple routines at once.
;
; To avoid locking, writer and reader will never write to the same location.
; So channels will include fields in pairs, one for the writer and one for the
; reader.
; The core circular buffer contains values at index 'first-full' up to (but
; not including) index 'first-empty'. The reader always modifies it at
; first-full, while the writer always modifies it at first-empty.
(reset)
(new-trace "channel-new")
(add-code
'((def main [
((1 channel-address) <- new-channel (3 literal))
((2 integer) <- get (1 channel-address deref) (first-full offset))
((3 integer) <- get (1 channel-address deref) (first-free offset))
])))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (or (~is 0 memory*.2)
(~is 0 memory*.3))
(prn "F - 'new-channel' initializes 'first-full and 'first-free to 0"))
(reset)
(new-trace "channel-write")
(add-code
'((def main [
((1 channel-address) <- new-channel (3 literal))
((2 integer-address) <- new (integer literal))
((2 integer-address deref) <- copy (34 literal))
((3 tagged-value-address) <- new-tagged-value (integer-address literal) (2 integer-address))
((1 channel-address deref) <- write (1 channel-address) (3 tagged-value-address deref))
((4 integer) <- get (1 channel-address deref) (first-full offset))
((5 integer) <- get (1 channel-address deref) (first-free offset))
])))
;? (set dump-trace*)
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "array-len" "cvt0" "cvt1")))
;? (= dump-trace* (obj whitelist '("jump")))
(run 'main)
;? (prn canon.memory*)
(if (or (~is 0 memory*.4)
(~is 1 memory*.5))
(prn "F - 'write' enqueues item to channel"))
;? (quit)
(reset)
(new-trace "channel-read")
(add-code
'((def main [
((1 channel-address) <- new-channel (3 literal))
((2 integer-address) <- new (integer literal))
((2 integer-address deref) <- copy (34 literal))
((3 tagged-value-address) <- new-tagged-value (integer-address literal) (2 integer-address))
((1 channel-address deref) <- write (1 channel-address) (3 tagged-value-address deref))
((4 tagged-value) (1 channel-address deref) <- read (1 channel-address))
((6 integer-address) <- maybe-coerce (4 tagged-value) (integer-address literal))
((7 integer) <- get (1 channel-address deref) (first-full offset))
((8 integer) <- get (1 channel-address deref) (first-free offset))
])))
;? (set dump-trace*)
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "array-len" "cvt0" "cvt1")))
(run 'main)
;? (prn int-canon.memory*)
(if (~is memory*.6 memory*.2)
(prn "F - 'read' returns written value"))
(if (or (~is 1 memory*.7)
(~is 1 memory*.8))
(prn "F - 'read' dequeues item from channel"))
(reset)
(new-trace "channel-write-wrap")
(add-code
'((def main [
; channel with 1 slot
((1 channel-address) <- new-channel (1 literal))
; write a value
((2 integer-address) <- new (integer literal))
((2 integer-address deref) <- copy (34 literal))
((3 tagged-value-address) <- new-tagged-value (integer-address literal) (2 integer-address))
((1 channel-address deref) <- write (1 channel-address) (3 tagged-value-address deref))
; first-free will now be 1
((4 integer) <- get (1 channel-address deref) (first-free offset))
; read one value
(_ (1 channel-address deref) <- read (1 channel-address))
; write a second value; verify that first-free wraps around to 0.
((1 channel-address deref) <- write (1 channel-address) (3 tagged-value-address deref))
((5 integer) <- get (1 channel-address deref) (first-free offset))
])))
;? (set dump-trace*)
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "array-len" "cvt0" "cvt1")))
(run 'main)
;? (prn canon.memory*)
(if (or (~is 1 memory*.4)
(~is 0 memory*.5))
(prn "F - 'write' can wrap pointer back to start"))
(reset)
(new-trace "channel-read-wrap")
(add-code
'((def main [
; channel with 1 slot
((1 channel-address) <- new-channel (1 literal))
; write a value
((2 integer-address) <- new (integer literal))
((2 integer-address deref) <- copy (34 literal))
((3 tagged-value-address) <- new-tagged-value (integer-address literal) (2 integer-address))
((1 channel-address deref) <- write (1 channel-address) (3 tagged-value-address deref))
; read one value
(_ (1 channel-address deref) <- read (1 channel-address))
; first-full will now be 1
((4 integer) <- get (1 channel-address deref) (first-full offset))
; write a second value
((1 channel-address deref) <- write (1 channel-address) (3 tagged-value-address deref))
; read second value; verify that first-full wraps around to 0.
