about summary refs log tree commit diff stats
path: root/subx/013direct_addressing.cc
blob: c18b5f5c5ee6979824f4820ee9bd744e0dd3ad38 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
//: operating directly on a register

:(before "End Initialize Op Names")
put_new(Name, "01", "add r32 to rm32 (add)");

:(scenario add_r32_to_r32)
% Reg[EAX].i = 0x10;
% Reg[EBX].i = 1;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  01  d8                                      # add EBX to EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: add EBX to r/m32
+run: r/m32 is EAX
+run: storing 0x00000011

:(before "End Single-Byte Opcodes")
case 0x01: {  // add r32 to r/m32
  uint8_t modrm = next();
  uint8_t arg2 = (modrm>>3)&0x7;
  trace(90, "run") << "add " << rname(arg2) << " to r/m32" << end();
  int32_t* arg1 = effective_address(modrm);
  BINARY_ARITHMETIC_OP(+, *arg1, Reg[arg2].i);
  break;
}

:(code)
// Implement tables 2-2 and 2-3 in the Intel manual, Volume 2.
// We return a pointer so that instructions can write to multiple bytes in
// 'Mem' at once.
int32_t* effective_address(uint8_t modrm) {
  const uint8_t mod = (modrm>>6);
  // ignore middle 3 'reg opcode' bits
  const uint8_t rm = modrm & 0x7;
  if (mod == 3) {
    // mod 3 is just register direct addressing
    trace(90, "run") << "r/m32 is " << rname(rm) << end();
    return &Reg[rm].i;
  }
  return mem_addr_i32(effective_address_number(modrm));
}

uint32_t effective_address_number(uint8_t modrm) {
  const uint8_t mod = (modrm>>6);
  // ignore middle 3 'reg opcode' bits
  const uint8_t rm = modrm & 0x7;
  uint32_t addr = 0;
  switch (mod) {
  case 3:
    // mod 3 is just register direct addressing
    raise << "unexpected direct addressing mode\n" << end();
    return 0;
  // End Mod Special-cases(addr)
  default:
    cerr << "unrecognized mod bits: " << NUM(mod) << '\n';
    exit(1);
  }
  //: other mods are indirect, and they'll set addr appropriately
  return addr;
}

string rname(uint8_t r) {
  switch (r) {
  case 0: return "EAX";
  case 1: return "ECX";
  case 2: return "EDX";
  case 3: return "EBX";
  case 4: return "ESP";
  case 5: return "EBP";
  case 6: return "ESI";
  case 7: return "EDI";
  default: raise << "invalid register " << r << '\n' << end();  return "";
  }
}

//:: subtract

:(before "End Initialize Op Names")
put_new(Name, "29", "subtract r32 from rm32 (sub)");

:(scenario subtract_r32_from_r32)
% Reg[EAX].i = 10;
% Reg[EBX].i = 1;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  29  d8                                      # subtract EBX from EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: subtract EBX from r/m32
+run: r/m32 is EAX
+run: storing 0x00000009

:(before "End Single-Byte Opcodes")
case 0x29: {  // subtract r32 from r/m32
  const uint8_t modrm = next();
  const uint8_t arg2 = (modrm>>3)&0x7;
  trace(90, "run") << "subtract " << rname(arg2) << " from r/m32" << end();
  int32_t* arg1 = effective_address(modrm);
  BINARY_ARITHMETIC_OP(-, *arg1, Reg[arg2].i);
  break;
}

//:: multiply

:(before "End Initialize Op Names")
put_new(Name, "f7", "negate/multiply rm32 (with EAX if necessary) depending on subop (neg/mul)");

:(scenario multiply_eax_by_r32)
% Reg[EAX].i = 4;
% Reg[ECX].i = 3;
== 0x1
# op      ModR/M  SIB   displacement  immediate
  f7      e1                                      # multiply EAX by ECX
# ModR/M in binary: 11 (direct mode) 100 (subop mul) 001 (src ECX)
+run: operate on r/m32
+run: r/m32 is ECX
+run: subop: multiply EAX by r/m32
+run: storing 0x0000000c

