1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
## Mu's instructions and their table-driven translation
See http://akkartik.name/akkartik-convivial-20200607.pdf for the complete
story. In brief: Mu is a statement-oriented language. Blocks consist of flat
lists of instructions. Instructions can have inputs after the operation, and
outputs to the left of a '<-'. Inputs and outputs must be variables. They can't
include nested expressions. Variables can be literals ('n'), or live in a
register ('var/reg') or in memory ('var') at some 'stack-offset' from the 'ebp'
register. Outputs must be registers. To modify a variable in memory, pass it in
by reference as an input. (Inputs are more precisely called 'inouts'.)
Conversely, registers that are just read from must not be passed as outputs.
The following chart shows all the instruction forms supported by Mu, along with
the SubX instruction they're translated to.
## Integer instructions
These instructions use the general-purpose registers.
var/eax <- increment => "40/increment-eax"
var/ecx <- increment => "41/increment-ecx"
var/edx <- increment => "42/increment-edx"
var/ebx <- increment => "43/increment-ebx"
var/esi <- increment => "46/increment-esi"
var/edi <- increment => "47/increment-edi"
increment var => "ff 0/subop/increment *(ebp+" var.stack-offset ")"
increment *var/reg => "ff 0/subop/increment *" reg
var/eax <- decrement => "48/decrement-eax"
var/ecx <- decrement => "49/decrement-ecx"
var/edx <- decrement => "4a/decrement-edx"
var/ebx <- decrement => "4b/decrement-ebx"
var/esi <- decrement => "4e/decrement-esi"
var/edi <- decrement => "4f/decrement-edi"
decrement var => "ff 1/subop/decrement *(ebp+" var.stack-offset ")"
decrement *var/reg => "ff 1/subop/decrement *" reg
var/reg <- add var2/reg2 => "01/add-to %" reg " " reg2 "/r32"
var/reg <- add var2 => "03/add *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- add *var2/reg2 => "03/add *" reg2 " " reg "/r32"
add-to var1, var2/reg => "01/add-to *(ebp+" var1.stack-offset ") " reg "/r32"
add-to *var1/reg1, var2/reg2 => "01/add-to *" reg1 " " reg2 "/r32"
var/eax <- add n => "05/add-to-eax " n "/imm32"
var/reg <- add n => "81 0/subop/add %" reg " " n "/imm32"
add-to var, n => "81 0/subop/add *(ebp+" var.stack-offset ") " n "/imm32"
add-to *var/reg, n => "81 0/subop/add *" reg " " n "/imm32"
var/reg <- subtract var2/reg2 => "29/subtract-from %" reg " " reg2 "/r32"
var/reg <- subtract var2 => "2b/subtract *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- subtract *var2/reg2 => "2b/subtract *" reg2 " " reg1 "/r32"
subtract-from var1, var2/reg2 => "29/subtract-from *(ebp+" var1.stack-offset ") " reg2 "/r32"
subtract-from *var1/reg1, var2/reg2 => "29/subtract-from *" reg1 " " reg2 "/r32"
var/eax <- subtract n => "2d/subtract-from-eax " n "/imm32"
var/reg <- subtract n => "81 5/subop/subtract %" reg " " n "/imm32"
subtract-from var, n => "81 5/subop/subtract *(ebp+" var.stack-offset ") " n "/imm32"
subtract-from *var/reg, n => "81 5/subop/subtract *" reg " " n "/imm32"
var/reg <- and var2/reg2 => "21/and-with %" reg " " reg2 "/r32"
var/reg <- and var2 => "23/and *(ebp+" var2.stack-offset " " reg "/r32"
var/reg <- and *var2/reg2 => "23/and *" reg2 " " reg "/r32"
and-with var1, var2/reg => "21/and-with *(ebp+" var1.stack-offset ") " reg "/r32"
and-with *var1/reg1, var2/reg2 => "21/and-with *" reg1 " " reg2 "/r32"
var/eax <- and n => "25/and-with-eax " n "/imm32"
var/reg <- and n => "81 4/subop/and %" reg " " n "/imm32"
and-with var, n => "81 4/subop/and *(ebp+" var.stack-offset ") " n "/imm32"
and-with *var/reg, n => "81 4/subop/and *" reg " " n "/imm32"
var/reg <- or var2/reg2 => "09/or-with %" reg " " reg2 "/r32"
var/reg <- or var2 => "0b/or *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- or *var2/reg2 => "0b/or *" reg2 " " reg "/r32"
or-with var1, var2/reg2 => "09/or-with *(ebp+" var1.stack-offset " " reg2 "/r32"
or-with *var1/reg1, var2/reg2 => "09/or-with *" reg1 " " reg2 "/r32"