(_ (1 channel-address deref) <- read (1 channel-address))
((5 integer) <- get (1 channel-address deref) (first-full offset))
])))
;? (set dump-trace*)
;? (= dump-trace* (obj blacklist '("sz" "m" "setm" "addr" "array-len" "cvt0" "cvt1")))
(run 'main)
;? (prn canon.memory*)
(if (or (~is 1 memory*.4)
(~is 0 memory*.5))
(prn "F - 'read' can wrap pointer back to start"))
(reset)
(new-trace "channel-new-empty-not-full")
(add-code
'((def main [
((1 channel-address) <- new-channel (3 literal))
((2 boolean) <- empty? (1 channel-address deref))
((3 boolean) <- full? (1 channel-address deref))
])))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (or (~is t memory*.2)
(~is nil memory*.3))
(prn "F - a new channel is always empty, never full"))
(reset)
(new-trace "channel-write-not-empty")
(add-code
'((def main [
((1 channel-address) <- new-channel (3 literal))
((2 integer-address) <- new (integer literal))
((2 integer-address deref) <- copy (34 literal))
((3 tagged-value-address) <- new-tagged-value (integer-address literal) (2 integer-address))
((1 channel-address deref) <- write (1 channel-address) (3 tagged-value-address deref))
((4 boolean) <- empty? (1 channel-address deref))
((5 boolean) <- full? (1 channel-address deref))
])))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (or (~is nil memory*.4)
(~is nil memory*.5))
(prn "F - a channel after writing is never empty"))
(reset)
(new-trace "channel-write-full")
(add-code
'((def main [
((1 channel-address) <- new-channel (1 literal))
((2 integer-address) <- new (integer literal))
((2 integer-address deref) <- copy (34 literal))
((3 tagged-value-address) <- new-tagged-value (integer-address literal) (2 integer-address))
((1 channel-address deref) <- write (1 channel-address) (3 tagged-value-address deref))
((4 boolean) <- empty? (1 channel-address deref))
((5 boolean) <- full? (1 channel-address deref))
])))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (or (~is nil memory*.4)
(~is t memory*.5))
(prn "F - a channel after writing may be full"))
(reset)
(new-trace "channel-read-not-full")
(add-code
'((def main [
((1 channel-address) <- new-channel (3 literal))
((2 integer-address) <- new (integer literal))
((2 integer-address deref) <- copy (34 literal))
((3 tagged-value-address) <- new-tagged-value (integer-address literal) (2 integer-address))
((1 channel-address deref) <- write (1 channel-address) (3 tagged-value-address deref))
((1 channel-address deref) <- write (1 channel-address) (3 tagged-value-address deref))
(_ (1 channel-address deref) <- read (1 channel-address))
((4 boolean) <- empty? (1 channel-address deref))
((5 boolean) <- full? (1 channel-address deref))
])))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (or (~is nil memory*.4)
(~is nil memory*.5))
(prn "F - a channel after reading is never full"))
(reset)
(new-trace "channel-read-empty")
(add-code
'((def main [
((1 channel-address) <- new-channel (3 literal))
((2 integer-address) <- new (integer literal))
((2 integer-address deref) <- copy (34 literal))
((3 tagged-value-address) <- new-tagged-value (integer-address literal) (2 integer-address))
((1 channel-address deref) <- write (1 channel-address) (3 tagged-value-address deref))
(_ (1 channel-address deref) <- read (1 channel-address))
((4 boolean) <- empty? (1 channel-address deref))
((5 boolean) <- full? (1 channel-address deref))
])))
;? (set dump-trace*)
(run 'main)
;? (prn memory*)
(if (or (~is t memory*.4)
(~is nil memory*.5))
(prn "F - a channel after reading may be empty"))
; The key property of channels; writing to a full channel blocks the current
; routine until it creates space. Ditto reading from an empty channel.