:(before "End Single-Byte Opcodes")
case 0xf7: {
  const uint8_t modrm = next();
  trace(90, "run") << "operate on r/m32" << end();
  int32_t* arg1 = effective_address(modrm);
  const uint8_t subop = (modrm>>3)&0x7;  // middle 3 'reg opcode' bits
  switch (subop) {
  case 4: {  // mul unsigned EAX by r/m32
    trace(90, "run") << "subop: multiply EAX by r/m32" << end();
    const uint64_t result = Reg[EAX].u * static_cast<uint32_t>(*arg1);
    Reg[EAX].u = result & 0xffffffff;
    Reg[EDX].u = result >> 32;
    OF = (Reg[EDX].u != 0);
    trace(90, "run") << "storing 0x" << HEXWORD << Reg[EAX].u << end();
    break;
  }
  // End Op f7 Subops
  default:
    cerr << "unrecognized sub-opcode after f7: " << NUM(subop) << '\n';
    exit(1);
  }
  break;
}

//:

:(before "End Initialize Op Names")
put_new(Name_0f, "af", "multiply rm32 into r32 (imul)");

:(scenario multiply_r32_into_r32)
% Reg[EAX].i = 4;
% Reg[EBX].i = 2;
== 0x1
# op      ModR/M  SIB   displacement  immediate
  0f af   d8                                      # subtract EBX into EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: multiply r/m32 into EBX
+run: r/m32 is EAX
+run: storing 0x00000008

:(before "End Two-Byte Opcodes Starting With 0f")
case 0xaf: {  // multiply r32 into r/m32
  const uint8_t modrm = next();
  const uint8_t arg2 = (modrm>>3)&0x7;
  trace(90, "run") << "multiply r/m32 into " << rname(arg2) << end();
  const int32_t* arg1 = effective_address(modrm);
  BINARY_ARITHMETIC_OP(*, Reg[arg2].i, *arg1);
  break;
}

//:: negate

:(scenario negate_r32)
% Reg[EBX].i = 1;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  f7  db                                      # negate EBX
# ModR/M in binary: 11 (direct mode) 011 (subop negate) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: negate
+run: storing 0xffffffff

:(before "End Op f7 Subops")
case 3: {  // negate r/m32
  trace(90, "run") << "subop: negate" << end();
  // one case that can overflow
  if (static_cast<uint32_t>(*arg1) == 0x80000000) {
    trace(90, "run") << "overflow" << end();
    SF = true;
    ZF = false;
    OF = true;
    break;
  }
  *arg1 = -(*arg1);
  trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << end();
  SF = (*arg1 >> 31);
  ZF = (*arg1 == 0);
  OF = false;
  break;
}

:(scenario negate_can_overflow)  // in exactly one situation
% Reg[EBX].i = 0x80000000;  // INT_MIN
== 0x1
# op  ModR/M  SIB   displacement  immediate
  f7  db                                      # negate EBX
# ModR/M in binary: 11 (direct mode) 011 (subop negate) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: negate
+run: overflow

//:: shift left

:(before "End Initialize Op Names")
put_new(Name, "d3", "shift rm32 by CL bits depending on subop (sal/sar/shl/shr)");

:(scenario shift_left_r32_with_cl)
% Reg[EBX].i = 13;
% Reg[ECX].i = 1;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  d3  e3                                      # negate EBX
# ModR/M in binary: 11 (direct mode) 100 (subop shift left) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: shift left by CL bits
+run: storing 0x0000001a

:(before "End Single-Byte Opcodes")
case 0xd3: {
  const uint8_t modrm = next();
  trace(90, "run") << "operate on r/m32" << end();
  int32_t* arg1 = effective_address(modrm);
  const uint8_t subop = (modrm>>3)&0x7;  // middle 3 'reg opcode' bits
  switch (subop) {
  case 4: {  // shift left r/m32 by CL
    trace(90, "run") << "subop: shift left by CL bits" << end();
    uint8_t count = Reg[ECX].u & 0x1f;
    // OF is only defined if count is 1
    if (count == 1) {
      bool msb = (*arg1 & 0x80000000) >> 1;
      bool pnsb = (*arg1 & 0x40000000);
      OF = (msb != pnsb);
    }
    *arg1 = (*arg1 << count);
    ZF = (*arg1 == 0);
    SF = (*arg1 < 0);
    trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << end();
    break;
  }
  // End Op d3 Subops
  default:
    cerr << "unrecognized sub-opcode after d3: " << NUM(subop) << '\n';
    exit(1);
  }
  break;
}