var/eax <- or n => "0d/or-with-eax " n "/imm32"
var/reg <- or n => "81 1/subop/or %" reg " " n "/imm32"
or-with var, n => "81 1/subop/or *(ebp+" var.stack-offset ") " n "/imm32"
or-with *var/reg, n => "81 1/subop/or *" reg " " n "/imm32"
var/reg <- not => "f7 2/subop/not %" reg
not var => "f7 2/subop/not *(ebp+" var.stack-offset ")"
not *var/reg => "f7 2/subop/not *" reg
var/reg <- xor var2/reg2 => "31/xor-with %" reg " " reg2 "/r32"
var/reg <- xor var2 => "33/xor *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- xor *var2/reg2 => "33/xor *" reg2 " " reg "/r32"
xor-with var1, var2/reg => "31/xor-with *(ebp+" var1.stack-offset ") " reg "/r32"
xor-with *var1/reg1, var2/reg2 => "31/xor-with *" reg1 " " reg2 "/r32"
var/eax <- xor n => "35/xor-with-eax " n "/imm32"
var/reg <- xor n => "81 6/subop/xor %" reg " " n "/imm32"
xor-with var, n => "81 6/subop/xor *(ebp+" var.stack-offset ") " n "/imm32"
xor-with *var/reg, n => "81 6/subop/xor *" reg " " n "/imm32"
var/reg <- negate => "f7 3/subop/negate %" reg
negate var => "f7 3/subop/negate *(ebp+" var.stack-offset ")"
negate *var/reg => "f7 3/subop/negate *" reg
var/reg <- shift-left n => "c1/shift 4/subop/left %" reg " " n "/imm32"
var/reg <- shift-right n => "c1/shift 5/subop/right %" reg " " n "/imm32"
var/reg <- shift-right-signed n => "c1/shift 7/subop/right-signed %" reg " " n "/imm32"
shift-left var, n => "c1/shift 4/subop/left *(ebp+" var.stack-offset ") " n "/imm32"
shift-left *var/reg, n => "c1/shift 4/subop/left *" reg " " n "/imm32"
shift-right var, n => "c1/shift 5/subop/right *(ebp+" var.stack-offset ") " n "/imm32"
shift-right *var/reg, n => "c1/shift 5/subop/right *" reg " " n "/imm32"
shift-right-signed var, n => "c1/shift 7/subop/right-signed *(ebp+" var.stack-offset ") " n "/imm32"
shift-right-signed *var/reg, n => "c1/shift 7/subop/right-signed *" reg " " n "/imm32"
var/eax <- copy n => "b8/copy-to-eax " n "/imm32"
var/ecx <- copy n => "b9/copy-to-ecx " n "/imm32"
var/edx <- copy n => "ba/copy-to-edx " n "/imm32"
var/ebx <- copy n => "bb/copy-to-ebx " n "/imm32"
var/esi <- copy n => "be/copy-to-esi " n "/imm32"
var/edi <- copy n => "bf/copy-to-edi " n "/imm32"
var/reg <- copy var2/reg2 => "89/<- %" reg " " reg2 "/r32"
copy-to var1, var2/reg => "89/<- *(ebp+" var1.stack-offset ") " reg "/r32"
copy-to *var1/reg1, var2/reg2 => "89/<- *" reg1 " " reg2 "/r32"
var/reg <- copy var2 => "8b/-> *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- copy *var2/reg2 => "8b/-> *" reg2 " " reg "/r32"
var/reg <- copy n => "c7 0/subop/copy %" reg " " n "/imm32"
copy-to var, n => "c7 0/subop/copy *(ebp+" var.stack-offset ") " n "/imm32"
copy-to *var/reg, n => "c7 0/subop/copy *" reg " " n "/imm32"
var/reg <- copy-byte var2/reg2 => "8a/byte-> %" reg2 " " reg "/r32"
"81 4/subop/and %" reg " 0xff/imm32"
var/reg <- copy-byte *var2/reg2 => "8a/byte-> *" reg2 " " reg "/r32"
"81 4/subop/and %" reg " 0xff/imm32"
copy-byte-to *var1/reg1, var2/reg2 => "88/byte<- *" reg1 " " reg2 "/r32"
compare var1, var2/reg2 => "39/compare *(ebp+" var1.stack-offset ") " reg2 "/r32"
compare *var1/reg1, var2/reg2 => "39/compare *" reg1 " " reg2 "/r32"
compare var1/reg1, var2 => "3b/compare<- *(ebp+" var2.stack-offset ") " reg1 "/r32"
compare var/reg, *var2/reg2 => "3b/compare<- *" reg " " n "/imm32"
compare var/eax, n => "3d/compare-eax-with " n "/imm32"
compare var/reg, n => "81 7/subop/compare %" reg " " n "/imm32"
compare var, n => "81 7/subop/compare *(ebp+" var.stack-offset ") " n "/imm32"
compare *var/reg, n => "81 7/subop/compare *" reg " " n "/imm32"
var/reg <- multiply var2 => "0f af/multiply *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- multiply var2/reg2 => "0f af/multiply %" reg2 " " reg "/r32"
var/reg <- multiply *var2/reg2 => "0f af/multiply *" reg2 " " reg "/r32"
## Floating-point operations
These instructions operate on either floating-point registers (xreg) or
general-purpose registers (reg) in indirect mode.