(reset)
(new-trace "channel-read-block")
(add-code
'((def main [
((1 channel-address) <- new-channel (3 literal))
; channel is empty, but receives a read
((2 tagged-value) (1 channel-address deref) <- read (1 channel-address))
])))
;? (set dump-trace*)
;? (= dump-trace* (obj whitelist '("run")))
(run 'main)
;? (prn int-canon.memory*)
;? (prn sleeping-routines*)
;? (prn completed-routines*)
; read should cause the routine to sleep, and
; the sole sleeping routine should trigger the deadlock detector
(let routine (car completed-routines*)
(when (or (no routine)
(no rep.routine!error)
(~posmatch "deadlock" rep.routine!error))
(prn "F - 'read' on empty channel blocks (puts the routine to sleep until the channel gets data)")))
;? (quit)
(reset)
(new-trace "channel-write-block")
(add-code
'((def main [
((1 channel-address) <- new-channel (1 literal))
((2 integer-address) <- new (integer literal))
((2 integer-address deref) <- copy (34 literal))
((3 tagged-value-address) <- new-tagged-value (integer-address literal) (2 integer-address))
((1 channel-address deref) <- write (1 channel-address) (3 tagged-value-address deref))
; channel has capacity 1, but receives a second write
((1 channel-address deref) <- write (1 channel-address) (3 tagged-value-address deref))
])))
;? (set dump-trace*)
;? (= dump-trace* (obj whitelist '("run" "schedule" "addr")))
(run 'main)
;? (prn int-canon.memory*)
;? (prn running-routines*)
;? (prn sleeping-routines*)
;? (prn completed-routines*)
; second write should cause the routine to sleep, and
; the sole sleeping routine should trigger the deadlock detector
(let routine (car completed-routines*)
(when (or (no routine)
(no rep.routine!error)
(~posmatch "deadlock" rep.routine!error))
(prn "F - 'write' on full channel blocks (puts the routine to sleep until the channel gets data)")))
;? (quit)
(reset)
(new-trace "channel-handoff")
(add-code
'((def f1 [
((default-scope scope-address) <- new (scope literal) (30 literal))
((chan channel-address) <- new-channel (3 literal))
(fork (f2 fn) (chan channel-address))
((1 tagged-value global) <- read (chan channel-address))
])
(def f2 [
((default-scope scope-address) <- new (scope literal) (30 literal))
((n integer-address) <- new (integer literal))
((n integer-address deref) <- copy (24 literal))
((ochan channel-address) <- arg)
((x tagged-value-address) <- new-tagged-value (integer-address literal) (n integer-address))
((ochan channel-address deref) <- write (ochan channel-address) (x tagged-value-address deref))
])))
;? (set dump-trace*)
;? (= dump-trace* (obj whitelist '("schedule" "run" "addr")))
;? (= dump-trace* (obj whitelist '("-")))
(run 'f1)
;? (prn memory*)
(each routine completed-routines*
(aif rep.routine!error (prn "error - " it)))
(if (~is 24 (memory* memory*.2)) ; location 1 contains tagged-value *x above
(prn "F - channels are meant to be shared between routines"))
;? (quit)
;; Separating concerns
;
; Lightweight tools can also operate on quoted lists of statements surrounded
; by square brackets. In the example below, we mimic Go's 'defer' keyword
; using 'convert-quotes'. It lets us write code anywhere in a function, but
; have it run just before the function exits. Great for keeping code to
; reclaim memory or other resources close to the code to allocate it. (C++
; programmers know this as RAII.) We'll use 'defer' when we build a memory
; deallocation routine like C's 'free'.
;
; More powerful reorderings are also possible like in Literate Programming or
; Aspect-Oriented Programming; one advantage of prohibiting arbitrarily nested
; code is that we can naturally name 'join points' wherever we want.
