1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
|
//: instructions that (immediately) contain an argument to act with
:(scenario add_imm32_to_r32)
% Reg[3].i = 1;
# op ModR/M SIB displacement immediate
81 c3 0a 0b 0c 0d # add 0x0d0c0b0a to EBX
# ModR/M in binary: 11 (direct mode) 000 (add imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with r/m32
+run: r/m32 is EBX
+run: subop add
+run: storing 0x0d0c0b0b
:(before "End Single-Byte Opcodes")
case 0x81: { // combine imm32 with r/m32
uint8_t modrm = next();
int32_t arg2 = imm32();
trace(2, "run") << "combine imm32 0x" << HEXWORD << arg2 << " with r/m32" << end();
int32_t* arg1 = effective_address(modrm);
uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits
switch (subop) {
case 0:
trace(2, "run") << "subop add" << end();
BINARY_ARITHMETIC_OP(+, *arg1, arg2);
break;
// End Op 81 Subops
default:
cerr << "unrecognized sub-opcode after 81: " << NUM(subop) << '\n';
exit(1);
}
break;
}
//:
:(scenario add_imm32_to_mem_at_r32)
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 1);
# op ModR/M SIB displacement immediate
81 03 0a 0b 0c 0d # add 0x0d0c0b0a to *EBX
# ModR/M in binary: 00 (indirect mode) 000 (add imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with r/m32
+run: effective address is 0x60 (EBX)
+run: subop add
+run: storing 0x0d0c0b0b
//:: subtract
:(scenario subtract_imm32_from_eax)
% Reg[EAX].i = 0x0d0c0baa;
# op ModR/M SIB displacement immediate
2d 0a 0b 0c 0d # subtract 0x0d0c0b0a from EAX
+run: subtract imm32 0x0d0c0b0a from EAX
+run: storing 0x000000a0
:(before "End Single-Byte Opcodes")
case 0x2d: { // subtract imm32 from EAX
int32_t arg2 = imm32();
trace(2, "run") << "subtract imm32 0x" << HEXWORD << arg2 << " from EAX" << end();
BINARY_ARITHMETIC_OP(-, Reg[EAX].i, arg2);
break;
}
//:
:(scenario subtract_imm32_from_mem_at_r32)
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 10);
# op ModR/M SIB displacement immediate
81 2b 01 00 00 00 # subtract 1 from *EBX
# ModR/M in binary: 00 (indirect mode) 101 (subtract imm32) 011 (dest EBX)
+run: combine imm32 0x00000001 with r/m32
+run: effective address is 0x60 (EBX)
+run: subop subtract
+run: storing 0x00000009
:(before "End Op 81 Subops")
case 5: {
trace(2, "run") << "subop subtract" << end();
BINARY_ARITHMETIC_OP(-, *arg1, arg2);
break;
}
//:
:(scenario subtract_imm32_from_r32)
% Reg[3].i = 10;
# op ModR/M SIB displacement immediate
81 eb 01 00 00 00 # subtract 1 from EBX
# ModR/M in binary: 11 (direct mode) 101 (subtract imm32) 011 (dest EBX)
+run: combine imm32 0x00000001 with r/m32
+run: r/m32 is EBX
+run: subop subtract
+run: storing 0x00000009
//:: and
:(scenario and_imm32_with_eax)
% Reg[EAX].i = 0xff;
# op ModR/M SIB displacement immediate
25 0a 0b 0c 0d # and 0x0d0c0b0a with EAX
+run: and imm32 0x0d0c0b0a with EAX
+run: storing 0x0000000a
:(before "End Single-Byte Opcodes")
case 0x25: { // and imm32 with EAX
int32_t arg2 = imm32();
trace(2, "run") << "and imm32 0x" << HEXWORD << arg2 << " with EAX" << end();
BINARY_BITWISE_OP(&, Reg[EAX].i, arg2);
break;
}
//:
:(scenario and_imm32_with_mem_at_r32)
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x000000ff);
# op ModR/M SIB displacement immediate
81 23 0a 0b 0c 0d # and 0x0d0c0b0a with *EBX
# ModR/M in binary: 00 (indirect mode) 100 (and imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with r/m32
+run: effective address is 0x60 (EBX)
+run: subop and
+run: storing 0x0000000a
:(before "End Op 81 Subops")
case 4: {
trace(2, "run") << "subop and" << end();
BINARY_BITWISE_OP(&, *arg1, arg2);
break;
}
//:
:(scenario and_imm32_with_r32)
% Reg[3].i = 0xff;
# op ModR/M SIB displacement immediate
81 e3 0a 0b 0c 0d # and 0x0d0c0b0a with EBX
# ModR/M in binary: 11 (direct mode) 100 (and imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with r/m32
+run: r/m32 is EBX
