1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
//: operating on memory at the address provided by some register
:(scenario add_r32_to_mem_at_r32)
% Reg[3].i = 0x10;
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 1);
# op ModR/M SIB displacement immediate
01 18 # add EBX to *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: add EBX to r/m32
+run: effective address is 0x60 (EAX)
+run: storing 0x00000011
:(before "End Mod Special-cases(addr)")
case 0: // indirect addressing
switch (rm) {
default: // address in register
trace(2, "run") << "effective address is 0x" << std::hex << Reg[rm].u << " (" << rname(rm) << ")" << end();
addr = Reg[rm].u;
break;
// End Mod 0 Special-cases(addr)
}
break;
//:
:(scenario add_mem_at_r32_to_r32)
% Reg[0].i = 0x60;
% Reg[3].i = 0x10;
% SET_WORD_IN_MEM(0x60, 1);
# op ModR/M SIB displacement immediate
03 18 # add *EAX to EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: add r/m32 to EBX
+run: effective address is 0x60 (EAX)
+run: storing 0x00000011
:(before "End Single-Byte Opcodes")
case 0x03: { // add r/m32 to r32
uint8_t modrm = next();
uint8_t arg1 = (modrm>>3)&0x7;
trace(2, "run") << "add r/m32 to " << rname(arg1) << end();
const int32_t* arg2 = effective_address(modrm);
BINARY_ARITHMETIC_OP(+, Reg[arg1].i, *arg2);
break;
}
//:: subtract
:(scenario subtract_r32_from_mem_at_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 10);
% Reg[3].i = 1;
# op ModR/M SIB displacement immediate
29 18 # subtract EBX from *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: subtract EBX from r/m32
+run: effective address is 0x60 (EAX)
+run: storing 0x00000009
//:
:(scenario subtract_mem_at_r32_from_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 1);
% Reg[3].i = 10;
# op ModR/M SIB displacement immediate
2b 18 # subtract *EAX from EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: subtract r/m32 from EBX
+run: effective address is 0x60 (EAX)
+run: storing 0x00000009
:(before "End Single-Byte Opcodes")
case 0x2b: { // subtract r/m32 from r32
uint8_t modrm = next();
uint8_t arg1 = (modrm>>3)&0x7;
trace(2, "run") << "subtract r/m32 from " << rname(arg1) << end();
const int32_t* arg2 = effective_address(modrm);
BINARY_ARITHMETIC_OP(-, Reg[arg1].i, *arg2);
break;
}
//:: and
:(scenario and_r32_with_mem_at_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0xff;
# op ModR/M SIB displacement immediate
21 18 # and EBX with *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: and EBX with r/m32
+run: effective address is 0x60 (EAX)
+run: storing 0x0000000d
//:
:(scenario and_mem_at_r32_with_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x000000ff);
% Reg[3].i = 0x0a0b0c0d;
# op ModR/M SIB displacement immediate
23 18 # and *EAX with EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: and r/m32 with EBX
+run: effective address is 0x60 (EAX)
+run: storing 0x0000000d
:(before "End Single-Byte Opcodes")
case 0x23: { // and r/m32 with r32
uint8_t modrm = next();
uint8_t arg1 = (modrm>>3)&0x7;
trace(2, "run") << "and r/m32 with " << rname(arg1) << end();
const int32_t* arg2 = effective_address(modrm);
BINARY_BITWISE_OP(&, Reg[arg1].u, *arg2);
break;
}
//:: or
:(scenario or_r32_with_mem_at_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0xa0b0c0d0;
# op ModR/M SIB displacement immediate
09 18 # or EBX with *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: or EBX with r/m32
+run: effective address is 0x60 (EAX)
+run: storing 0xaabbccdd
//:
:(scenario or_mem_at_r32_with_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0xa0b0c0d0;
# op ModR/M SIB displacement immediate
0b 18 # or *EAX with EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: or r/m32 with EBX
+run: effective address is 0x60 (EAX)
+run: storing 0xaabbccdd
:(before "End Single-Byte Opcodes")
case 0x0b: { // or r/m32 with r32
uint8_t modrm = next();
uint8_t arg1 = (modrm>>3)&0x7;
trace(2, "run") << "or r/m32 with " << rname(arg1) << end();
const int32_t* arg2 = effective_address(modrm);
BINARY_BITWISE_OP(|, Reg[arg1].u, *arg2);
break;
}
//:: xor
:(scenario xor_r32_with_mem_at_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0xaabb0c0d);
% Reg[3].i = 0xa0b0c0d0;
# op ModR/M SIB displacement immediate
31 18 # xor EBX with *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: xor EBX with r/m32
+run: effective address is 0x60 (EAX)
+run: storing 0x0a0bccdd
//:
:(scenario xor_mem_at_r32_with_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0xa0b0c0d0;
# op ModR/M SIB displacement immediate
33 18 # xor *EAX with EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: xor r/m32 with EBX
+run: effective address is 0x60 (EAX)
+run: storing 0xaabbccdd
:(before "End Single-Byte Opcodes")
case 0x33: { // xor r/m32 with r32
uint8_t modrm = next();
uint8_t arg1 = (modrm>>3)&0x7;
trace(2, "run") << "xor r/m32 with " << rname(arg1) << end();
const int32_t* arg2 = effective_address(modrm);
BINARY_BITWISE_OP(|, Reg[arg1].u, *arg2);
break;
}
//:: not
:(scenario not_r32_with_mem_at_r32)
% Reg[3].i = 0x60;
# word at 0x60 is 0x0f0f00ff
% SET_WORD_IN_MEM(0x60, 0x0f0f00ff);
# op ModR/M SIB displacement immediate
f7 03 # negate *EBX
# ModR/M in binary: 00 (indirect mode) 000 (unused) 011 (dest EBX)
+run: 'not' of r/m32
+run: effective address is 0x60 (EBX)
+run: storing 0xf0f0ff00
//:: compare (cmp)
:(scenario compare_mem_at_r32_with_r32_greater)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0x0a0b0c07;
# op ModR/M SIB displacement immediate
39 18 # compare EBX with *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: compare EBX with r/m32
+run: effective address is 0x60 (EAX)
+run: SF=0; ZF=0; OF=0
:(scenario compare_mem_at_r32_with_r32_lesser)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c07);
% Reg[3].i = 0x0a0b0c0d;
# op ModR/M SIB displacement immediate
39 18 # compare EBX with *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: compare EBX with r/m32
+run: effective address is 0x60 (EAX)
+run: SF=1; ZF=0; OF=0
:(scenario compare_mem_at_r32_with_r32_equal)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0x0a0b0c0d;
# op ModR/M SIB displacement immediate
39 18 # compare EBX with *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: compare EBX with r/m32
+run: effective address is 0x60 (EAX)
+run: SF=0; ZF=1; OF=0
//:
:(scenario compare_r32_with_mem_at_r32_greater)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c07);
% Reg[3].i = 0x0a0b0c0d;
# op ModR/M SIB displacement immediate
3b 18 # compare *EAX with EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: compare r/m32 with EBX
+run: effective address is 0x60 (EAX)
+run: SF=0; ZF=0; OF=0
:(before "End Single-Byte Opcodes")
case 0x3b: { // set SF if r32 < r/m32
uint8_t modrm = next();
uint8_t reg1 = (modrm>>3)&0x7;
trace(2, "run") << "compare r/m32 with " << rname(reg1) << end();
int32_t arg1 = Reg[reg1].i;
int32_t* arg2 = effective_address(modrm);
int32_t tmp1 = arg1 - *arg2;
SF = (tmp1 < 0);