(reset)
(new-trace "convert-quotes-defer")
(= traces* (queue))
(if (~iso (convert-quotes
'(((1 integer) <- copy (4 literal))
(defer [
((3 integer) <- copy (6 literal))
])
((2 integer) <- copy (5 literal))))
'(((1 integer) <- copy (4 literal))
((2 integer) <- copy (5 literal))
((3 integer) <- copy (6 literal))))
(prn "F - convert-quotes can handle 'defer'"))
(reset)
(new-trace "convert-quotes-label")
(= traces* (queue))
(if (~iso (convert-quotes
'(((1 integer) <- copy (4 literal))
foo
((2 integer) <- copy (5 literal))))
'(((1 integer) <- copy (4 literal))
foo
((2 integer) <- copy (5 literal))))
(prn "F - convert-quotes can handle labels"))
(reset)
(new-trace "before")
(= traces* (queue))
(add-code '((before label1 [
((2 integer) <- copy (0 literal))
])))
(if (~iso (as cons before*!label1)
'(; fragment
(
((2 integer) <- copy (0 literal)))))
(prn "F - 'before' records fragments of code to insert before labels"))
(if (~iso (insert-code
'(((1 integer) <- copy (0 literal))
label1
((3 integer) <- copy (0 literal))))
'(((1 integer) <- copy (0 literal))
((2 integer) <- copy (0 literal))
label1
((3 integer) <- copy (0 literal))))
(prn "F - 'insert-code' can insert fragments before labels"))
(reset)
(new-trace "before-multiple")
(= traces* (queue))
(add-code '((before label1 [
((2 integer) <- copy (0 literal))
])
(before label1 [
((3 integer) <- copy (0 literal))
])))
(if (~iso (as cons before*!label1)
'(; fragment
(
((2 integer) <- copy (0 literal)))
(
((3 integer) <- copy (0 literal)))))
(prn "F - 'before' records fragments in order"))
(if (~iso (insert-code
'(((1 integer) <- copy (0 literal))
label1
((4 integer) <- copy (0 literal))))
'(((1 integer) <- copy (0 literal))
((2 integer) <- copy (0 literal))
((3 integer) <- copy (0 literal))
label1
((4 integer) <- copy (0 literal))))
(prn "F - 'insert-code' can insert multiple fragments in order before label"))
(reset)
(new-trace "before-scoped")
(= traces* (queue))
(add-code '((before f/label1 [ ; label1 only inside function f
((2 integer) <- copy (0 literal))
])))
(if (~iso (insert-code
'(((1 integer) <- copy (0 literal))
label1
((3 integer) <- copy (0 literal)))
'f)
'(((1 integer) <- copy (0 literal))
((2 integer) <- copy (0 literal))
label1
((3 integer) <- copy (0 literal))))
(prn "F - 'insert-code' can insert fragments before labels just in specified functions"))
(reset)
(new-trace "before-scoped2")
(= traces* (queue))
(add-code '((before f/label1 [ ; label1 only inside function f
((2 integer) <- copy (0 literal))
])))
(if (~iso (insert-code
'(((1 integer) <- copy (0 literal))
label1
((3 integer) <- copy (0 literal))))
'(((1 integer) <- copy (0 literal))
label1
((3 integer) <- copy (0 literal))))
(prn "F - 'insert-code' ignores labels not in specified functions"))
(reset)
(new-trace "after")
(= traces* (queue))
(add-code '((after label1 [
((2 integer) <- copy (0 literal))
])))
(if (~iso (as cons after*!label1)
'(; fragment
(
((2 integer) <- copy (0 literal)))))
(prn "F - 'after' records fragments of code to insert after labels"))
(if (~iso (insert-code
'(((1 integer) <- copy (0 literal))
label1
((3 integer) <- copy (0 literal))))
'(((1 integer) <- copy (0 literal))
label1
((2 integer) <- copy (0 literal))
((3 integer) <- copy (0 literal))))
(prn "F - 'insert-code' can insert fragments after labels"))
(reset)
(new-trace "after-multiple")
(= traces* (queue))
(add-code '((after label1 [
((2 integer) <- copy (0 literal))
])
(after label1 [
((3 integer) <- copy (0 literal))
])))
(if (~iso (as cons after*!label1)
'(; fragment
(
((3 integer) <- copy (0 literal)))
(
((2 integer) <- copy (0 literal)))))
(prn "F - 'after' records fragments in *reverse* order"))
(if (~iso (insert-code
'(((1 integer) <- copy (0 literal))
label1
((4 integer) <- copy (0 literal))))
'(((1 integer) <- copy (0 literal))
label1
((3 integer) <- copy (0 literal))