+run: subop and
+run: storing 0x0000000a
//:: or
:(scenario or_imm32_with_eax)
% Reg[EAX].i = 0xd0c0b0a0;
# op ModR/M SIB displacement immediate
0d 0a 0b 0c 0d # or 0x0d0c0b0a with EAX
+run: or imm32 0x0d0c0b0a with EAX
+run: storing 0xddccbbaa
:(before "End Single-Byte Opcodes")
case 0x0d: { // or imm32 with EAX
int32_t arg2 = imm32();
trace(2, "run") << "or imm32 0x" << HEXWORD << arg2 << " with EAX" << end();
BINARY_BITWISE_OP(|, Reg[EAX].i, arg2);
break;
}
//:
:(scenario or_imm32_with_mem_at_r32)
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0xd0c0b0a0);
# op ModR/M SIB displacement immediate
81 0b 0a 0b 0c 0d # or 0x0d0c0b0a with *EBX
# ModR/M in binary: 00 (indirect mode) 001 (or imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with r/m32
+run: effective address is 0x60 (EBX)
+run: subop or
+run: storing 0xddccbbaa
:(before "End Op 81 Subops")
case 1: {
trace(2, "run") << "subop or" << end();
BINARY_BITWISE_OP(|, *arg1, arg2);
break;
}
:(scenario or_imm32_with_r32)
% Reg[3].i = 0xd0c0b0a0;
# op ModR/M SIB displacement immediate
81 cb 0a 0b 0c 0d # or 0x0d0c0b0a with EBX
# ModR/M in binary: 11 (direct mode) 001 (or imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with r/m32
+run: r/m32 is EBX
+run: subop or
+run: storing 0xddccbbaa
//:: xor
:(scenario xor_imm32_with_eax)
% Reg[EAX].i = 0xddccb0a0;
# op ModR/M SIB displacement immediate
35 0a 0b 0c 0d # xor 0x0d0c0b0a with EAX
+run: xor imm32 0x0d0c0b0a with EAX
+run: storing 0xd0c0bbaa
:(before "End Single-Byte Opcodes")
case 0x35: { // xor imm32 with EAX
int32_t arg2 = imm32();
trace(2, "run") << "xor imm32 0x" << HEXWORD << arg2 << " with EAX" << end();
BINARY_BITWISE_OP(^, Reg[EAX].i, arg2);
break;
}
//:
:(scenario xor_imm32_with_mem_at_r32)
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0xd0c0b0a0);
# op ModR/M SIB displacement immediate
81 33 0a 0b 0c 0d # xor 0x0d0c0b0a with *EBX
# ModR/M in binary: 00 (indirect mode) 110 (xor imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with r/m32
+run: effective address is 0x60 (EBX)
+run: subop xor
+run: storing 0xddccbbaa
:(before "End Op 81 Subops")
case 6: {
trace(2, "run") << "subop xor" << end();
BINARY_BITWISE_OP(^, *arg1, arg2);
break;
}
:(scenario xor_imm32_with_r32)
% Reg[3].i = 0xd0c0b0a0;
# op ModR/M SIB displacement immediate
81 f3 0a 0b 0c 0d # xor 0x0d0c0b0a with EBX
# ModR/M in binary: 11 (direct mode) 110 (xor imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with r/m32
+run: r/m32 is EBX
+run: subop xor
+run: storing 0xddccbbaa
//:: compare (cmp)
:(scenario compare_imm32_with_eax_greater)
% Reg[0].i = 0x0d0c0b0a;
# op ModR/M SIB displacement immediate
3d 07 0b 0c 0d # compare 0x0d0c0b07 with EAX
+run: compare EAX and imm32 0x0d0c0b07
+run: SF=0; ZF=0; OF=0
:(before "End Single-Byte Opcodes")
case 0x3d: { // subtract imm32 from EAX
int32_t arg1 = Reg[EAX].i;
int32_t arg2 = imm32();
trace(2, "run") << "compare EAX and imm32 0x" << HEXWORD << arg2 << end();
int32_t tmp1 = arg1 - arg2;
SF = (tmp1 < 0);
ZF = (tmp1 == 0);
int64_t tmp2 = arg1 - arg2;
OF = (tmp1 != tmp2);
trace(2, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end();
break;
}
:(scenario compare_imm32_with_eax_lesser)
% Reg[0].i = 0x0d0c0b07;
# op ModR/M SIB displacement immediate
3d 0a 0b 0c 0d # compare 0x0d0c0b0a with EAX
+run: compare EAX and imm32 0x0d0c0b0a
+run: SF=1; ZF=0; OF=0
:(scenario compare_imm32_with_eax_equal)
% Reg[0].i = 0x0d0c0b0a;
# op ModR/M SIB displacement immediate
3d 0a 0b 0c 0d # compare 0x0d0c0b0a with EAX
+run: compare EAX and imm32 0x0d0c0b0a
+run: SF=0; ZF=1; OF=0
//:
:(scenario compare_imm32_with_r32_greater)
% Reg[3].i = 0x0d0c0b0a;
# op ModR/M SIB displacement immediate
81 fb 07 0b 0c 0d # compare 0x0d0c0b07 with EBX