var/xreg <- add var2/xreg2 => "f3 0f 58/add %" xreg2 " " xreg1 "/x32"
var/xreg <- add var2 => "f3 0f 58/add *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- add *var2/reg2 => "f3 0f 58/add *" reg2 " " xreg "/x32"
var/xreg <- subtract var2/xreg2 => "f3 0f 5c/subtract %" xreg2 " " xreg1 "/x32"
var/xreg <- subtract var2 => "f3 0f 5c/subtract *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- subtract *var2/reg2 => "f3 0f 5c/subtract *" reg2 " " xreg "/x32"
var/xreg <- multiply var2/xreg2 => "f3 0f 59/multiply %" xreg2 " " xreg1 "/x32"
var/xreg <- multiply var2 => "f3 0f 59/multiply *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- multiply *var2/reg2 => "f3 0f 59/multiply *" reg2 " " xreg "/x32"
var/xreg <- divide var2/xreg2 => "f3 0f 5e/divide %" xreg2 " " xreg1 "/x32"
var/xreg <- divide var2 => "f3 0f 5e/divide *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- divide *var2/reg2 => "f3 0f 5e/divide *" reg2 " " xreg "/x32"
There are also some exclusively floating-point instructions:
var/xreg <- reciprocal var2/xreg2 => "f3 0f 53/reciprocal %" xreg2 " " xreg1 "/x32"
var/xreg <- reciprocal var2 => "f3 0f 53/reciprocal *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- reciprocal *var2/reg2 => "f3 0f 53/reciprocal *" reg2 " " xreg "/x32"
var/xreg <- square-root var2/xreg2 => "f3 0f 51/square-root %" xreg2 " " xreg1 "/x32"
var/xreg <- square-root var2 => "f3 0f 51/square-root *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- square-root *var2/reg2 => "f3 0f 51/square-root *" reg2 " " xreg "/x32"
var/xreg <- inverse-square-root var2/xreg2 => "f3 0f 52/inverse-square-root %" xreg2 " " xreg1 "/x32"
var/xreg <- inverse-square-root var2 => "f3 0f 52/inverse-square-root *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- inverse-square-root *var2/reg2 => "f3 0f 52/inverse-square-root *" reg2 " " xreg "/x32"
var/xreg <- min var2/xreg2 => "f3 0f 5d/min %" xreg2 " " xreg1 "/x32"
var/xreg <- min var2 => "f3 0f 5d/min *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- min *var2/reg2 => "f3 0f 5d/min *" reg2 " " xreg "/x32"
var/xreg <- max var2/xreg2 => "f3 0f 5f/max %" xreg2 " " xreg1 "/x32"
var/xreg <- max var2 => "f3 0f 5f/max *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- max *var2/reg2 => "f3 0f 5f/max *" reg2 " " xreg "/x32"
Remember, when these instructions use indirect mode, they still use an integer
register. Floating-point registers can't hold addresses.
Most instructions operate exclusively on integer or floating-point operands.