((2 integer) <- copy (0 literal))
((4 integer) <- copy (0 literal))))
(prn "F - 'insert-code' can insert multiple fragments in order after label"))
(reset)
(new-trace "before-after")
(= traces* (queue))
(add-code '((before label1 [
((2 integer) <- copy (0 literal))
])
(after label1 [
((3 integer) <- copy (0 literal))
])))
(if (and (~iso (as cons before*!label1)
'(; fragment
(
((2 integer) <- copy (0 literal)))))
(~iso (as cons after*!label1)
'(; fragment
(
((3 integer) <- copy (0 literal))))))
(prn "F - 'before' and 'after' fragments work together"))
(if (~iso (insert-code
'(((1 integer) <- copy (0 literal))
label1
((4 integer) <- copy (0 literal))))
'(((1 integer) <- copy (0 literal))
((2 integer) <- copy (0 literal))
label1
((3 integer) <- copy (0 literal))
((4 integer) <- copy (0 literal))))
(prn "F - 'insert-code' can insert multiple fragments around label"))
(reset)
(new-trace "before-after-multiple")
(= traces* (queue))
(add-code '((before label1 [
((2 integer) <- copy (0 literal))
((3 integer) <- copy (0 literal))
])
(after label1 [
((4 integer) <- copy (0 literal))
])
(before label1 [
((5 integer) <- copy (0 literal))
])
(after label1 [
((6 integer) <- copy (0 literal))
((7 integer) <- copy (0 literal))
])))
(if (or (~iso (as cons before*!label1)
'(; fragment
(
((2 integer) <- copy (0 literal))
((3 integer) <- copy (0 literal)))
(
((5 integer) <- copy (0 literal)))))
(~iso (as cons after*!label1)
'(; fragment
(
((6 integer) <- copy (0 literal))
((7 integer) <- copy (0 literal)))
(
((4 integer) <- copy (0 literal))))))
(prn "F - multiple 'before' and 'after' fragments at once"))
(if (~iso (insert-code
'(((1 integer) <- copy (0 literal))
label1
((8 integer) <- copy (0 literal))))
'(((1 integer) <- copy (0 literal))
((2 integer) <- copy (0 literal))
((3 integer) <- copy (0 literal))
((5 integer) <- copy (0 literal))
label1
((6 integer) <- copy (0 literal))
((7 integer) <- copy (0 literal))
((4 integer) <- copy (0 literal))
((8 integer) <- copy (0 literal))))
(prn "F - 'insert-code' can insert multiple fragments around label - 2"))
(reset)
(new-trace "before-after-independent")
(= traces* (queue))
(if (~iso (do
(reset)
(add-code '((before label1 [
((2 integer) <- copy (0 literal))
])
(after label1 [
((3 integer) <- copy (0 literal))
])
(before label1 [
((4 integer) <- copy (0 literal))
])
(after label1 [
((5 integer) <- copy (0 literal))
])))
(list before*!label1 after*!label1))
(do
(reset)
(add-code '((before label1 [
((2 integer) <- copy (0 literal))
])
(before label1 [
((4 integer) <- copy (0 literal))
])
(after label1 [
((3 integer) <- copy (0 literal))
])
(after label1 [
((5 integer) <- copy (0 literal))
])))
(list before*!label1 after*!label1)))
(prn "F - order matters within 'before' and 'after' fragments, but not *between* 'before' and 'after' fragments"))
(reset)
(new-trace "before-after-braces")
(= traces* (queue))
(= function* (table))
(add-code '((after label1 [
((1 integer) <- copy (0 literal))
])
(def f1 [
{ begin
label1
}
])))
(freeze-functions)
(if (~iso function*!f1
'(label1
((1 integer) <- copy (0 literal))))
(prn "F - before/after works inside blocks"))
(reset)
(new-trace "before-after-any-order")
(= traces* (queue))
(= function* (table))
(add-code '((def f1 [
{ begin
label1
}
])
(after label1 [
((1 integer) <- copy (0 literal))
])))
(freeze-functions)
(if (~iso function*!f1
'(label1
((1 integer) <- copy (0 literal))))
(prn "F - before/after can come after the function they need to modify"))
(reset)
(new-trace "multiple-defs")
(= traces* (queue))
(= function* (table))
(add-code '((def f1 [
((1 integer) <- copy (0 literal))
])
(def f1 [
((2 integer) <- copy (0 literal))
])))
(freeze-functions)
(if (~iso function*!f1
'(((2 integer) <- copy (0 literal))
((1 integer) <- copy (0 literal))))
(prn "F - multiple 'def' of the same function add clauses"))
(reset)
(new-trace "def!")