//:: shift right arithmetic

:(scenario shift_right_arithmetic_r32_with_cl)
% Reg[EBX].i = 26;
% Reg[ECX].i = 1;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  d3  fb                                      # negate EBX
# ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: shift right by CL bits, while preserving sign
+run: storing 0x0000000d

:(before "End Op d3 Subops")
case 7: {  // shift right r/m32 by CL, preserving sign
  trace(90, "run") << "subop: shift right by CL bits, while preserving sign" << end();
  uint8_t count = Reg[ECX].u & 0x1f;
  *arg1 = (*arg1 >> count);
  ZF = (*arg1 == 0);
  SF = (*arg1 < 0);
  // OF is only defined if count is 1
  if (count == 1) OF = false;
  trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << end();
  break;
}

:(scenario shift_right_arithmetic_odd_r32_with_cl)
% Reg[EBX].i = 27;
% Reg[ECX].i = 1;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  d3  fb                                      # negate EBX
# ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: shift right by CL bits, while preserving sign
# result: 13
+run: storing 0x0000000d

:(scenario shift_right_arithmetic_negative_r32_with_cl)
% Reg[EBX].i = 0xfffffffd;  // -3
% Reg[ECX].i = 1;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  d3  fb                                      # negate EBX
# ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: shift right by CL bits, while preserving sign
# result: -2
+run: storing 0xfffffffe

//:: shift right logical

:(scenario shift_right_logical_r32_with_cl)
% Reg[EBX].i = 26;
% Reg[ECX].i = 1;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  d3  eb                                      # negate EBX
# ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: shift right by CL bits, while padding zeroes
+run: storing 0x0000000d

:(before "End Op d3 Subops")
case 5: {  // shift right r/m32 by CL, preserving sign
  trace(90, "run") << "subop: shift right by CL bits, while padding zeroes" << end();
  uint8_t count = Reg[ECX].u & 0x1f;
  // OF is only defined if count is 1
  if (count == 1) {
    bool msb = (*arg1 & 0x80000000) >> 1;
    bool pnsb = (*arg1 & 0x40000000);
    OF = (msb != pnsb);
  }
  uint32_t* uarg1 = reinterpret_cast<uint32_t*>(arg1);
  *uarg1 = (*uarg1 >> count);
  ZF = (*uarg1 == 0);
  // result is always positive by definition
  SF = false;
  trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << end();
  break;
}

:(scenario shift_right_logical_odd_r32_with_cl)
% Reg[EBX].i = 27;
% Reg[ECX].i = 1;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  d3  eb                                      # negate EBX
# ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: shift right by CL bits, while padding zeroes
# result: 13
+run: storing 0x0000000d

:(scenario shift_right_logical_negative_r32_with_cl)
% Reg[EBX].i = 0xfffffffd;
% Reg[ECX].i = 1;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  d3  eb                                      # negate EBX
# ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: shift right by CL bits, while padding zeroes
+run: storing 0x7ffffffe

//:: and

:(before "End Initialize Op Names")
put_new(Name, "21", "rm32 = bitwise AND of r32 with rm32 (and)");

:(scenario and_r32_with_r32)
% Reg[EAX].i = 0x0a0b0c0d;
% Reg[EBX].i = 0x000000ff;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  21  d8                                      # and EBX with destination EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: and EBX with r/m32
+run: r/m32 is EAX
+run: storing 0x0000000d

:(before "End Single-Byte Opcodes")
case 0x21: {  // and r32 with r/m32
  const uint8_t modrm = next();
  const uint8_t arg2 = (modrm>>3)&0x7;
  trace(90, "run") << "and " << rname(arg2) << " with r/m32" << end();
  int32_t* arg1 = effective_address(modrm);
  BINARY_BITWISE_OP(&, *arg1, Reg[arg2].u);
  break;
}

//:: or

:(before "End Initialize Op Names")
put_new(Name, "09", "rm32 = bitwise OR of r32 with rm32 (or)");

:(scenario or_r32_with_r32)
% Reg[EAX].i = 0x0a0b0c0d;
% Reg[EBX].i = 0xa0b0c0d0;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  09  d8                                      # or EBX with destination EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: or EBX with r/m32
+run: r/m32 is EAX
+run: storing 0xaabbccdd

