about summary refs log tree commit diff stats
path: root/subx/011run.cc
blob: d949f87edb8854cdf3d112c30a22d2e235806575 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
//: Running SubX programs on the VM.

//: (Not to be confused with the 'run' subcommand for running ELF binaries on
//: the VM. That comes later.)

:(before "End Help Texts")
put_new(Help, "syntax",
  "SubX programs consist of segments, each segment in turn consisting of lines.\n"
  "Line-endings are significant; each line should contain a single\n"
  "instruction, macro or directive.\n"
  "\n"
  "Comments start with the '#' character. It should be at the start of a word\n"
  "(start of line, or following a space).\n"
  "\n"
  "Each segment starts with a header line: a '==' delimiter followed by the name of\n"
  "the segment.\n"
  "\n"
  "The first segment contains code and should be called 'code'.\n"
  "The second segment should be called 'data'.\n"
  "The resulting binary starts running from the start of the code segment by default.\n"
  "To start elsewhere in the code segment, define a special label called 'Entry'.\n"
  "\n"
  "Segments with the same name get merged together. This rule helps keep functions and\n"
  "their data close together in .subx files.\n"
  "\n"
  "Lines consist of a series of words. Words can contain arbitrary metadata\n"
  "after a '/', but they can never contain whitespace. Metadata has no effect\n"
  "at runtime, but can be handy when rewriting macros.\n"
  "\n"
  "Check out the examples in the examples/ directory.\n"
  "Programming in machine code can be annoying, but let's see if we can make\n"
  "it nice enough to be able to write a compiler in it.\n"
);
:(before "End Help Contents")
cerr << "  syntax\n";

:(code)
void test_add_imm32_to_EAX() {
  // At the lowest level, SubX programs are a series of hex bytes, each
  // (variable-length) instruction on one line.
  run(
      // Comments start with '#' and are ignored.
      "# comment\n"
      // Segment headers start with '==' and a name or starting hex address.
      // There's usually one code and one data segment. The code segment
      // always comes first.
      "== 0x1\n"  // code segment

      // After the header, each segment consists of lines, and each line
      // consists of words separated by whitespace.
      //
      // All words can have metadata after a '/'. No spaces allowed in
      // metadata, of course.
      // Unrecognized metadata never causes errors, so you can use it for
      // documentation.
      //
      // Within the code segment in particular, x86 instructions consist of
      // some number of the following parts and sub-parts (see the Readme and
      // cheatsheet.pdf for details):
      //   opcodes: 1-3 bytes
      //   ModR/M byte
      //   SIB byte
      //   displacement: 0/1/2/4 bytes
      //   immediate: 0/1/2/4 bytes
      // opcode        ModR/M                    SIB                   displacement    immediate
      // instruction   mod, reg, Reg/Mem bits    scale, index, base
      // 1-3 bytes     0/1 byte                  0/1 byte              0/1/2/4 bytes   0/1/2/4 bytes
      "  b8            .                         .                     .               0a 0b 0c 0d\n"  // copy 0x0d0c0b0a to EAX
      // The periods are just to help the eye track long gaps between columns,
      // and are otherwise ignored.
  );
  // This program, when run, causes the following events in the trace:
  CHECK_TRACE_CONTENTS(
      "load: 0x00000001 -> b8\n"
      "load: 0x00000002 -> 0a\n"
      "load: 0x00000003 -> 0b\n"
      "load: 0x00000004 -> 0c\n"
      "load: 0x00000005 -> 0d\n"
      "run: copy imm32 0x0d0c0b0a to EAX\n"
  );
}

// top-level helper for scenarios: parse the input, transform any macros, load
// the final hex bytes into memory, run it
void run(const string& text_bytes) {
  program p;
  istringstream in(text_bytes);
  parse(in, p);
  if (trace_contains_errors()) return;  // if any stage raises errors, stop immediately
  transform(p);
  if (trace_contains_errors()) return;
  load(p);
  if (trace_contains_errors()) return;
  while (EIP < End_of_program)
    run_one_instruction();
}

