1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
//: operating directly on a register
:(scenario add_r32_to_r32)
% Reg[0].i = 0x10;
% Reg[3].i = 1;
# op ModR/M SIB displacement immediate
01 d8 # add EBX (reg 3) to EAX (reg 0)
+run: add reg 3 to effective address
+run: effective address is reg 0
+run: storing 0x00000011
:(before "End Single-Byte Opcodes")
case 0x01: { // add r32 to r/m32
uint8_t modrm = next();
uint8_t arg2 = (modrm>>3)&0x7;
trace(2, "run") << "add reg " << NUM(arg2) << " to effective address" << end();
int32_t* arg1 = effective_address(modrm);
BINARY_ARITHMETIC_OP(+, *arg1, Reg[arg2].i);
break;
}
:(code)
// Implement tables 2-2 and 2-3 in the Intel manual, Volume 2.
// We return a pointer so that instructions can write to multiple bytes in
// 'Mem' at once.
int32_t* effective_address(uint8_t modrm) {
uint8_t mod = (modrm>>6);
// ignore middle 3 'reg opcode' bits
uint8_t rm = modrm & 0x7;
int32_t* result = 0;
switch (mod) {
case 3:
// mod 3 is just register direct addressing
trace(2, "run") << "effective address is reg " << NUM(rm) << end();
result = &Reg[rm].i;
break;
// End Mod Special-cases
default:
cerr << "unrecognized mod bits: " << NUM(mod) << '\n';
exit(1);
}
return result;
}
//:: subtract
:(scenario subtract_r32_from_r32)
% Reg[0].i = 10;
% Reg[3].i = 1;
# op ModR/M SIB displacement immediate
29 d8 # subtract EBX (reg 3) from EAX (reg 0)
+run: subtract reg 3 from effective address
+run: effective address is reg 0
+run: storing 0x00000009
:(before "End Single-Byte Opcodes")
case 0x29: { // subtract r32 from r/m32
uint8_t modrm = next();
uint8_t arg2 = (modrm>>3)&0x7;
trace(2, "run") << "subtract reg " << NUM(arg2) << " from effective address" << end();
int32_t* arg1 = effective_address(modrm);
BINARY_ARITHMETIC_OP(-, *arg1, Reg[arg2].i);
break;
}
//:: and
:(scenario and_r32_with_r32)
% Reg[0].i = 0x0a0b0c0d;
% Reg[3].i = 0x000000ff;
# op ModR/M SIB displacement immediate
21 d8 # and EBX (reg 3) with destination EAX (reg 0)
+run: and reg 3 with effective address
+run: effective address is reg 0
+run: storing 0x0000000d
:(before "End Single-Byte Opcodes")
case 0x21: { // and r32 with r/m32
uint8_t modrm = next();
uint8_t arg2 = (modrm>>3)&0x7;
trace(2, "run") << "and reg " << NUM(arg2) << " with effective address" << end();
int32_t* arg1 = effective_address(modrm);
BINARY_BITWISE_OP(&, *arg1, Reg[arg2].u);
break;
}
//:: or
:(scenario or_r32_with_r32)
% Reg[0].i = 0x0a0b0c0d;
% Reg[3].i = 0xa0b0c0d0;
# op ModR/M SIB displacement immediate
09 d8 # or EBX (reg 3) with destination EAX (reg 0)
+run: or reg 3 with effective address
+run: effective address is reg 0
+run: storing 0xaabbccdd
:(before "End Single-Byte Opcodes")
case 0x09: { // or r32 with r/m32
uint8_t modrm = next();
uint8_t arg2 = (modrm>>3)&0x7;
trace(2, "run") << "or reg " << NUM(arg2) << " with effective address" << end();
int32_t* arg1 = effective_address(modrm);
BINARY_BITWISE_OP(|, *arg1, Reg[arg2].u);
break;
}
//:: xor
:(scenario xor_r32_with_r32)
% Reg[0].i = 0x0a0b0c0d;
% Reg[3].i = 0xaabbc0d0;
# op ModR/M SIB displacement immediate
31 d8 # xor EBX (reg 3) with destination EAX (reg 0)
+run: xor reg 3 with effective address
+run: effective address is reg 0
+run: storing 0xa0b0ccdd
:(before "End Single-Byte Opcodes")
case 0x31: { // xor r32 with r/m32
uint8_t modrm = next();
uint8_t arg2 = (modrm>>3)&0x7;
trace(2, "run") << "xor reg " << NUM(arg2) << " with effective address" << end();
int32_t* arg1 = effective_address(modrm);
BINARY_BITWISE_OP(^, *arg1, Reg[arg2].u);
break;
}
//:: not
:(scenario not_r32)
% Reg[3].i = 0x0f0f00ff;
# op ModR/M SIB displacement immediate
f7 c3 # not EBX (reg 3)
+run: 'not' of effective address
+run: effective address is reg 3
+run: storing 0xf0f0ff00