:(before "End Single-Byte Opcodes")
case 0x09: {  // or r32 with r/m32
  const uint8_t modrm = next();
  const uint8_t arg2 = (modrm>>3)&0x7;
  trace(90, "run") << "or " << rname(arg2) << " with r/m32" << end();
  int32_t* arg1 = effective_address(modrm);
  BINARY_BITWISE_OP(|, *arg1, Reg[arg2].u);
  break;
}

//:: xor

:(before "End Initialize Op Names")
put_new(Name, "31", "rm32 = bitwise XOR of r32 with rm32 (xor)");

:(scenario xor_r32_with_r32)
% Reg[EAX].i = 0x0a0b0c0d;
% Reg[EBX].i = 0xaabbc0d0;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  31  d8                                      # xor EBX with destination EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: xor EBX with r/m32
+run: r/m32 is EAX
+run: storing 0xa0b0ccdd

:(before "End Single-Byte Opcodes")
case 0x31: {  // xor r32 with r/m32
  const uint8_t modrm = next();
  const uint8_t arg2 = (modrm>>3)&0x7;
  trace(90, "run") << "xor " << rname(arg2) << " with r/m32" << end();
  int32_t* arg1 = effective_address(modrm);
  BINARY_BITWISE_OP(^, *arg1, Reg[arg2].u);
  break;
}

//:: not

:(scenario not_r32)
% Reg[EBX].i = 0x0f0f00ff;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  f7  d3                                      # not EBX
# ModR/M in binary: 11 (direct mode) 010 (subop not) 011 (dest EBX)
+run: operate on r/m32
+run: r/m32 is EBX
+run: subop: not
+run: storing 0xf0f0ff00

:(before "End Op f7 Subops")
case 2: {  // not r/m32
  trace(90, "run") << "subop: not" << end();
  *arg1 = ~(*arg1);
  trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << end();
  SF = (*arg1 >> 31);
  ZF = (*arg1 == 0);
  OF = false;
  break;
}

//:: compare (cmp)

:(before "End Initialize Op Names")
put_new(Name, "39", "compare: set SF if rm32 < r32 (cmp)");

:(scenario compare_r32_with_r32_greater)
% Reg[EAX].i = 0x0a0b0c0d;
% Reg[EBX].i = 0x0a0b0c07;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  39  d8                                      # compare EBX with EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: compare EBX with r/m32
+run: r/m32 is EAX
+run: SF=0; ZF=0; OF=0

:(before "End Single-Byte Opcodes")
case 0x39: {  // set SF if r/m32 < r32
  const uint8_t modrm = next();
  const uint8_t reg2 = (modrm>>3)&0x7;
  trace(90, "run") << "compare " << rname(reg2) << " with r/m32" << end();
  const int32_t* arg1 = effective_address(modrm);
  const int32_t arg2 = Reg[reg2].i;
  const int32_t tmp1 = *arg1 - arg2;
  SF = (tmp1 < 0);
  ZF = (tmp1 == 0);
  const int64_t tmp2 = *arg1 - arg2;
  OF = (tmp1 != tmp2);
  trace(90, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end();
  break;
}

:(scenario compare_r32_with_r32_lesser)
% Reg[EAX].i = 0x0a0b0c07;
% Reg[EBX].i = 0x0a0b0c0d;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  39  d8                                      # compare EBX with EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: compare EBX with r/m32
+run: r/m32 is EAX
+run: SF=1; ZF=0; OF=0

:(scenario compare_r32_with_r32_equal)
% Reg[EAX].i = 0x0a0b0c0d;
% Reg[EBX].i = 0x0a0b0c0d;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  39  d8                                      # compare EBX with EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: compare EBX with r/m32
+run: r/m32 is EAX
+run: SF=0; ZF=1; OF=0

//:: copy (mov)

:(before "End Initialize Op Names")
put_new(Name, "89", "copy r32 to rm32 (mov)");

:(scenario copy_r32_to_r32)
% Reg[EBX].i = 0xaf;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  89  d8                                      # copy EBX to EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: copy EBX to r/m32
+run: r/m32 is EAX
+run: storing 0x000000af

:(before "End Single-Byte Opcodes")
case 0x89: {  // copy r32 to r/m32
  const uint8_t modrm = next();
  const uint8_t rsrc = (modrm>>3)&0x7;
  trace(90, "run") << "copy " << rname(rsrc) << " to r/m32" << end();
  int32_t* dest = effective_address(modrm);
  *dest = Reg[rsrc].i;
  trace(90, "run") << "storing 0x" << HEXWORD << *dest << end();
  break;
}