# ModR/M in binary: 11 (direct mode) 111 (compare imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b07 with r/m32
+run: r/m32 is EBX
+run: SF=0; ZF=0; OF=0
:(before "End Op 81 Subops")
case 7: {
trace(2, "run") << "subop compare" << end();
int32_t tmp1 = *arg1 - arg2;
SF = (tmp1 < 0);
ZF = (tmp1 == 0);
int64_t tmp2 = *arg1 - arg2;
OF = (tmp1 != tmp2);
trace(2, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end();
break;
}
:(scenario compare_imm32_with_r32_lesser)
% Reg[3].i = 0x0d0c0b07;
# op ModR/M SIB displacement immediate
81 fb 0a 0b 0c 0d # compare 0x0d0c0b0a with EBX
# ModR/M in binary: 11 (direct mode) 111 (compare imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with r/m32
+run: r/m32 is EBX
+run: SF=1; ZF=0; OF=0
:(scenario compare_imm32_with_r32_equal)
% Reg[3].i = 0x0d0c0b0a;
# op ModR/M SIB displacement immediate
81 fb 0a 0b 0c 0d # compare 0x0d0c0b0a with EBX
# ModR/M in binary: 11 (direct mode) 111 (compare imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with r/m32
+run: r/m32 is EBX
+run: SF=0; ZF=1; OF=0
:(scenario compare_imm32_with_mem_at_r32_greater)
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0d0c0b0a);
# op ModR/M SIB displacement immediate
81 3b 07 0b 0c 0d # compare 0x0d0c0b07 with *EBX
# ModR/M in binary: 00 (indirect mode) 111 (compare imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b07 with r/m32
+run: effective address is 0x60 (EBX)
+run: SF=0; ZF=0; OF=0
:(scenario compare_imm32_with_mem_at_r32_lesser)
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0d0c0b07);
# op ModR/M SIB displacement immediate
81 3b 0a 0b 0c 0d # compare 0x0d0c0b0a with *EBX
# ModR/M in binary: 00 (indirect mode) 111 (compare imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with r/m32
+run: effective address is 0x60 (EBX)
+run: SF=1; ZF=0; OF=0
:(scenario compare_imm32_with_mem_at_r32_equal)
% Reg[3].i = 0x0d0c0b0a;
% Reg[3].i = 0x60;
% SET_WORD_IN_MEM(0x60, 0x0d0c0b0a);
# op ModR/M SIB displacement immediate
81 3b 0a 0b 0c 0d # compare 0x0d0c0b0a with *EBX
# ModR/M in binary: 00 (indirect mode) 111 (compare imm32) 011 (dest EBX)
+run: combine imm32 0x0d0c0b0a with r/m32
+run: effective address is 0x60 (EBX)
+run: SF=0; ZF=1; OF=0
//:: copy (mov)
:(scenario copy_imm32_to_r32)
# op ModR/M SIB displacement immediate
bb 0a 0b 0c 0d # copy 0x0d0c0b0a to EBX
+run: copy imm32 0x0d0c0b0a to EBX
:(before "End Single-Byte Opcodes")
case 0xb8:
case 0xb9:
case 0xba:
case 0xbb:
case 0xbc:
case 0xbd:
case 0xbe:
case 0xbf: { // copy imm32 to r32
uint8_t reg1 = op & 0x7;
int32_t arg2 = imm32();
trace(2, "run") << "copy imm32 0x" << HEXWORD << arg2 << " to " << rname(reg1) << end();
Reg[reg1].i = arg2;
break;
}
//:
:(scenario copy_imm32_to_mem_at_r32)
% Reg[3].i = 0x60;
# op ModR/M SIB displacement immediate
c7 03 0a 0b 0c 0d # copy 0x0d0c0b0a to *EBX
# ModR/M in binary: 00 (indirect mode) 000 (unused) 011 (dest EBX)
+run: copy imm32 0x0d0c0b0a to r/m32
+run: effective address is 0x60 (EBX)
:(before "End Single-Byte Opcodes")
case 0xc7: { // copy imm32 to r32
uint8_t modrm = next();
int32_t arg2 = imm32();
trace(2, "run") << "copy imm32 0x" << HEXWORD << arg2 << " to r/m32" << end();
int32_t* arg1 = effective_address(modrm);
*arg1 = arg2;
break;
}
//:: push
:(scenario push_imm32)
% Reg[ESP].u = 0x14;
# op ModR/M SIB displacement immediate
68 af 00 00 00 # push *EAX to stack
+run: push imm32 0x000000af
+run: ESP is now 0x00000010
+run: contents at ESP: 0x000000af
:(before "End Single-Byte Opcodes")
case 0x68: {
int32_t val = imm32();
trace(2, "run") << "push imm32 0x" << HEXWORD << val << end();
Reg[ESP].u -= 4;
*reinterpret_cast<uint32_t*>(&Mem.at(Reg[ESP].u)) = val;
trace(2, "run") << "ESP is now 0x" << HEXWORD << Reg[ESP].u << end();
trace(2, "run") << "contents at ESP: 0x" << HEXWORD << *reinterpret_cast<uint32_t*>(&Mem.at(Reg[ESP].u)) << end();
break;
}
|