(= traces* (queue))
(= function* (table))
(add-code '((def f1 [
((1 integer) <- copy (0 literal))
])
(def! f1 [
((2 integer) <- copy (0 literal))
])))
(freeze-functions)
(if (~iso function*!f1
'(((2 integer) <- copy (0 literal))))
(prn "F - 'def!' clears all previous clauses"))
;; ---
(reset)
(new-trace "string-new")
(add-code '((def main [
((1 string-address) <- new (string literal) (5 literal))
])))
(let before Memory-in-use-until
(run 'main)
(if (~iso Memory-in-use-until (+ before 5 1))
(prn "F - 'new' allocates arrays of bytes for strings")))
; Convenience: initialize strings using string literals
(reset)
(new-trace "string-literal")
(add-code '((def main [
((1 string-address) <- new "hello")
])))
(let before Memory-in-use-until
(run 'main)
(if (~iso Memory-in-use-until (+ before 5 1))
(prn "F - 'new' allocates arrays of bytes for string literals"))
(if (or (~is 5 (memory* before))
(~is #\h (memory* (+ before 1)))
(~is #\e (memory* (+ before 2)))
(~is #\l (memory* (+ before 3)))
(~is #\l (memory* (+ before 4)))
(~is #\o (memory* (+ before 5))))
(prn "F - 'new' initializes allocated memory to string literal"))
; helper
(def memory-contains (addr value)
;? (prn "Looking for @value starting at @addr")
(and (>= memory*.addr len.value)
(loop (addr (+ addr 1)
idx 0)
;? ;? (prn "comparing @memory*.addr and @value.idx")
(if (>= idx len.value)
t
(~is memory*.addr value.idx)
(do1 nil
(prn "@addr should contain @value.idx but contains @memory*.addr"))
:else
(recur (+ addr 1) (+ idx 1))))))
; test the helper
(if (~memory-contains before "hello")
(prn "F - 'memory-contains' helper is broken")))
(reset)
(new-trace "strcat")
(add-code '((def main [
((1 string-address) <- new "hello,")
((2 string-address) <- new " world!")
((3 string-address) <- strcat (1 string-address) (2 string-address))
])))
(run 'main)
(if (~memory-contains memory*.3 "hello, world!")
(prn "F - 'strcat' concatenates strings"))
(reset)
(new-trace "interpolate")
(add-code '((def main [
((1 string-address) <- new "hello, _!")
((2 string-address) <- new "abc")
((3 string-address) <- interpolate (1 string-address) (2 string-address))
])))
;? (= dump-trace* (obj whitelist '("run")))
(run 'main)
(if (~memory-contains memory*.3 "hello, abc!")
(prn "F - 'interpolate' splices strings"))
(reset)
(new-trace "interpolate-empty")
(add-code '((def main [
((1 string-address) <- new "hello!")
((2 string-address) <- new "abc")
((3 string-address) <- interpolate (1 string-address) (2 string-address))
])))
;? (= dump-trace* (obj whitelist '("run")))
(run 'main)
(if (~memory-contains memory*.3 "hello!")
(prn "F - 'interpolate' without underscore returns template"))
(reset)
(new-trace "interpolate-at-start")
(add-code '((def main [
((1 string-address) <- new "_, hello!")