ZF = (tmp1 == 0);
int64_t tmp2 = arg1 - *arg2;
OF = (tmp1 != tmp2);
trace(2, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end();
break;
}
:(scenario compare_r32_with_mem_at_r32_lesser)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0x0a0b0c07;
# op ModR/M SIB displacement immediate
3b 18 # compare *EAX with EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: compare r/m32 with EBX
+run: effective address is 0x60 (EAX)
+run: SF=1; ZF=0; OF=0
:(scenario compare_r32_with_mem_at_r32_equal)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0a0b0c0d);
% Reg[3].i = 0x0a0b0c0d;
# op ModR/M SIB displacement immediate
3b 18 # compare *EAX with EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: compare r/m32 with EBX
+run: effective address is 0x60 (EAX)
+run: SF=0; ZF=1; OF=0
//:: copy (mov)
:(scenario copy_r32_to_mem_at_r32)
% Reg[3].i = 0xaf;
% Reg[0].i = 0x60;
# op ModR/M SIB displacement immediate
89 18 # copy EBX to *EAX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: copy EBX to r/m32
+run: effective address is 0x60 (EAX)
+run: storing 0x000000af
//:
:(scenario copy_mem_at_r32_to_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x000000af);
# op ModR/M SIB displacement immediate
8b 18 # copy *EAX to EBX
# ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX)
+run: copy r/m32 to EBX
+run: effective address is 0x60 (EAX)
+run: storing 0x000000af
:(before "End Single-Byte Opcodes")
case 0x8b: { // copy r32 to r/m32
uint8_t modrm = next();
uint8_t reg1 = (modrm>>3)&0x7;
trace(2, "run") << "copy r/m32 to " << rname(reg1) << end();
int32_t* arg2 = effective_address(modrm);
Reg[reg1].i = *arg2;
trace(2, "run") << "storing 0x" << HEXWORD << *arg2 << end();
break;
}
//:: jump
:(scenario jump_mem_at_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 8);
# op ModR/M SIB displacement immediate
ff 20 # jump to *EAX
# ModR/M in binary: 00 (indirect mode) 100 (jump to r/m32) 000 (src EAX)
05 00 00 00 01
05 00 00 00 02
+run: inst: 0x00000001
+run: jump to r/m32
+run: effective address is 0x60 (EAX)
+run: jumping to 0x00000008
+run: inst: 0x00000008
-run: inst: 0x00000003
:(before "End Single-Byte Opcodes")
case 0xff: {
uint8_t modrm = next();
uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits
switch (subop) {
case 4: { // jump to r/m32
trace(2, "run") << "jump to r/m32" << end();
int32_t* arg2 = effective_address(modrm);
EIP = *arg2;
trace(2, "run") << "jumping to 0x" << HEXWORD << EIP << end();
break;
}
// End Op ff Subops
}
break;
}
//:: push
:(scenario push_mem_at_r32)
% Reg[0].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x000000af);
% Reg[ESP].u = 0x14;
# op ModR/M SIB displacement immediate
ff 30 # push *EAX to stack
# ModR/M in binary: 00 (indirect mode) 110 (push r/m32) 000 (src EAX)
+run: push r/m32
+run: effective address is 0x60 (EAX)
+run: decrementing ESP to 0x00000010
+run: pushing value 0x000000af
:(before "End Op ff Subops")
case 6: { // push r/m32 to stack
trace(2, "run") << "push r/m32" << end();
const int32_t* val = effective_address(modrm);
push(*val);
break;
}
//:: pop
:(scenario pop_mem_at_r32)
% Reg[0].i = 0x60;
% Reg[ESP].u = 0x10;
% SET_WORD_IN_MEM(0x10, 0x00000030);
# op ModR/M SIB displacement immediate
8f 00 # pop stack into *EAX
# ModR/M in binary: 00 (indirect mode) 000 (pop r/m32) 000 (dest EAX)
+run: pop into r/m32
+run: effective address is 0x60 (EAX)
+run: popping value 0x00000030
+run: incrementing ESP to 0x00000014
:(before "End Single-Byte Opcodes")
