1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
Mu programs are lists of functions. Each function has the following form:
fn _name_ _inouts_with_types_ -> _outputs_with_types_ {
_instructions_
}
Each function has a header line, and some number of instructions, each on a
separate line.
Instructions may be primitives or function calls. Either way, all instructions
have one of the following forms:
# defining variables
var _name_: _type_
var _name_/_register_: _type_
# doing things with variables
_operation_ _inouts_
_outputs_ <- _operation_ _inouts_
Instructions and functions may have inouts and outputs. Both inouts and
outputs are variables.
As seen above, variables can be defined to live in a register, like this:
n/eax
Variables not assigned a register live in the stack.
Function inouts must always be on the stack, and outputs must always be in
registers. A function call must always write to the exact registers its
definition requires. For example:
fn foo -> x/eax: int {
...
}
fn main {
a/eax <- foo # ok
a/ebx <- foo # wrong
}
Primitive inouts may be on the stack or in registers, but outputs must always
be in registers.
Functions can contain nested blocks inside { and }. Variables defined in a
block don't exist outside it.
{
_instructions_
{
_more instructions_
}
}
Blocks can be named like so:
$name: {
_instructions_
}
## Primitive instructions
Primitive instructions currently supported in Mu ('n' indicates a literal
integer rather than a variable, and 'var/reg' indicates a variable in a
register):
var/reg <- increment
increment var
var/reg <- decrement
decrement var
var1/reg1 <- add var2/reg2
var/reg <- add var2
add-to var1, var2/reg
var/reg <- add n
add-to var, n
var1/reg1 <- sub var2/reg2
var/reg <- sub var2
sub-from var1, var2/reg
var/reg <- sub n
sub-from var, n
var1/reg1 <- and var2/reg2
var/reg <- and var2
and-with var1, var2/reg
var/reg <- and n
and-with var, n
var1/reg1 <- or var2/reg2
var/reg <- or var2
or-with var1, var2/reg
var/reg <- or n
or-with var, n
var1/reg1 <- xor var2/reg2
var/reg <- xor var2
xor-with var1, var2/reg
var/reg <- xor n
xor-with var, n
var1/reg1 <- copy var2/reg2
copy-to var1, var2/reg
var/reg <- copy var2
var/reg <- copy n
copy-to var, n
compare var1, var2/reg
compare var1/reg, var2
compare var/eax, n
compare var, n
var/reg <- multiply var2
Notice that there are no primitive instructions operating on two variables in
memory. That's a restriction of the underlying x86 processor.
Any instruction above that takes a variable in memory can be replaced with a
dereference (`*`) of an address variable in a register. But you can't dereference
variables in memory.
## Primitive jump instructions
There are two kinds of jumps, both with many variations: `break` and `loop`.
`break` instructions jump to the end of the containing block. `loop` instructions
jump to the beginning of the containing block.
Jumps can take an optional label starting with '$':
loop $foo
This instruction jumps to the beginning of the block called $foo. It must lie
somewhere inside such a block. Jumps are only legal to containing blocks. Use
named blocks with restraint; jumps to places far away can get confusing.
There are two unconditional jumps:
loop
loop label
break
break label
The remaining jump instructions are all conditional. Conditional jumps rely on
the result of the most recently executed `compare` instruction. (To keep
programs easy to read, keep compare instructions close to the jump that uses
them.)
break-if-=
break-if-= label
break-if-!=
break-if-!= label
Inequalities are similar, but have unsigned and signed variants. We assume
unsigned variants are only ever used to compare addresses.
break-if-<
break-if-< label
break-if->
break-if-> label
break-if-<=
break-if-<= label
break-if->=
break-if->= label
break-if-addr<
break-if-addr< label
break-if-addr>
break-if-addr> label
break-if-addr<=
break-if-addr<= label
break-if-addr>=
break-if-addr>= label
Similarly, conditional loops:
loop-if-=
loop-if-= label
loop-if-!=
loop-if-!= label
loop-if-<
loop-if-< label
loop-if->
loop-if-> label
loop-if-<=
loop-if-<= label
loop-if->=
loop-if->= label
loop-if-addr<
loop-if-addr< label
loop-if-addr>
loop-if-addr> label
loop-if-addr<=
loop-if-addr<= label
loop-if-addr>=
loop-if-addr>= label
## Array operations
var/reg: int <- length var: (addr array T)
var/reg: (addr T) <- index var: (addr array T), idx: int
var/reg: (addr T) <- index var: (addr array T), n
## User-defined types
var/reg: (addr T_f) <- get var: (addr T), f
where record (product) type T has elements a, b, c, ... of types T_a, T_b, T_c, ...
|