//:: xchg

:(before "End Initialize Op Names")
put_new(Name, "87", "swap the contents of r32 and rm32 (xchg)");

:(scenario xchg_r32_with_r32)
% Reg[EBX].i = 0xaf;
% Reg[EAX].i = 0x2e;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  87  d8                                      # exchange EBX with EAX
# ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
+run: exchange EBX with r/m32
+run: r/m32 is EAX
+run: storing 0x000000af in r/m32
+run: storing 0x0000002e in EBX

:(before "End Single-Byte Opcodes")
case 0x87: {  // exchange r32 with r/m32
  const uint8_t modrm = next();
  const uint8_t reg2 = (modrm>>3)&0x7;
  trace(90, "run") << "exchange " << rname(reg2) << " with r/m32" << end();
  int32_t* arg1 = effective_address(modrm);
  const int32_t tmp = *arg1;
  *arg1 = Reg[reg2].i;
  Reg[reg2].i = tmp;
  trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << " in r/m32" << end();
  trace(90, "run") << "storing 0x" << HEXWORD << Reg[reg2].i << " in " << rname(reg2) << end();
  break;
}

//:: increment

:(before "End Initialize Op Names")
put_new(Name, "40", "increment EAX (inc)");
put_new(Name, "41", "increment ECX (inc)");
put_new(Name, "42", "increment EDX (inc)");
put_new(Name, "43", "increment EBX (inc)");
put_new(Name, "44", "increment ESP (inc)");
put_new(Name, "45", "increment EBP (inc)");
put_new(Name, "46", "increment ESI (inc)");
put_new(Name, "47", "increment EDI (inc)");

:(scenario increment_r32)
% Reg[ECX].u = 0x1f;
== 0x1  # code segment
# op  ModR/M  SIB   displacement  immediate
  41                                          # increment ECX
+run: increment ECX
+run: storing value 0x00000020

:(before "End Single-Byte Opcodes")
case 0x40:
case 0x41:
case 0x42:
case 0x43:
case 0x44:
case 0x45:
case 0x46:
case 0x47: {  // increment r32
  const uint8_t reg = op & 0x7;
  trace(90, "run") << "increment " << rname(reg) << end();
  ++Reg[reg].u;
  trace(90, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end();
  break;
}

:(before "End Initialize Op Names")
put_new(Name, "ff", "increment/decrement/jump/push/call rm32 based on subop (inc/dec/jmp/push/call)");

:(scenario increment_rm32)
% Reg[EAX].u = 0x20;
== 0x1  # code segment
# op  ModR/M  SIB   displacement  immediate
  ff  c0                                      # increment EAX
# ModR/M in binary: 11 (direct mode) 000 (subop inc) 000 (EAX)
+run: increment r/m32
+run: r/m32 is EAX
+run: storing value 0x00000021

:(before "End Single-Byte Opcodes")
case 0xff: {
  const uint8_t modrm = next();
  const uint8_t subop = (modrm>>3)&0x7;  // middle 3 'reg opcode' bits
  switch (subop) {
    case 0: {  // increment r/m32
      trace(90, "run") << "increment r/m32" << end();
      int32_t* arg = effective_address(modrm);
      ++*arg;
      trace(90, "run") << "storing value 0x" << HEXWORD << *arg << end();
      break;
    }
    default:
      cerr << "unrecognized subop for ff: " << HEXBYTE << NUM(subop) << '\n';
      DUMP("");
      exit(1);
    // End Op ff Subops
  }
  break;
}

//:: decrement

:(before "End Initialize Op Names")
put_new(Name, "48", "decrement EAX (dec)");
put_new(Name, "49", "decrement ECX (dec)");
put_new(Name, "4a", "decrement EDX (dec)");
put_new(Name, "4b", "decrement EBX (dec)");
put_new(Name, "4c", "decrement ESP (dec)");
put_new(Name, "4d", "decrement EBP (dec)");
put_new(Name, "4e", "decrement ESI (dec)");
put_new(Name, "4f", "decrement EDI (dec)");

:(scenario decrement_r32)
% Reg[ECX].u = 0x1f;
== 0x1  # code segment
# op  ModR/M  SIB   displacement  immediate
  49                                          # decrement ECX
+run: decrement ECX
+run: storing value 0x0000001e

