about summary refs log tree commit diff stats
path: root/subx/011add.cc
blob: 2f3c83acbc946d6c8efb1d64bb1ab6930590845b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
//:: register indirect addressing

:(scenario add_r32_to_mem_at_r32)
% Reg[3].i = 0x10;
% Reg[0].i = 0x60;
# word in addresses 0x60-0x63 has value 1
% Mem.at(0x60) = 1;
# op  ModR/M  SIB   displacement  immediate
  01  18                                     # add EBX (reg 3) to *EAX (reg 0)
+run: add reg 3 to effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x00000011

:(before "End Single-Byte Opcodes")
case 0x01: {  // add r32 to r/m32
  uint8_t modrm = next();
  uint8_t arg2 = (modrm>>3)&0x7;
  trace(2, "run") << "add reg " << NUM(arg2) << " to effective address" << end();
  int32_t* arg1 = effective_address(modrm);
  BINARY_ARITHMETIC_OP(+, *arg1, Reg[arg2].i);
  break;
}

:(code)
// Implement tables 2-2 and 2-3 in the Intel manual, Volume 2.
// We return a pointer so that instructions can write to multiple bytes in
// 'Mem' at once.
int32_t* effective_address(uint8_t modrm) {
  uint8_t mod = (modrm>>6);
  // ignore middle 3 'reg opcode' bits
  uint8_t rm = modrm & 0x7;
  int32_t* result = 0;
  switch (mod) {
  case 0:
    // mod 0 is usually indirect addressing
    switch (rm) {
    default:
      trace(2, "run") << "effective address is mem at address 0x" << std::hex << Reg[rm].u << " (reg " << NUM(rm) << ")" << end();
      assert(Reg[rm].u + sizeof(int32_t) <= Mem.size());
      result = reinterpret_cast<int32_t*>(&Mem.at(Reg[rm].u));  // rely on the host itself being in little-endian order
      break;
    // End Mod 0 Special-cases
    }
    break;
  // End Mod Special-cases
  default:
    cerr << "unrecognized mod bits: " << NUM(mod) << '\n';
    exit(1);
  }
  return result;
}

//:: register direct addressing

:(scenario add_imm32_to_r32)
% Reg[3].i = 1;
# op  ModRM   SIB   displacement  immediate
  81  c3                          0a 0b 0c 0d  # add 0x0d0c0b0a to EBX (reg 3)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is reg 3
+run: subop add
+run: storing 0x0d0c0b0b

:(before "End Single-Byte Opcodes")
case 0x81: {  // combine imm32 with r/m32
  uint8_t modrm = next();
  int32_t arg2 = imm32();
  trace(2, "run") << "combine imm32 0x" << HEXWORD << arg2 << " with effective address" << end();
  int32_t* arg1 = effective_address(modrm);
  uint8_t subop = (modrm>>3)&0x7;  // middle 3 'reg opcode' bits
  switch (subop) {
  case 0:
    trace(2, "run") << "subop add" << end();
    BINARY_ARITHMETIC_OP(+, *arg1, arg2);
    break;
  // End Op 81 Subops
  default:
    cerr << "unrecognized sub-opcode after 81: " << NUM(subop) << '\n';
    exit(1);
  }
  break;
}

:(before "End Mod Special-cases")
case 3:
  // mod 3 is just register direct addressing
  trace(2, "run") << "effective address is reg " << NUM(rm) << end();
  result = &Reg[rm].i;
  break;

//:: lots more tests

:(scenario add_imm32_to_mem_at_r32)
% Reg[3].i = 0x60;
% Mem.at(0x60) = 1;
# op  ModR/M  SIB   displacement  immediate
  81  03                          0a 0b 0c 0d  # add 0x0d0c0b0a to *EBX (reg 3)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is mem at address 0x60 (reg 3)
+run: subop add
+run: storing 0x0d0c0b0b

//:

:(scenario add_mem_at_r32_to_r32)
% Reg[0].i = 0x60;
% Reg[3].i = 0x10;
% Mem.at(0x60) = 1;
# op  ModR/M  SIB   displacement  immediate
  03  18                                      # add *EAX (reg 0) to EBX (reg 3)
+run: add effective address to reg 3
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x00000011

:(before "End Single-Byte Opcodes")
case 0x03: {  // add r/m32 to r32
  uint8_t modrm = next();
  uint8_t arg1 = (modrm>>3)&0x7;
  trace(2, "run") << "add effective address to reg " << NUM(arg1) << end();
  const int32_t* arg2 = effective_address(modrm);
  BINARY_ARITHMETIC_OP(+, Reg[arg1].i, *arg2);
  break;
}

//:

:(scenario sub_imm32_from_eax)
% Reg[EAX].i = 0x0d0c0baa;
# op  ModR/M  SIB   displacement  immediate
  2d                              0a 0b 0c 0d  # subtract 0x0d0c0b0a from EAX (reg 0)
+run: subtract imm32 0x0d0c0b0a from reg EAX
+run: storing 0x000000a0

:(before "End Single-Byte Opcodes")
case 0x2d: {  // subtract imm32 from EAX
  int32_t arg2 = imm32();
  trace(2, "run") << "subtract imm32 0x" << HEXWORD << arg2 << " from reg EAX" << end();
  BINARY_ARITHMETIC_OP(-, Reg[EAX].i, arg2);
  break;
}

//:

:(scenario sub_imm32_from_r32)
% Reg[3].i = 10;
# op  ModRM   SIB   displacement  immediate
  81  eb                          01 00 00 00  # subtract 1 from EBX (reg 3)
+run: combine imm32 0x00000001 with effective address
+run: effective address is reg 3
+run: subop subtract
+run: storing 0x00000009

:(before "End Op 81 Subops")
case 5: {
  trace(2, "run") << "subop subtract" << end();
  BINARY_ARITHMETIC_OP(-, *arg1, arg2);
  break;
}

//:

:(scenario sub_imm32_from_mem_at_r32)
% Reg[3].i = 0x60;
% Mem.at(0x60) = 10;
# op  ModRM   SIB   displacement  immediate
  81  2b                          01 00 00 00  # subtract 1 from *EBX (reg 3)
+run: combine imm32 0x00000001 with effective address
+run: effective address is mem at address 0x60 (reg 3)
+run: subop subtract
+run: storing 0x00000009

//:

:(scenario sub_r32_from_mem_at_r32)
% Reg[0].i = 0x60;
% Mem.at(0x60) = 10;
% Reg[3].i = 1;
# op  ModRM   SIB   displacement  immediate
  29  18                                      # subtract EBX (reg 3) from *EAX (reg 0)
+run: subtract reg 3 from effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x00000009

:(before "End Single-Byte Opcodes")
case 0x29: {  // subtract r32 from r/m32
  uint8_t modrm = next();
  uint8_t arg2 = (modrm>>3)&0x7;
  trace(2, "run") << "subtract reg " << NUM(arg2) << " from effective address" << end();
  int32_t* arg1 = effective_address(modrm);
  BINARY_ARITHMETIC_OP(-, *arg1, Reg[arg2].i);
  break;
}

//:

:(scenario sub_mem_at_r32_from_r32)
% Reg[0].i = 0x60;
% Mem.at(0x60) = 1;
% Reg[3].i = 10;
# op  ModRM   SIB   displacement  immediate
  2b  18                                      # subtract *EAX (reg 0) from EBX (reg 3)
+run: subtract effective address from reg 3
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x00000009

:(before "End Single-Byte Opcodes")
case 0x2b: {  // subtract r/m32 from r32
  uint8_t modrm = next();
  uint8_t arg1 = (modrm>>3)&0x7;
  trace(2, "run") << "subtract effective address from reg " << NUM(arg1) << end();
  const int32_t* arg2 = effective_address(modrm);
  BINARY_ARITHMETIC_OP(-, Reg[arg1].i, *arg2);
  break;
}