((2 string-address) <- new "abc")
((3 string-address) <- interpolate (1 string-address) (2 string-address))
])))
;? (= dump-trace* (obj whitelist '("run")))
(run 'main)
(if (~memory-contains memory*.3 "abc, hello")
(prn "F - 'interpolate' splices strings at start"))
(reset)
(new-trace "interpolate-at-end")
(add-code '((def main [
((1 string-address) <- new "hello, _")
((2 string-address) <- new "abc")
((3 string-address) <- interpolate (1 string-address) (2 string-address))
])))
;? (= dump-trace* (obj whitelist '("run")))
(run 'main)
(if (~memory-contains memory*.3 "hello, abc")
(prn "F - 'interpolate' splices strings at start"))
;; unit tests for various helpers
; addr
(reset)
(= routine* nil)
(if (~is 4 (addr '(4 integer)))
(prn "F - directly addressed operands are their own address"))
(if (~is 4 (addr '(4 integer-address)))
(prn "F - directly addressed operands are their own address - 2"))
(if (~is 4 (addr '(4 literal)))
(prn "F - 'addr' doesn't understand literals"))
(= memory*.4 23)
(if (~is 23 (addr '(4 integer-address deref)))
(prn "F - 'addr' works with indirectly-addressed 'deref'"))
(= memory*.3 4)
(if (~is 23 (addr '(3 integer-address-address deref deref)))
(prn "F - 'addr' works with multiple 'deref'"))
(= routine* make-routine!foo)
(if (~is 4 (addr '(4 integer)))
(prn "F - directly addressed operands are their own address inside routines"))
(if (~is 4 (addr '(4 integer-address)))
(prn "F - directly addressed operands are their own address inside routines - 2"))
(if (~is 4 (addr '(4 literal)))
(prn "F - 'addr' doesn't understand literals inside routines"))
(= memory*.4 23)
(if (~is 23 (addr '(4 integer-address deref)))
(prn "F - 'addr' works with indirectly-addressed 'deref' inside routines"))
(= rep.routine*!call-stack.0!default-scope 10)
(= memory*.10 5) ; bounds check for default-scope
(if (~is 14 (addr '(4 integer)))
(prn "F - directly addressed operands in routines add default-scope"))
(if (~is 14 (addr '(4 integer-address)))
(prn "F - directly addressed operands in routines add default-scope - 2"))
(if (~is 14 (addr '(4 literal)))
(prn "F - 'addr' doesn't understand literals"))
(= memory*.14 23)
(if (~is 23 (addr '(4 integer-address deref)))
(prn "F - 'addr' adds default-scope before 'deref', not after"))
; deref
(reset)
(= memory*.3 4)
(if (~iso '(4 integer) (deref '(3 integer-address deref)))
(prn "F - 'deref' handles simple addresses"))
(if (~iso '(4 integer deref) (deref '(3 integer-address deref deref)))
(prn "F - 'deref' deletes just one deref"))
(= memory*.4 5)
(if (~iso '(5 integer) (deref:deref '(3 integer-address-address deref deref)))
(prn "F - 'deref' can be chained"))
; absolutize
(reset)
(if (~iso '(4 integer) (absolutize '(4 integer)))
(prn "F - 'absolutize' works without routine"))
(= routine* make-routine!foo)
(if (~iso '(4 integer) (absolutize '(4 integer)))
(prn "F - 'absolutize' works without default-scope"))
(= rep.routine*!call-stack.0!default-scope 10)
(= memory*.10 5) ; bounds check for default-scope
(if (~iso '(14 integer global) (absolutize '(4 integer)))
(prn "F - 'absolutize' works with default-scope"))
(absolutize '(5 integer))
(if (~posmatch "no room" rep.routine*!error)
(prn "F - 'absolutize' checks against default-scope bounds"))
; sizeof
(reset)
(if (~is 1 sizeof!integer)
(prn "F - 'sizeof' works on primitives"))
(if (~is 1 sizeof!integer-address)
(prn "F - 'sizeof' works on addresses"))
(if (~is 2 sizeof!integer-boolean-pair)
(prn "F - 'sizeof' works on records"))
(if (~is 3 sizeof!integer-point-pair)
(prn "F - 'sizeof' works on records with record fields"))
(if (~is 1 (sizeof '(34 integer)))
(prn "F - 'sizeof' works on primitive operands"))
(if (~is 1 (sizeof '(34 integer-address)))
(prn "F - 'sizeof' works on address operands"))
(if (~is 2 (sizeof '(34 integer-boolean-pair)))
(prn "F - 'sizeof' works on record operands"))
(if (~is 3 (sizeof '(34 integer-point-pair)))
(prn "F - 'sizeof' works on record operands with record fields"))