:(before "End Single-Byte Opcodes")
case 0x48:
case 0x49:
case 0x4a:
case 0x4b:
case 0x4c:
case 0x4d:
case 0x4e:
case 0x4f: {  // decrement r32
  const uint8_t reg = op & 0x7;
  trace(90, "run") << "decrement " << rname(reg) << end();
  --Reg[reg].u;
  trace(90, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end();
  break;
}

:(scenario decrement_rm32)
% Reg[EAX].u = 0x20;
== 0x1  # code segment
# op  ModR/M  SIB   displacement  immediate
  ff  c8                                      # decrement EAX
# ModR/M in binary: 11 (direct mode) 001 (subop inc) 000 (EAX)
+run: decrement r/m32
+run: r/m32 is EAX
+run: storing value 0x0000001f

:(before "End Op ff Subops")
case 1: {  // decrement r/m32
  trace(90, "run") << "decrement r/m32" << end();
  int32_t* arg = effective_address(modrm);
  --*arg;
  trace(90, "run") << "storing value 0x" << HEXWORD << *arg << end();
  break;
}

//:: push

:(before "End Initialize Op Names")
put_new(Name, "50", "push EAX to stack (push)");
put_new(Name, "51", "push ECX to stack (push)");
put_new(Name, "52", "push EDX to stack (push)");
put_new(Name, "53", "push EBX to stack (push)");
put_new(Name, "54", "push ESP to stack (push)");
put_new(Name, "55", "push EBP to stack (push)");
put_new(Name, "56", "push ESI to stack (push)");
put_new(Name, "57", "push EDI to stack (push)");

:(scenario push_r32)
% Reg[ESP].u = 0x64;
% Reg[EBX].i = 0x0000000a;
== 0x1
# op  ModR/M  SIB   displacement  immediate
  53                                          # push EBX to stack
+run: push EBX
+run: decrementing ESP to 0x00000060
+run: pushing value 0x0000000a

:(before "End Single-Byte Opcodes")
case 0x50:
case 0x51:
case 0x52:
case 0x53:
case 0x54:
case 0x55:
case 0x56:
case 0x57: {  // push r32 to stack
  uint8_t reg = op & 0x7;
  trace(90, "run") << "push " << rname(reg) << end();
//?   cerr << "push: " << NUM(reg) << ": " << Reg[reg].u << " => " << Reg[ESP].u << '\n';
  push(Reg[reg].u);
  break;
}

//:: pop

:(before "End Initialize Op Names")
put_new(Name, "58", "pop top of stack to EAX (pop)");
put_new(Name, "59", "pop top of stack to ECX (pop)");
put_new(Name, "5a", "pop top of stack to EDX (pop)");
put_new(Name, "5b", "pop top of stack to EBX (pop)");
put_new(Name, "5c", "pop top of stack to ESP (pop)");
put_new(Name, "5d", "pop top of stack to EBP (pop)");
put_new(Name, "5e", "pop top of stack to ESI (pop)");
put_new(Name, "5f", "pop top of stack to EDI (pop)");

:(scenario pop_r32)
% Reg[ESP].u = 0x02000000;
% Mem.push_back(vma(0x02000000));  // manually allocate memory
% write_mem_i32(0x02000000, 0x0000000a);  // ..before this write
== 0x1  # code segment
# op  ModR/M  SIB   displacement  immediate
  5b                                          # pop stack to EBX
== 0x2000  # data segment
0a 00 00 00  # 0x0a
+run: pop into EBX
+run: popping value 0x0000000a
+run: incrementing ESP to 0x02000004

:(before "End Single-Byte Opcodes")
case 0x58:
case 0x59:
case 0x5a:
case 0x5b:
case 0x5c:
case 0x5d:
case 0x5e:
case 0x5f: {  // pop stack into r32
  const uint8_t reg = op & 0x7;
  trace(90, "run") << "pop into " << rname(reg) << end();
//?   cerr << "pop from " << Reg[ESP].u << '\n';
  Reg[reg].u = pop();
//?   cerr << "=> " << NUM(reg) << ": " << Reg[reg].u << '\n';
  break;
}
:(code)
uint32_t pop() {
  const uint32_t result = read_mem_u32(Reg[ESP].u);
  trace(90, "run") << "popping value 0x" << HEXWORD << result << end();
  Reg[ESP].u += 4;
  trace(90, "run") << "incrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end();
  return result;
}