//:: core data structures

:(before "End Types")
struct program {
  vector<segment> segments;
  // random ideas for other things we may eventually need
  //map<name, address> globals;
  //vector<recipe> recipes;
  //map<string, type_info> types;
};
:(before "struct program")
struct segment {
  uint32_t start;
  vector<line> lines;
  // End segment Fields
  segment() {
    start = 0;
    // End segment Constructor
  }
};
:(before "struct segment")
struct line {
  vector<word> words;
  vector<string> metadata;
  string original;
};
:(before "struct line")
struct word {
  string original;
  string data;
  vector<string> metadata;
};

//:: parse

:(code)
void parse(istream& fin, program& out) {
  vector<line> l;
  while (has_data(fin)) {
    string line_data;
    line curr;
    getline(fin, line_data);
    curr.original = line_data;
    trace(99, "parse") << "line: " << line_data << end();
    // End Line Parsing Special-cases(line_data -> l)
    istringstream lin(line_data);
    while (has_data(lin)) {
      string word_data;
      lin >> word_data;
      if (word_data.empty()) continue;
      if (word_data[0] == '#') break;  // comment
      if (word_data == ".") continue;  // comment token
      if (word_data == "==") {
        flush(out, l);
        string segment_title;
        lin >> segment_title;
        if (starts_with(segment_title, "0x")) {
          segment s;
          s.start = parse_int(segment_title);
          sanity_check_program_segment(out, s.start);
          if (trace_contains_errors()) continue;
          trace(3, "parse") << "new segment from 0x" << HEXWORD << s.start << end();
          out.segments.push_back(s);
        }
        // End Segment Parsing Special-cases(segment_title)
        // todo: segment segment metadata
        break;  // skip rest of line
      }
      if (word_data[0] == ':') {
        // todo: line metadata
        break;
      }
      curr.words.push_back(word());
      parse_word(word_data, curr.words.back());
      trace(99, "parse") << "word: " << to_string(curr.words.back());
    }
    if (!curr.words.empty())
      l.push_back(curr);
  }
  flush(out, l);
  trace(99, "parse") << "done" << end();
}

void flush(program& p, vector<line>& lines) {
  if (lines.empty()) return;
  if (p.segments.empty()) {
    raise << "input does not start with a '==' section header\n" << end();
    return;
  }
  // End flush(p, lines) Special-cases
  trace(99, "parse") << "flushing segment" << end();
  p.segments.back().lines.swap(lines);
}

void parse_word(const string& data, word& out) {
  out.original = data;
  istringstream win(data);
  if (getline(win, out.data, '/')) {
    string m;
    while (getline(win, m, '/'))
      out.metadata.push_back(m);
  }
}

void sanity_check_program_segment(const program& p, uint32_t addr) {
  for (int i = 0;  i < SIZE(p.segments);  ++i) {
    if (p.segments.at(i).start == addr)
      raise << "can't have multiple segments starting at address 0x" << HEXWORD << addr << '\n' << end();
  }
}

// helper for tests
void parse(const string& text_bytes) {
  program p;
  istringstream in(text_bytes);
  parse(in, p);
}

void test_detect_duplicate_segments() {
  Hide_errors = true;
  parse(
      "== 0xee\n"
      "ab\n"
      "== 0xee\n"
      "cd\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: can't have multiple segments starting at address 0x000000ee\n"
  );
}

//:: transform

:(before "End Types")
typedef void (*transform_fn)(program&);
:(before "End Globals")
vector<transform_fn> Transform;

:(code)
void transform(program& p) {
  for (int t = 0;  t < SIZE(Transform);  ++t)
    (*Transform.at(t))(p);
}