(if (~is 2 (sizeof '(34 integer-boolean-pair-address deref)))
(prn "F - 'sizeof' works on pointers to records"))
(= memory*.4 23)
(if (~is 24 (sizeof '(4 integer-array)))
(prn "F - 'sizeof' reads array lengths from memory"))
(= memory*.3 4)
(if (~is 24 (sizeof '(3 integer-array-address deref)))
(prn "F - 'sizeof' handles pointers to arrays"))
(= memory*.14 34)
(= routine* make-routine!foo)
(if (~is 24 (sizeof '(4 integer-array)))
(prn "F - 'sizeof' reads array lengths from memory inside routines"))
(= rep.routine*!call-stack.0!default-scope 10)
(= memory*.10 5) ; bounds check for default-scope
(if (~is 35 (sizeof '(4 integer-array)))
(prn "F - 'sizeof' reads array lengths from memory using default-scope"))
; m
(reset)
(if (~is 4 (m '(4 literal)))
(prn "F - 'm' avoids reading memory for literals"))
(if (~is 4 (m '(4 offset)))
(prn "F - 'm' avoids reading memory for offsets"))
(= memory*.4 34)
(if (~is 34 (m '(4 integer)))
(prn "F - 'm' reads memory for simple types"))
(= memory*.3 4)
(if (~is 34 (m '(3 integer-address deref)))
(prn "F - 'm' redirects addresses"))
(= memory*.2 3)
(if (~is 34 (m '(2 integer-address-address deref deref)))
(prn "F - 'm' multiply redirects addresses"))
(if (~iso (annotate 'record '(34 nil)) (m '(4 integer-boolean-pair)))
(prn "F - 'm' supports compound records"))
(= memory*.5 35)
(= memory*.6 36)
(if (~iso (annotate 'record '(34 35 36)) (m '(4 integer-point-pair)))
(prn "F - 'm' supports records with compound fields"))
(if (~iso (annotate 'record '(34 35 36)) (m '(3 integer-point-pair-address deref)))
(prn "F - 'm' supports indirect access to records"))
(= memory*.4 2)
(if (~iso (annotate 'record '(2 35 36)) (m '(4 integer-array)))
(prn "F - 'm' supports access to arrays"))
(if (~iso (annotate 'record '(2 35 36)) (m '(3 integer-array-address deref)))
(prn "F - 'm' supports indirect access to arrays"))
; setm
(reset)
(setm '(4 integer) 34)
(if (~is 34 memory*.4)
(prn "F - 'setm' writes primitives to memory"))
(setm '(3 integer-address) 4)
(if (~is 4 memory*.3)
(prn "F - 'setm' writes addresses to memory"))
(setm '(3 integer-address deref) 35)
(if (~is 35 memory*.4)
(prn "F - 'setm' redirects writes"))
(= memory*.2 3)
(setm '(2 integer-address-address deref deref) 36)
(if (~is 36 memory*.4)
(prn "F - 'setm' multiply redirects writes"))
(setm '(4 integer-integer-pair) (annotate 'record '(23 24)))
(if (or (~is memory*.4 23)
(~is memory*.5 24))
(prn "F - 'setm' writes compound records"))
(assert (is memory*.6 nil))
(setm '(7 integer-point-pair) (annotate 'record '(23 24 25)))
(if (or (~is memory*.7 23)
(~is memory*.8 24)
(~is memory*.9 25))
(prn "F - 'setm' writes records with compound fields"))
(= routine* make-routine!foo)
(setm '(4 integer-point-pair) (annotate 'record '(33 34)))
(if (~posmatch "incorrect size" rep.routine*!error)
(prn "F - 'setm' checks size of target"))
(wipe routine*)
(setm '(3 integer-point-pair-address deref) (annotate 'record '(43 44 45)))
(if (or (~is memory*.4 43)
(~is memory*.5 44)
(~is memory*.6 45))
(prn "F - 'setm' supports indirect writes to records"))
(setm '(2 integer-point-pair-address-address deref deref) (annotate 'record '(53 54 55)))
(if (or (~is memory*.4 53)
(~is memory*.5 54)
(~is memory*.6 55))
(prn "F - 'setm' supports multiply indirect writes to records"))
(setm '(4 integer-array) (annotate 'record '(2 31 32)))
(if (or (~is memory*.4 2)
(~is memory*.5 31)
(~is memory*.6 32))
(prn "F - 'setm' writes arrays"))
(setm '(3 integer-array-address deref) (annotate 'record '(2 41 42)))
(if (or (~is memory*.4 2)
(~is memory*.5 41)
(~is memory*.6 42))
(prn "F - 'setm' supports indirect writes to arrays"))
(= routine* make-routine!foo)
(setm '(4 integer-array) (annotate 'record '(2 31 32 33)))
(if (~posmatch "invalid array" rep.routine*!error)
(prn "F - 'setm' checks that array written is well-formed"))
(wipe routine*)
(reset) ; end file with this to persist the trace for the final test
|