about summary refs log tree commit diff stats
path: root/mu_summary
blob: 286f8286743826e3fc4713ae3269b4b92f6d4902 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
Mu programs are lists of functions. Each function has the following form:

  fn _name_ _inouts_with_types_ -> _outputs_with_types_ {
    _instructions_
  }

Each function has a header line, and some number of instructions, each on a
separate line.

Instructions may be primitives or function calls. Either way, all instructions
have one of the following forms:

  # defining variables
  var _name_: _type_
  var _name_/_register_: _type_

  # doing things with variables
  _operation_ _inouts_
  _outputs_ <- _operation_ _inouts_

Instructions and functions may have inouts and outputs. Both inouts and
outputs are variables.

As seen above, variables can be defined to live in a register, like this:

  n/eax

Variables not assigned a register live in the stack.

Function inouts must always be on the stack, and outputs must always be in
registers. A function call must always write to the exact registers its
definition requires. For example:

  fn foo -> x/eax: int {
    ...
  }
  fn main {
    a/eax <- foo  # ok
    a/ebx <- foo  # wrong
  }

Primitive inouts may be on the stack or in registers, but outputs must always
be in registers.

Functions can contain nested blocks inside { and }. Variables defined in a
block don't exist outside it.

  {
    _instructions_
    {
      _more instructions_
    }
  }

Blocks can be named like so:

  $name: {
    _instructions_
  }

## Primitive instructions

Primitive instructions currently supported in Mu ('n' indicates a literal
integer rather than a variable, and 'var/reg' indicates a variable in a
register):

  var/reg <- increment
  increment var
  var/reg <- decrement
  decrement var
  var1/reg1 <- add var2/reg2
  var/reg <- add var2
  add-to var1, var2/reg
  var/reg <- add n
  add-to var, n

  var1/reg1 <- sub var2/reg2
  var/reg <- sub var2
  sub-from var1, var2/reg
  var/reg <- sub n
  sub-from var, n

  var1/reg1 <- and var2/reg2
  var/reg <- and var2
  and-with var1, var2/reg
  var/reg <- and n
  and-with var, n

  var1/reg1 <- or var2/reg2
  var/reg <- or var2
  or-with var1, var2/reg
  var/reg <- or n
  or-with var, n

  var1/reg1 <- xor var2/reg2
  var/reg <- xor var2
  xor-with var1, var2/reg
  var/reg <- xor n
  xor-with var, n

  var/reg <- copy var2/reg2
  copy-to var1, var2/reg
  var/reg <- copy var2
  var/reg <- copy n
  copy-to var, n

  compare var1, var2/reg
  compare var1/reg, var2
  compare var/eax, n
  compare var, n

  var/reg <- multiply var2

Notice that there are no primitive instructions operating on two variables in
memory. That's a restriction of the underlying x86 processor.

Any instruction above that takes a variable in memory can be replaced with a
dereference (`*`) of an address variable in a register. But you can't dereference
variables in memory.

## Byte operations

A special-case is variables of type 'byte'. Mu is a 32-bit platform so for the
most part only supports types that are multiples of 32 bits. However, we do
want to support strings in ASCII and UTF-8, which will be arrays of bytes.

Since most x86 instructions implicitly load 32 bits at a time from memory,
variables of type 'byte' are only allowed in registers, not on the stack. Here
are the possible instructions for reading bytes to/from memory:

  var/reg <- copy-byte var2/reg2      # var: byte, var2: byte
  var/reg <- copy-byte *var2/reg2     # var: byte, var2: (addr byte)
  copy-byte-to *var1/reg1, var2/reg2  # var1: (addr byte), var2: byte

In addition, variables of type 'byte' are restricted to (the lowest bytes of)
just 4 registers: eax, ecx, edx and ebx.

## Primitive jump instructions

There are two kinds of jumps, both with many variations: `break` and `loop`.
`break` instructions jump to the end of the containing block. `loop` instructions
jump to the beginning of the containing block.

Jumps can take an optional label starting with '$':

  loop $foo

This instruction jumps to the beginning of the block called $foo. It must lie
somewhere inside such a block. Jumps are only legal to containing blocks. Use
named blocks with restraint; jumps to places far away can get confusing.

There are two unconditional jumps:

  loop
  loop label
  break
  break label

The remaining jump instructions are all conditional. Conditional jumps rely on
the result of the most recently executed `compare` instruction. (To keep
programs easy to read, keep compare instructions close to the jump that uses
them.)

  break-if-=
  break-if-= label
  break-if-!=
  break-if-!= label

Inequalities are similar, but have unsigned and signed variants. We assume
unsigned variants are only ever used to compare addresses.

  break-if-<
  break-if-< label
  break-if->
  break-if-> label
  break-if-<=
  break-if-<= label
  break-if->=
  break-if->= label

  break-if-addr<
  break-if-addr< label
  break-if-addr>
  break-if-addr> label
  break-if-addr<=
  break-if-addr<= label
  break-if-addr>=
  break-if-addr>= label

Similarly, conditional loops:

  loop-if-=
  loop-if-= label
  loop-if-!=
  loop-if-!= label

  loop-if-<
  loop-if-< label
  loop-if->
  loop-if-> label
  loop-if-<=
  loop-if-<= label
  loop-if->=
  loop-if->= label

  loop-if-addr<
  loop-if-addr< label
  loop-if-addr>
  loop-if-addr> label
  loop-if-addr<=
  loop-if-addr<= label
  loop-if-addr>=
  loop-if-addr>= label

## Address operations

  var/reg: (addr T) <- address var: T         # var must be in mem (on the stack)

## Array operations

  var/reg: int <- length arr/reg: (addr array T)
  var/reg: (addr T) <- index arr/reg: (addr array T), idx/reg: int
  var/reg: (addr T) <- index arr: (array T sz), idx/reg: int
  var/reg: (addr T) <- index arr/reg: (addr array T), n
  var/reg: (addr T) <- index arr: (array T sz), n

  var/reg: (offset T) <- compute-offset arr: (addr array T), idx/reg: int     # arr can be in reg or mem
  var/reg: (offset T) <- compute-offset arr: (addr array T), idx: int         # arr can be in reg or mem
  var/reg: (addr T) <- index arr/reg: (addr array T), idx/reg: (offset T)

## User-defined types

  var/reg: (addr T_f) <- get var/reg: (addr T), f
    where record (product) type T has elements a, b, c, ... of types T_a, T_b, T_c, ...
  var/reg: (addr T_f) <- get var: T, f

## Handles for safe access to the heap

Say we created a handle like this on the stack (it can't be in a register)
  var x: (handle T)
  allocate Heap, T, x

You can copy handles to another variable on the stack like this:
  var y: (handle T)
  copy-handle-to y, x

You can also save handles inside other user-defined types like this:
  var y/reg: (addr handle T_f) <- get var: (addr T), f
  copy-handle-to *y, x

Or this:
  var y/reg: (addr handle T) <- index arr: (addr array handle T), n
  copy-handle-to *y, x

Handles can be converted into addresses like this:
  var y/reg: (addr T) <- lookup x

It's illegal to continue to use this addr after a function that reclaims heap
memory. You have to repeat the lookup.