//:: load

void load(const program& p) {
  if (p.segments.empty()) {
    raise << "no code to run\n" << end();
    return;
  }
  // Ensure segments are disjoint.
  set<uint32_t> overlap;
  for (int i = 0;   i < SIZE(p.segments);  ++i) {
    const segment& seg = p.segments.at(i);
    uint32_t addr = seg.start;
    if (!already_allocated(addr))
      Mem.push_back(vma(seg.start));
    trace(99, "load") << "loading segment " << i << " from " << HEXWORD << addr << end();
    for (int j = 0;  j < SIZE(seg.lines);  ++j) {
      const line& l = seg.lines.at(j);
      for (int k = 0;  k < SIZE(l.words);  ++k) {
        const word& w = l.words.at(k);
        uint8_t val = hex_byte(w.data);
        if (trace_contains_errors()) return;
        assert(overlap.find(addr) == overlap.end());
        write_mem_u8(addr, val);
        overlap.insert(addr);
        trace(99, "load") << "0x" << HEXWORD << addr << " -> " << HEXBYTE << NUM(read_mem_u8(addr)) << end();
        ++addr;
      }
    }
    if (i == 0) End_of_program = addr;
  }
  EIP = p.segments.at(0).start;
  // End Initialize EIP
}

uint8_t hex_byte(const string& s) {
  istringstream in(s);
  int result = 0;
  in >> std::hex >> result;
  if (!in || !in.eof()) {
    raise << "token '" << s << "' is not a hex byte\n" << end();
    return '\0';
  }
  if (result > 0xff || result < -0x8f) {
    raise << "token '" << s << "' is not a hex byte\n" << end();
    return '\0';
  }
  return static_cast<uint8_t>(result);
}

void test_number_too_large() {
  Hide_errors = true;
  parse_and_load(
      "== 0x1\n"
      "05 cab\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: token 'cab' is not a hex byte\n"
  );
}

void test_invalid_hex() {
  Hide_errors = true;
  parse_and_load(
      "== 0x1\n"
      "05 cx\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: token 'cx' is not a hex byte\n"
  );
}

void test_negative_number() {
  parse_and_load(
      "== 0x1\n"
      "05 -12\n"
  );
  CHECK_TRACE_COUNT("error", 0);
}

void test_negative_number_too_small() {
  Hide_errors = true;
  parse_and_load(
      "== 0x1\n"
      "05 -12345\n"
  );
  CHECK_TRACE_CONTENTS(
      "error: token '-12345' is not a hex byte\n"
  );
}

void test_hex_prefix() {
  parse_and_load(
      "== 0x1\n"
      "0x05 -0x12\n"
  );
  CHECK_TRACE_COUNT("error", 0);
}

//: helper for tests
void parse_and_load(const string& text_bytes) {
  program p;
  istringstream in(text_bytes);
  parse(in, p);
  if (trace_contains_errors()) return;  // if any stage raises errors, stop immediately
  load(p);
}

//:: run

:(before "End Initialize Op Names")
put_new(Name, "b8", "copy imm32 to EAX (mov)");

:(before "End Single-Byte Opcodes")
case 0xb8: {  // copy imm32 to EAX
  const int32_t src = next32();
  trace(Callstack_depth+1, "run") << "copy imm32 0x" << HEXWORD << src << " to EAX" << end();
  Reg[EAX].i = src;
  break;
}

:(code)
void test_copy_imm32_to_EAX() {
  run(
      "== 0x1\n"  // code segment
      // op     ModR/M  SIB   displacement  immediate
      "  b8                                 0a 0b 0c 0d \n"  // copy 0x0d0c0b0a to EAX
  );
  CHECK_TRACE_CONTENTS(
      "run: copy imm32 0x0d0c0b0a to EAX\n"
  );
}

//: our first opcode

:(code)
// read a 32-bit int in little-endian order from the instruction stream
int32_t next32() {
  int32_t result = read_mem_i32(EIP);
  EIP+=4;
  return result;
}

//:: helpers

string to_string(const word& w) {
  ostringstream out;
  out << w.data;
  for (int i = 0;  i < SIZE(w.metadata);  ++i)
    out << " /" << w.metadata.at(i);
  return out.str();
}