The only exceptions are the instructions for converting between integers and
floating-point numbers.
var/xreg <- convert var2/reg2 => "f3 0f 2a/convert-to-float %" reg2 " " xreg "/x32"
var/xreg <- convert var2 => "f3 0f 2a/convert-to-float *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- convert *var2/reg2 => "f3 0f 2a/convert-to-float *" reg2 " " xreg "/x32"
Converting floats to ints performs rounding by default. (We don't mess with the
MXCSR control register.)
var/reg <- convert var2/xreg2 => "f3 0f 2d/convert-to-int %" xreg2 " " reg "/r32"
var/reg <- convert var2 => "f3 0f 2d/convert-to-int *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- convert *var2/reg2 => "f3 0f 2d/convert-to-int *" reg2 " " reg "/r32"
There's a separate instruction for truncating the fractional part.
var/reg <- truncate var2/xreg2 => "f3 0f 2c/truncate-to-int %" xreg2 " " reg "/r32"
var/reg <- truncate var2 => "f3 0f 2c/truncate-to-int *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- truncate *var2/reg2 => "f3 0f 2c/truncate-to-int *" reg2 " " reg "/r32"
There are no instructions accepting floating-point literals. To obtain integer
literals in floating-point registers, copy them to general-purpose registers
and then convert them to floating-point.
One pattern you may have noticed above is that the floating-point instructions
above always write to registers. The only exceptions are `copy` instructions,
which can write to memory locations.
var/xreg <- copy var2/xreg2 => "f3 0f 11/<- %" xreg " " xreg2 "/x32"
copy-to var1, var2/xreg => "f3 0f 11/<- *(ebp+" var1.stack-offset ") " xreg "/x32"
var/xreg <- copy var2 => "f3 0f 10/-> *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- copy *var2/reg2 => "f3 0f 10/-> *" reg2 " " xreg "/x32"
Comparisons must always start with a register:
compare var1/xreg1, var2/xreg2 => "0f 2f/compare %" xreg2 " " xreg1 "/x32"
compare var1/xreg1, var2 => "0f 2f/compare *(ebp+" var2.stack-offset ") " xreg1 "/x32"
## Blocks
In themselves, blocks generate no instructions. However, if a block contains
variable declarations, they must be cleaned up when the block ends.
Clean up var on the stack => "81 0/subop/add %esp " size-of(var) "/imm32"
Clean up var/reg => "8f 0/subop/pop %" reg
Clean up var/xreg => "f3 0f 10/-> *esp " xreg "/x32"
"81 0/subop/add %esp 4/imm32"
## Jumps
Besides having to clean up any variable declarations (see above) between
themselves and their target, jumps translate like this:
break => "e9/jump break/disp32"
break label => "e9/jump " label ":break/disp32"
loop => "e9/jump loop/disp32"
loop label => "e9/jump " label ":loop/disp32"
break-if-= => "0f 84/jump-if-= break/disp32"
break-if-= label => "0f 84/jump-if-= " label ":break/disp32"
loop-if-= => "0f 84/jump-if-= loop/disp32"
loop-if-= label => "0f 84/jump-if-= " label ":loop/disp32"
break-if-!= => "0f 85/jump-if-!= break/disp32"
break-if-!= label => "0f 85/jump-if-!= " label ":break/disp32"
loop-if-!= => "0f 85/jump-if-!= loop/disp32"
loop-if-!= label => "0f 85/jump-if-!= " label ":loop/disp32"
break-if-< => "0f 8c/jump-if-< break/disp32"
break-if-< label => "0f 8c/jump-if-< " label ":break/disp32"
loop-if-< => "0f 8c/jump-if-< loop/disp32"
loop-if-< label => "0f 8c/jump-if-< " label ":loop/disp32"
break-if-> => "0f 8f/jump-if-> break/disp32"
break-if-> label => "0f 8f/jump-if-> " label ":break/disp32"
loop-if-> => "0f 8f/jump-if-> loop/disp32"
loop-if-> label => "0f 8f/jump-if-> " label ":loop/disp32"