:(before "End Single-Byte Opcodes")
case 0xf7: { // xor r32 with r/m32
uint8_t modrm = next();
trace(2, "run") << "'not' of effective address" << end();
int32_t* arg1 = effective_address(modrm);
*arg1 = ~(*arg1);
trace(2, "run") << "storing 0x" << HEXWORD << *arg1 << end();
SF = (*arg1 >> 31);
ZF = (*arg1 == 0);
OF = false;
break;
}
//:: compare (cmp)
:(scenario compare_r32_with_r32_greater)
% Reg[0].i = 0x0a0b0c0d;
% Reg[3].i = 0x0a0b0c07;
# op ModRM SIB displacement immediate
39 d8 # compare EBX (reg 3) with EAX (reg 0)
+run: compare reg 3 with effective address
+run: effective address is reg 0
+run: SF=0; ZF=0; OF=0
:(before "End Single-Byte Opcodes")
case 0x39: { // set SF if r/m32 < r32
uint8_t modrm = next();
uint8_t reg2 = (modrm>>3)&0x7;
trace(2, "run") << "compare reg " << NUM(reg2) << " with effective address" << end();
int32_t* arg1 = effective_address(modrm);
int32_t arg2 = Reg[reg2].i;
int32_t tmp1 = *arg1 - arg2;
SF = (tmp1 < 0);
ZF = (tmp1 == 0);
int64_t tmp2 = *arg1 - arg2;
OF = (tmp1 != tmp2);
trace(2, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end();
break;
}
:(scenario compare_r32_with_r32_lesser)
% Reg[0].i = 0x0a0b0c07;
% Reg[3].i = 0x0a0b0c0d;
# op ModRM SIB displacement immediate
39 d8 # compare EBX (reg 3) with EAX (reg 0)
+run: compare reg 3 with effective address
+run: effective address is reg 0
+run: SF=1; ZF=0; OF=0
:(scenario compare_r32_with_r32_equal)
% Reg[0].i = 0x0a0b0c0d;
% Reg[3].i = 0x0a0b0c0d;
# op ModRM SIB displacement immediate
39 d8 # compare EBX (reg 3) with EAX (reg 0)
+run: compare reg 3 with effective address
+run: effective address is reg 0
+run: SF=0; ZF=1; OF=0
//:: copy (mov)
:(scenario copy_r32_to_r32)
% Reg[3].i = 0xaf;
# op ModRM SIB displacement immediate
89 d8 # copy EBX (reg 3) to EAX (reg 0)
+run: copy reg 3 to effective address
+run: effective address is reg 0
+run: storing 0x000000af
:(before "End Single-Byte Opcodes")
case 0x89: { // copy r32 to r/m32
uint8_t modrm = next();
uint8_t reg2 = (modrm>>3)&0x7;
trace(2, "run") << "copy reg " << NUM(reg2) << " to effective address" << end();
int32_t* arg1 = effective_address(modrm);
*arg1 = Reg[reg2].i;
trace(2, "run") << "storing 0x" << HEXWORD << *arg1 << end();
break;
}
//:: push
:(scenario push_r32)
% Reg[ESP].u = 0x64;
% Reg[EBX].i = 0x0000000a;
# op ModRM SIB displacement immediate
53 # push EBX (reg 3) to stack
+run: push reg 3
+run: decrementing ESP to 0x00000060
+run: pushing value 0x0000000a
:(before "End Single-Byte Opcodes")
case 0x50:
case 0x51:
case 0x52:
case 0x53:
case 0x54:
case 0x55:
case 0x56:
case 0x57: { // push r32 to stack
uint8_t reg = op & 0x7;
trace(2, "run") << "push reg " << NUM(reg) << end();
push(Reg[reg].u);
break;
}
:(code)
void push(uint32_t val) {
Reg[ESP].u -= 4;
trace(2, "run") << "decrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end();
trace(2, "run") << "pushing value 0x" << HEXWORD << val << end();
*reinterpret_cast<uint32_t*>(&Mem.at(Reg[ESP].u)) = val;
}
//:: pop
:(scenario pop_r32)
% Reg[ESP].u = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0000000a);
# op ModRM SIB displacement immediate
5b # pop stack to EBX (reg 3)
+run: pop into reg 3
+run: popping value 0x0000000a
+run: incrementing ESP to 0x00000064
:(before "End Single-Byte Opcodes")
case 0x58:
case 0x59:
case 0x5a:
case 0x5b:
case 0x5c:
case 0x5d:
case 0x5e:
case 0x5f: { // pop stack into r32
uint8_t reg = op & 0x7;
trace(2, "run") << "pop into reg " << NUM(reg) << end();
Reg[reg].u = pop();
break;
}
:(code)
uint32_t pop() {
uint32_t result = *reinterpret_cast<uint32_t*>(&Mem.at(Reg[ESP].u));
trace(2, "run") << "popping value 0x" << HEXWORD << result << end();
Reg[ESP].u += 4;
trace(2, "run") << "incrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end();
return result;
}
|