int32_t parse_int(const string& s) {
  if (s.empty()) return 0;
  istringstream in(s);
  in >> std::hex;
  if (s.at(0) == '-') {
    int32_t result = 0;
    in >> result;
    if (!in || !in.eof()) {
      raise << "not a number: " << s << '\n' << end();
      return 0;
    }
    return result;
  }
  uint32_t uresult = 0;
  in >> uresult;
  if (!in || !in.eof()) {
    raise << "not a number: " << s << '\n' << end();
    return 0;
  }
  return static_cast<int32_t>(uresult);
}
:(before "End Unit Tests")
void test_parse_int() {
  CHECK_EQ(0, parse_int("0"));
  CHECK_EQ(0, parse_int("0x0"));
  CHECK_EQ(0, parse_int("0x0"));
  CHECK_EQ(16, parse_int("10"));  // hex always
  CHECK_EQ(-1, parse_int("-1"));
  CHECK_EQ(-1, parse_int("0xffffffff"));
}
">unsafe, 48 3:&:point <- get 1:foo:&:point, x:offset ] +mem: storing 34 in location 3 :(scenario get_on_shape_shifting_container_inside_container) container foo:_t [ x:_t y:num ] container bar [ x:foo:point y:num ] def main [ 1:bar <- merge 14, 15, 16, 17 2:num <- get 1:bar, 1:offset ] +mem: storing 17 in location 2 :(scenario get_on_complex_shape_shifting_container) container foo:_a:_b [ x:_a y:_b ] def main [ 1:text <- new [abc] {2: (foo number (address array character))} <- merge 34/x, 1:text/y 3:text <- get {2: (foo number (address array character))}, y:offset 4:bool <- equal 1:text, 3:text ] +mem: storing 1 in location 4 :(before "End element_type Special-cases") replace_type_ingredients(element, type, info, " while computing element type of container"); :(before "Compute Container Size(element, full_type)") replace_type_ingredients(element, full_type, container_info, location_for_error_messages); :(before "Compute Exclusive Container Size(element, full_type)") replace_type_ingredients(element, full_type, exclusive_container_info, location_for_error_messages); :(before "Compute Container Address Offset(element)") replace_type_ingredients(element, type, info, location_for_error_messages); if (contains_type_ingredient(element)) return; // error raised elsewhere :(after "Compute size_of Container") assert(!contains_type_ingredient(type)); :(after "Compute size_of Exclusive Container") assert(!contains_type_ingredient(type)); :(code) bool contains_type_ingredient(const reagent& x) { return contains_type_ingredient(x.type); } bool contains_type_ingredient(const type_tree* type) { if (!type) return false; if (type->atom) return type->value >= START_TYPE_INGREDIENTS; return contains_type_ingredient(type->left) || contains_type_ingredient(type->right); } void replace_type_ingredients(reagent& element, const type_tree* caller_type, const type_info& info, const string& location_for_error_messages) { if (contains_type_ingredient(element)) { if (!caller_type->right) raise << "illegal type " << names_to_string(caller_type) << " seems to be missing a type ingredient or three" << location_for_error_messages << '\n' << end(); replace_type_ingredients(element.type, caller_type->right, info, location_for_error_messages); } } // replace all type_ingredients in element_type with corresponding elements of callsite_type void replace_type_ingredients(type_tree* element_type, const type_tree* callsite_type, const type_info& container_info, const string& location_for_error_messages) { if (!callsite_type) return; // error but it's already been raised above if (!element_type) return; if (!element_type->atom) { if (element_type->right == NULL && is_type_ingredient(element_type->left)) { int type_ingredient_index = to_type_ingredient_index(element_type->left); if (corresponding(callsite_type, type_ingredient_index, is_final_type_ingredient(type_ingredient_index, container_info))->right) { // replacing type ingredient at end of list, and replacement is a non-degenerate compound type -- (a b) but not (a) replace_type_ingredient_at(type_ingredient_index, element_type, callsite_type, container_info, location_for_error_messages); return; } } replace_type_ingredients(element_type->left, callsite_type, container_info, location_for_error_messages); replace_type_ingredients(element_type->right, callsite_type, container_info, location_for_error_messages); return; } if (is_type_ingredient(element_type)) replace_type_ingredient_at(to_type_ingredient_index(element_type), element_type, callsite_type, container_info, location_for_error_messages); } const type_tree* corresponding(const type_tree* type, int index, bool final) { for (const type_tree* curr = type; curr; curr = curr->right, --index) { assert_for_now(!curr->atom); if (index == 0) return final ? curr : curr->left; } assert_for_now(false); } bool is_type_ingredient(const type_tree* type) { return type->atom && type->value >= START_TYPE_INGREDIENTS; } int to_type_ingredient_index(const type_tree* type) { assert(type->atom); return type->value-START_TYPE_INGREDIENTS; } void replace_type_ingredient_at(const int type_ingredient_index, type_tree* element_type, const type_tree* callsite_type, const type_info& container_info, const string& location_for_error_messages) { if (!has_nth_type(callsite_type, type_ingredient_index)) { raise << "illegal type " << names_to_string(callsite_type) << " seems to be missing a type ingredient or three" << location_for_error_messages << '\n' << end(); return; } *element_type = *nth_type_ingredient(callsite_type, type_ingredient_index, container_info); } const type_tree* nth_type_ingredient(const type_tree* callsite_type, int type_ingredient_index, const type_info& container_info) { bool final = is_final_type_ingredient(type_ingredient_index, container_info); const type_tree* curr = callsite_type; for (int i = 0; i < type_ingredient_index; ++i) { assert(curr); assert(!curr->atom); //? cerr << "type ingredient " << i << " is " << to_string(curr->left) << '\n'; curr = curr->right; } assert(curr); if (curr->atom) return curr; if (!final) return curr->left; if (!curr->right) return curr->left; return curr; } bool is_final_type_ingredient(int type_ingredient_index, const type_info& container_info) { for (map<string, type_ordinal>::const_iterator p = container_info.type_ingredient_names.begin(); p != container_info.type_ingredient_names.end(); ++p) { if (p->second > START_TYPE_INGREDIENTS+type_ingredient_index) return false; } return true; } :(before "End Unit Tests") void test_replace_type_ingredients_entire() { run("container foo:_elem [\n" " x:_elem\n" " y:num\n" "]\n"); reagent callsite("x:foo:point"); reagent element = element_type(callsite.type, 0); CHECK_EQ(to_string(element), "{x: \"point\"}"); } void test_replace_type_ingredients_tail() { run("container foo:_elem [\n" " x:_elem\n" "]\n" "container bar:_elem [\n" " x:foo:_elem\n" "]\n"); reagent callsite("x:bar:point"); reagent element = element_type(callsite.type, 0); CHECK_EQ(to_string(element), "{x: (\"foo\" \"point\")}"); } void test_replace_type_ingredients_head_tail_multiple() { run("container foo:_elem [\n" " x:_elem\n" "]\n" "container bar:_elem [\n" " x:foo:_elem\n" "]\n"); reagent callsite("x:bar:address:array:character"); reagent element = element_type(callsite.type, 0); CHECK_EQ(to_string(element), "{x: (\"foo\" \"address\" \"array\" \"character\")}"); } void test_replace_type_ingredients_head_middle() { run("container foo:_elem [\n" " x:_elem\n" "]\n" "container bar:_elem [\n" " x:foo:_elem:num\n" "]\n"); reagent callsite("x:bar:address"); reagent element = element_type(callsite.type, 0); CHECK_EQ(to_string(element), "{x: (\"foo\" \"address\" \"number\")}"); } void test_replace_last_type_ingredient_with_multiple() { run("container foo:_a:_b [\n" " x:_a\n" " y:_b\n" "]\n"); reagent callsite("{f: (foo number (address array character))}"); reagent element1 = element_type(callsite.type, 0); CHECK_EQ(to_string(element1), "{x: \"number\"}"); reagent element2 = element_type(callsite.type, 1); CHECK_EQ(to_string(element2), "{y: (\"address\" \"array\" \"character\")}"); } void test_replace_last_type_ingredient_inside_compound() { run("container foo:_a:_b [\n" " {x: (bar _a (address _b))}\n" "]\n"); reagent callsite("f:foo:number:array:character"); reagent element = element_type(callsite.type, 0); CHECK_EQ(names_to_string_without_quotes(element.type), "(bar number (address array character))"); } void test_replace_middle_type_ingredient_with_multiple() { run("container foo:_a:_b:_c [\n" " x:_a\n" " y:_b\n" " z:_c\n" "]\n"); reagent callsite("{f: (foo number (address array character) boolean)}"); reagent element1 = element_type(callsite.type, 0); CHECK_EQ(to_string(element1), "{x: \"number\"}"); reagent element2 = element_type(callsite.type, 1); CHECK_EQ(to_string(element2), "{y: (\"address\" \"array\" \"character\")}"); reagent element3 = element_type(callsite.type, 2); CHECK_EQ(to_string(element3), "{z: \"boolean\"}"); } void test_replace_middle_type_ingredient_with_multiple2() { run("container foo:_key:_value [\n" " key:_key\n" " value:_value\n" "]\n"); reagent callsite("{f: (foo (address array character) number)}"); reagent element = element_type(callsite.type, 0); CHECK_EQ(to_string(element), "{key: (\"address\" \"array\" \"character\")}"); } void test_replace_middle_type_ingredient_with_multiple3() { run("container foo_table:_key:_value [\n" " data:&:@:foo_table_row:_key:_value\n" "]\n" "\n" "container foo_table_row:_key:_value [\n" " key:_key\n" " value:_value\n" "]\n"); reagent callsite("{f: (foo_table (address array character) number)}"); reagent element = element_type(callsite.type, 0); CHECK_EQ(to_string(element), "{data: (\"address\" \"array\" \"foo_table_row\" (\"address\" \"array\" \"character\") \"number\")}"); } :(code) bool has_nth_type(const type_tree* base, int n) { assert(n >= 0); if (!base) return false; if (n == 0) return true; return has_nth_type(base->right, n-1); } :(scenario get_on_shape_shifting_container_error) % Hide_errors = true; container foo:_t [ x:_t y:num ] def main [ 10:foo:point <- merge 14, 15, 16 1:num <- get 10:foo, 1:offset ] +error: illegal type "foo" seems to be missing a type ingredient or three in '1:num <- get 10:foo, 1:offset' //:: fix up previous layers //: We have two transforms in previous layers -- for computing sizes and //: offsets containing addresses for containers and exclusive containers -- //: that we need to teach about type ingredients. :(before "End compute_container_sizes Non-atom Special-cases") const type_tree* root = get_base_type(type); if (contains_key(Type, root->value)) { type_info& info = get(Type, root->value); if (info.kind == CONTAINER) { compute_container_sizes(info, type, pending_metadata, location_for_error_messages); return; } if (info.kind == EXCLUSIVE_CONTAINER) { compute_exclusive_container_sizes(info, type, pending_metadata, location_for_error_messages); return; } } // otherwise error raised elsewhere :(before "End Unit Tests") void test_container_sizes_shape_shifting_container() { run("container foo:_t [\n" " x:num\n" " y:_t\n" "]\n"); reagent r("x:foo:point"); compute_container_sizes(r, ""); CHECK_EQ(r.metadata.size, 3); } void test_container_sizes_shape_shifting_exclusive_container() { run("exclusive-container foo:_t [\n" " x:num\n" " y:_t\n" "]\n"); reagent r("x:foo:point"); compute_container_sizes(r, ""); CHECK_EQ(r.metadata.size, 3); reagent r2("x:foo:num"); compute_container_sizes(r2, ""); CHECK_EQ(r2.metadata.size, 2); } void test_container_sizes_compound_type_ingredient() { run("container foo:_t [\n" " x:num\n" " y:_t\n" "]\n"); reagent r("x:foo:&:point"); compute_container_sizes(r, ""); CHECK_EQ(r.metadata.size, 2); // scan also pre-computes metadata for type ingredient reagent point("x:point"); CHECK(contains_key(Container_metadata, point.type)); CHECK_EQ(get(Container_metadata, point.type).size, 2); } void test_container_sizes_recursive_shape_shifting_container() { run("container