case 0x8f: { // pop stack into r/m32
uint8_t modrm = next();
uint8_t subop = (modrm>>3)&0x7;
switch (subop) {
case 0: {
trace(2, "run") << "pop into r/m32" << end();
int32_t* dest = effective_address(modrm);
*dest = pop();
break;
}
}
break;
}
//:: special-case for loading address from disp32 rather than register
:(scenario add_r32_to_mem_at_displacement)
% Reg[3].i = 0x10; // source
% SET_WORD_IN_MEM(0x60, 1);
# op ModR/M SIB displacement immediate
01 1d 60 00 00 00 # add EBX to *0x60
# ModR/M in binary: 00 (indirect mode) 011 (src EBX) 101 (dest in disp32)
+run: add EBX to r/m32
+run: effective address is 0x60 (disp32)
+run: storing 0x00000011
:(before "End Mod 0 Special-cases(addr)")
case 5: // exception: mod 0b00 rm 0b101 => incoming disp32
addr = imm32();
trace(2, "run") << "effective address is 0x" << std::hex << addr << " (disp32)" << end();
break;
//:
:(scenario add_r32_to_mem_at_r32_plus_disp8)
% Reg[3].i = 0x10; // source
% Reg[0].i = 0x5e; // dest
% SET_WORD_IN_MEM(0x60, 1);
# op ModR/M SIB displacement immediate
01 58 02 # add EBX to *(EAX+2)
# ModR/M in binary: 01 (indirect+disp8 mode) 011 (src EBX) 000 (dest EAX)
+run: add EBX to r/m32
+run: effective address is initially 0x5e (EAX)
+run: effective address is 0x60 (after adding disp8)
+run: storing 0x00000011
:(before "End Mod Special-cases(addr)")
case 1: // indirect + disp8 addressing
switch (rm) {
default:
addr = Reg[rm].u;
trace(2, "run") << "effective address is initially 0x" << std::hex << addr << " (" << rname(rm) << ")" << end();
break;
// End Mod 1 Special-cases(addr)
}
if (addr > 0) {
addr += static_cast<int8_t>(next());
trace(2, "run") << "effective address is 0x" << std::hex << addr << " (after adding disp8)" << end();
}
break;
:(scenario add_r32_to_mem_at_r32_plus_negative_disp8)
% Reg[3].i = 0x10; // source
% Reg[0].i = 0x61; // dest
% SET_WORD_IN_MEM(0x60, 1);
# op ModR/M SIB displacement immediate
01 58 ff # add EBX to *(EAX-1)
# ModR/M in binary: 01 (indirect+disp8 mode) 011 (src EBX) 000 (dest EAX)
+run: add EBX to r/m32
+run: effective address is initially 0x61 (EAX)
+run: effective address is 0x60 (after adding disp8)
+run: storing 0x00000011
//:
:(scenario add_r32_to_mem_at_r32_plus_disp32)
% Reg[3].i = 0x10; // source
% Reg[0].i = 0x5e; // dest
% SET_WORD_IN_MEM(0x60, 1);
# op ModR/M SIB displacement immediate
01 98 02 00 00 00 # add EBX to *(EAX+2)
# ModR/M in binary: 10 (indirect+disp32 mode) 011 (src EBX) 000 (dest EAX)
+run: add EBX to r/m32
+run: effective address is initially 0x5e (EAX)
+run: effective address is 0x60 (after adding disp32)
+run: storing 0x00000011
:(before "End Mod Special-cases(addr)")
case 2: // indirect + disp32 addressing
switch (rm) {
default:
addr = Reg[rm].u;
trace(2, "run") << "effective address is initially 0x" << std::hex << addr << " (" << rname(rm) << ")" << end();
break;
// End Mod 2 Special-cases(addr)
}
if (addr > 0) {
addr += imm32();
trace(2, "run") << "effective address is 0x" << std::hex << addr << " (after adding disp32)" << end();
}
break;
:(scenario add_r32_to_mem_at_r32_plus_negative_disp32)
% Reg[3].i = 0x10; // source
% Reg[0].i = 0x61; // dest
% SET_WORD_IN_MEM(0x60, 1);
# op ModR/M SIB displacement immediate
01 98 ff ff ff ff # add EBX to *(EAX-1)
# ModR/M in binary: 10 (indirect+disp32 mode) 011 (src EBX) 000 (dest EAX)
+run: add EBX to r/m32
+run: effective address is initially 0x61 (EAX)
+run: effective address is 0x60 (after adding disp32)
+run: storing 0x00000011
|