break-if-<= => "0f 8e/jump-if-<= break/disp32"
break-if-<= label => "0f 8e/jump-if-<= " label ":break/disp32"
loop-if-<= => "0f 8e/jump-if-<= loop/disp32"
loop-if-<= label => "0f 8e/jump-if-<= " label ":loop/disp32"
break-if->= => "0f 8d/jump-if->= break/disp32"
break-if->= label => "0f 8d/jump-if->= " label ":break/disp32"
loop-if->= => "0f 8d/jump-if->= loop/disp32"
loop-if->= label => "0f 8d/jump-if->= " label ":loop/disp32"
break-if-addr< => "0f 82/jump-if-addr< break/disp32"
break-if-addr< label => "0f 82/jump-if-addr< " label ":break/disp32"
loop-if-addr< => "0f 82/jump-if-addr< loop/disp32"
loop-if-addr< label => "0f 82/jump-if-addr< " label ":loop/disp32"
break-if-addr> => "0f 87/jump-if-addr> break/disp32"
break-if-addr> label => "0f 87/jump-if-addr> " label ":break/disp32"
loop-if-addr> => "0f 87/jump-if-addr> loop/disp32"
loop-if-addr> label => "0f 87/jump-if-addr> " label ":loop/disp32"
break-if-addr<= => "0f 86/jump-if-addr<= break/disp32"
break-if-addr<= label => "0f 86/jump-if-addr<= " label ":break/disp32"
loop-if-addr<= => "0f 86/jump-if-addr<= loop/disp32"
loop-if-addr<= label => "0f 86/jump-if-addr<= " label ":loop/disp32"
break-if-addr>= => "0f 83/jump-if-addr>= break/disp32"
break-if-addr>= label => "0f 83/jump-if-addr>= " label ":break/disp32"
loop-if-addr>= => "0f 83/jump-if-addr>= loop/disp32"
loop-if-addr>= label => "0f 83/jump-if-addr>= " label ":loop/disp32"
Similar float variants like `break-if-float<` are aliases for the corresponding
`addr` equivalents. The x86 instruction set stupidly has floating-point
operations only update a subset of flags.
Four sets of conditional jumps are useful for detecting overflow.
break-if-carry => "0f 82/jump-if-carry break/disp32"
break-if-carry label => "0f 82/jump-if-carry " label "/disp32"
loop-if-carry => "0f 82/jump-if-carry break/disp32"
loop-if-carry label => "0f 82/jump-if-carry " label "/disp32"
break-if-not-carry => "0f 83/jump-if-not-carry break/disp32"
break-if-not-carry label => "0f 83/jump-if-not-carry " label "/disp32"
loop-if-not-carry => "0f 83/jump-if-not-carry break/disp32"
loop-if-not-carry label => "0f 83/jump-if-not-carry " label "/disp32"
break-if-overflow => "0f 80/jump-if-overflow break/disp32"
break-if-overflow label => "0f 80/jump-if-overflow " label ":break/disp32"
loop-if-overflow => "0f 80/jump-if-overflow loop/disp32"
loop-if-overflow label => "0f 80/jump-if-overflow " label ":loop/disp32"
break-if-not-overflow => "0f 81/jump-if-not-overflow break/disp32"
break-if-not-overflow label => "0f 81/jump-if-not-overflow " label ":break/disp32"
loop-if-not-overflow => "0f 81/jump-if-not-overflow loop/disp32"
loop-if-not-overflow label => "0f 81/jump-if-not-overflow " label ":loop/disp32"
All this relies on a convention that every `{}` block is delimited by labels
ending in `:loop` and `:break`.
## Returns
The `return` instruction cleans up variable declarations just like an unconditional
`jump` to end of function, but also emits a series of copies before the final
`jump`, copying each argument of `return` to the register appropriate to the
respective function output. This doesn't work if a function output register
contains a later `return` argument (e.g. if the registers for two outputs are
swapped in `return`), so you can't do that.
return => "c3/return"
---
In the following instructions types are provided for clarity even if they must
be provided in an earlier 'var' declaration.