foo:_t [\n" " x:num\n" " y:&:foo:_t\n" "]\n"); reagent r2("x:foo:num"); compute_container_sizes(r2, ""); CHECK_EQ(r2.metadata.size, 2); } :(before "End compute_container_address_offsets Non-atom Special-cases") const type_tree* root = get_base_type(type); if (!contains_key(Type, root->value)) return; // error raised elsewhere type_info& info = get(Type, root->value); if (info.kind == CONTAINER) { compute_container_address_offsets(info, type, location_for_error_messages); return; } if (info.kind == EXCLUSIVE_CONTAINER) { compute_exclusive_container_address_offsets(info, type, location_for_error_messages); return; } :(before "End Unit Tests") void test_container_address_offsets_in_shape_shifting_container() { run("container foo:_t [\n" " x:num\n" " y:_t\n" "]\n"); reagent r("x:foo:&:num"); compute_container_sizes(r, ""); compute_container_address_offsets(r, ""); CHECK_EQ(SIZE(r.metadata.address), 1); CHECK(contains_key(r.metadata.address, set<tag_condition_info>())); set<address_element_info>& offset_info = get(r.metadata.address, set<tag_condition_info>()); CHECK_EQ(SIZE(offset_info), 1); CHECK_EQ(offset_info.begin()->offset, 1); // CHECK(offset_info.begin()->payload_type->atom); CHECK_EQ(offset_info.begin()->payload_type->name, "number"); } void test_container_address_offsets_in_nested_shape_shifting_container() { run("container foo:_t [\n" " x:num\n" " y:_t\n" "]\n" "container bar:_t [\n" " x:_t\n" " y:foo:_t\n" "]\n"); reagent r("x:bar:&:num"); CLEAR_TRACE; compute_container_sizes(r, ""); compute_container_address_offsets(r, ""); CHECK_EQ(SIZE(r.metadata.address), 1); CHECK(contains_key(r.metadata.address, set<tag_condition_info>())); set<address_element_info>& offset_info = get(r.metadata.address, set<tag_condition_info>()); CHECK_EQ(SIZE(offset_info), 2); CHECK_EQ(offset_info.begin()->offset, 0); // CHECK(offset_info.begin()->payload_type->atom); CHECK_EQ(offset_info.begin()->payload_type->name, "number"); CHECK_EQ((++offset_info.begin())->offset, 2); // CHECK((++offset_info.begin())->payload_type->atom); CHECK_EQ((++offset_info.begin())->payload_type->name, "number"); } :(scenario typos_in_container_definitions) % Hide_errors = true; container foo:_t [ x:adress:_t # typo ] def main [ local-scope x:address:foo:num <- new {(foo num): type} ] # no crash :(scenario typos_in_recipes) % Hide_errors = true; def foo [ local-scope x:adress:array:number <- copy 0 # typo ] # shouldn't crash //:: 'merge' on shape-shifting containers :(scenario merge_check_shape_shifting_container_containing_exclusive_container) container foo:_elem [ x:num y:_elem ] exclusive-container bar [ x:num y:num ] def main [ 1:foo:bar <- merge 23, 1/y, 34 ] +mem: storing 23 in location 1 +mem: storing 1 in location 2 +mem: storing 34 in location 3 $error: 0 :(scenario merge_check_shape_shifting_container_containing_exclusive_container_2) % Hide_errors = true; container foo:_elem [ x:num y:_elem ] exclusive-container bar [ x:num y:num ] def main [ 1:foo:bar <- merge 23, 1/y, 34, 35 ] +error: main: too many ingredients in '1:foo:bar <- merge 23, 1/y, 34, 35' :(scenario merge_check_shape_shifting_exclusive_container_containing_container) exclusive-container foo:_elem [ x:num y:_elem ] container bar [ x:num y:num ] def main [ 1:foo:bar <- merge 1/y, 23, 34 ] +mem: storing 1 in location 1 +mem: storing 23 in location 2 +mem: storing 34 in location 3 $error: 0 :(scenario merge_check_shape_shifting_exclusive_container_containing_container_2) exclusive-container foo:_elem [ x:num y:_elem ] container bar [ x:num y:num ] def main [ 1:foo:bar <- merge 0/x, 23 ] $error: 0 :(scenario merge_check_shape_shifting_exclusive_container_containing_container_3) % Hide_errors = true; exclusive-container foo:_elem [ x:num y:_elem ] container bar [ x:num y:num ] def main [ 1:foo:bar <- merge 1/y, 23 ] +error: main: too few ingredients in '1:foo:bar <- merge 1/y, 23'