# Address operations
var/reg: (addr T) <- address var2: T
=> "8d/copy-address *(ebp+" var2.stack-offset ") " reg "/r32"
# Array operations
var/reg: (addr T) <- index arr/rega: (addr array T), idx/regi: int
| if size-of(T) is 1, 2, 4 or 8
=> "81 7/subop/compare %" rega " 0/imm32"
"0f 84/jump-if-= __mu-abort-null-index-base-address/disp32"
"(__check-mu-array-bounds *" rega " %" regi " " size-of(T) ")"
"8d/copy-address *(" rega "+" regi "<<" log2(size-of(T)) "+4) " reg "/r32"
var/reg: (addr T) <- index arr: (array T len), idx/regi: int
=> "(__check-mu-array-bounds *(ebp+" arr.stack-offset ") %" regi " " size-of(T) ")"
"8d/copy-address *(ebp+" regi "<<" log2(size-of(T)) "+" (arr.stack-offset + 4) ") " reg "/r32"
var/reg: (addr T) <- index arr/rega: (addr array T), n
=> "81 7/subop/compare %" rega " 0/imm32"
"0f 84/jump-if-= __mu-abort-null-index-base-address/disp32"
"(__check-mu-array-bounds *" rega " " n " " size-of(T) ")"
"8d/copy-address *(" rega "+" (n*size-of(T)+4) ") " reg "/r32"
var/reg: (addr T) <- index arr: (array T len), n
=> "(__check-mu-array-bounds *(ebp+" arr.stack-offset ") " n " " size-of(T) ")"
"8d/copy-address *(ebp+" (arr.stack-offset+4+n*size-of(T)) ") " reg "/r32"
var/reg: (offset T) <- compute-offset arr: (addr array T), idx/regi: int # arr can be in reg or mem
=> "69/multiply %" regi " " size-of(T) "/imm32 " reg "/r32"
var/reg: (offset T) <- compute-offset arr: (addr array T), idx: int # arr can be in reg or mem
=> "69/multiply *(ebp+" idx.stack-offset ") " size-of(T) "/imm32 " reg "/r32"
var/reg: (addr T) <- index arr/rega: (addr array T), o/rego: (offset T)
=> "81 7/subop/compare %" rega " 0/imm32"
"0f 84/jump-if-= __mu-abort-null-index-base-address/disp32"
"(__check-mu-array-bounds %" rega " %" rego " 1 \"" function-name "\")"
"8d/copy-address *(" rega "+" rego "+4) " reg "/r32"
Computing the length of an array is complex.
var/reg: int <- length arr/reg2: (addr array T)
| if T is byte (TODO)
=> "8b/-> *" reg2 " " reg "/r32"
| if size-of(T) is 4 or 8 or 16 or 32 or 64 or 128
=> "8b/-> *" reg2 " " reg "/r32"
"c1/shift 5/subop/logic-right %" reg " " log2(size-of(T)) "/imm8"
| otherwise
x86 has no instruction to divide by a literal, so
we need up to 3 extra registers! eax/edx for division and say ecx
=> if reg is not eax
"50/push-eax"
if reg is not ecx
"51/push-ecx"
if reg is not edx
"52/push-edx"
"8b/-> *" reg2 " eax/r32"
"31/xor %edx 2/r32/edx" # sign-extend, but array size can't be negative
"b9/copy-to-ecx " size-of(T) "/imm32"
"f7 7/subop/idiv-eax-edx-by %ecx"
if reg is not eax
"89/<- %" reg " 0/r32/eax"
if reg is not edx
"5a/pop-to-edx"
if reg is not ecx
"59/pop-to-ecx"
if reg is not eax
"58/pop-to-eax"
# User-defined types
If a record (product) type T was defined to have elements a, b, c, ... of
types T_a, T_b, T_c, ..., then accessing one of those elements f of type T_f:
var/reg: (addr T_f) <- get var2/reg2: (addr T), f
=> "81 7/subop/compare %" reg2 " 0/imm32"
"0f 84/jump-if-= __mu-abort-null-get-base-address/disp32"
"8d/copy-address *(" reg2 "+" offset(f) ") " reg "/r32"
var/reg: (addr T_f) <- get var2: T, f
=> "8d/copy-address *(ebp+" var2.stack-offset "+" offset(f) ") " reg "/r32"
When the base is an address we perform a null check.
# Allocating memory
allocate in: (addr handle T)
=> "(allocate Heap " size-of(T) " " in ")"
populate in: (addr handle array T), num # can be literal or variable on stack or register
=> "(allocate-array2 Heap " size-of(T) " " num " " in ")"
populate-stream in: (addr handle stream T), num # can be literal or variable on stack or register
=> "(new-stream Heap " size-of(T) " " num " " in ")"
# Some miscellaneous helpers to avoid error-prone size computations
clear x: (addr T)
=> "(zero-out " s " " size-of(T) ")"
read-from-stream s: (addr stream T), out: (addr T)
=> "(read-from-stream " s " " out " " size-of(T) ")"
write-to-stream s: (addr stream T), in: (addr T)
=> "(write-to-stream " s " " in " " size-of(T) ")"
vim:ft=mu:nowrap:textwidth=0
|