1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
|
//: instructions that (immediately) contain an argument to act with
:(before "End Initialize Op Names")
put_new(Name, "05", "add imm32 to EAX (add)");
:(before "End Single-Byte Opcodes")
case 0x05: { // add imm32 to EAX
int32_t signed_arg2 = next32();
trace(Callstack_depth+1, "run") << "add imm32 0x" << HEXWORD << signed_arg2 << " to EAX" << end();
int32_t signed_result = Reg[EAX].i + signed_arg2;
SF = (signed_result < 0);
ZF = (signed_result == 0);
int64_t signed_full_result = static_cast<int64_t>(Reg[EAX].i) + signed_arg2;
OF = (signed_result != signed_full_result);
// set CF
uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
uint32_t unsigned_result = Reg[EAX].u + unsigned_arg2;
uint64_t unsigned_full_result = static_cast<uint64_t>(Reg[EAX].u) + unsigned_arg2;
CF = (unsigned_result != unsigned_full_result);
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
Reg[EAX].i = signed_result;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end();
break;
}
:(code)
void test_add_imm32_to_EAX_signed_overflow() {
Reg[EAX].i = 0x7fffffff; // largest positive signed integer
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 05 01 00 00 00 \n" // add 1 to EAX
// ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
);
CHECK_TRACE_CONTENTS(
"run: add imm32 0x00000001 to EAX\n"
"run: SF=1; ZF=0; CF=0; OF=1\n"
"run: storing 0x80000000\n"
);
}
void test_add_imm32_to_EAX_unsigned_overflow() {
Reg[EAX].u = 0xffffffff; // largest unsigned number
Reg[EBX].u = 1;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 05 01 00 00 00 \n" // add 1 to EAX
// ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
);
CHECK_TRACE_CONTENTS(
"run: add imm32 0x00000001 to EAX\n"
"run: SF=0; ZF=1; CF=1; OF=0\n"
"run: storing 0x00000000\n"
);
}
void test_add_imm32_to_EAX_unsigned_and_signed_overflow() {
Reg[EAX].u = 0x80000000; // smallest negative signed integer
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 05 00 00 00 80 \n" // add 0x80000000 to EAX
// ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
);
CHECK_TRACE_CONTENTS(
"run: add imm32 0x80000000 to EAX\n"
"run: SF=0; ZF=1; CF=1; OF=1\n"
"run: storing 0x00000000\n"
);
}
//:
:(before "End Initialize Op Names")
put_new(Name, "81", "combine rm32 with imm32 based on subop (add/sub/and/or/xor/cmp)");
:(code)
void test_add_imm32_to_r32() {
Reg[EBX].i = 1;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 c3 0a 0b 0c 0d\n" // add 0x0d0c0b0a to EBX
// ModR/M in binary: 11 (direct mode) 000 (subop add) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop add\n"
"run: storing 0x0d0c0b0b\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x81: { // combine imm32 with r/m32
trace(Callstack_depth+1, "run") << "combine imm32 with r/m32" << end();
const uint8_t modrm = next();
int32_t* signed_arg1 = effective_address(modrm);
const int32_t signed_arg2 = next32();
trace(Callstack_depth+1, "run") << "imm32 is 0x" << HEXWORD << signed_arg2 << end();
const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits
switch (subop) {
case 0: {
trace(Callstack_depth+1, "run") << "subop add" << end();
int32_t signed_result = *signed_arg1 + signed_arg2;
SF = (signed_result < 0);
ZF = (signed_result == 0);
int64_t signed_full_result = static_cast<int64_t>(*signed_arg1) + signed_arg2;
OF = (signed_result != signed_full_result);
// set CF
uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1);
uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
uint32_t unsigned_result = unsigned_arg1 + unsigned_arg2;
uint64_t unsigned_full_result = static_cast<uint64_t>(unsigned_arg1) + unsigned_arg2;
CF = (unsigned_result != unsigned_full_result);
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
*signed_arg1 = signed_result;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
break;
}
// End Op 81 Subops
default:
cerr << "unrecognized subop for opcode 81: " << NUM(subop) << '\n';
exit(1);
}
break;
}
:(code)
void test_add_imm32_to_r32_signed_overflow() {
Reg[EBX].i = 0x7fffffff; // largest positive signed integer
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 c3 01 00 00 00\n" // add 1 to EBX
// ModR/M in binary: 11 (direct mode) 000 (subop add) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x00000001\n"
"run: subop add\n"
"run: SF=1; ZF=0; CF=0; OF=1\n"
"run: storing 0x80000000\n"
);
}
void test_add_imm32_to_r32_unsigned_overflow() {
Reg[EBX].u = 0xffffffff; // largest unsigned number
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 c3 01 00 00 00\n" // add 1 to EBX
// ModR/M in binary: 11 (direct mode) 011 (subop add) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x00000001\n"
"run: subop add\n"
"run: SF=0; ZF=1; CF=1; OF=0\n"
"run: storing 0x00000000\n"
);
}
void test_add_imm32_to_r32_unsigned_and_signed_overflow() {
Reg[EBX].u = 0x80000000; // smallest negative signed integer
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 c3 00 00 00 80\n" // add 0x80000000 to EBX
// ModR/M in binary: 11 (direct mode) 011 (subop add) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x80000000\n"
"run: subop add\n"
"run: SF=0; ZF=1; CF=1; OF=1\n"
"run: storing 0x00000000\n"
);
}
//:
:(code)
void test_add_imm32_to_mem_at_r32() {
Reg[EBX].i = 0x2000;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 03 0a 0b 0c 0d \n" // add 0x0d0c0b0a to *EBX
// ModR/M in binary: 00 (indirect mode) 000 (subop add) 011 (dest EBX)
"== 0x2000\n" // data segment
"01 00 00 00\n" // 0x00000001
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop add\n"
"run: storing 0x0d0c0b0b\n"
);
}
//:: subtract
:(before "End Initialize Op Names")
put_new(Name, "2d", "subtract imm32 from EAX (sub)");
:(code)
void test_subtract_imm32_from_EAX() {
Reg[EAX].i = 0x0d0c0baa;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 2d 0a 0b 0c 0d \n" // subtract 0x0d0c0b0a from EAX
);
CHECK_TRACE_CONTENTS(
"run: subtract imm32 0x0d0c0b0a from EAX\n"
"run: storing 0x000000a0\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x2d: { // subtract imm32 from EAX
const int32_t signed_arg2 = next32();
trace(Callstack_depth+1, "run") << "subtract imm32 0x" << HEXWORD << signed_arg2 << " from EAX" << end();
int32_t signed_result = Reg[EAX].i - signed_arg2;
SF = (signed_result < 0);
ZF = (signed_result == 0);
int64_t signed_full_result = static_cast<int64_t>(Reg[EAX].i) - signed_arg2;
OF = (signed_result != signed_full_result);
// set CF
uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
uint32_t unsigned_result = Reg[EAX].u - unsigned_arg2;
uint64_t unsigned_full_result = static_cast<uint64_t>(Reg[EAX].u) - unsigned_arg2;
CF = (unsigned_result != unsigned_full_result);
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
Reg[EAX].i = signed_result;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end();
break;
}
:(code)
void test_subtract_imm32_from_EAX_signed_overflow() {
Reg[EAX].i = 0x80000000; // smallest negative signed integer
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 2d ff ff ff 7f \n" // subtract largest positive signed integer from EAX
// ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: subtract imm32 0x7fffffff from EAX\n"
"run: SF=0; ZF=0; CF=0; OF=1\n"
"run: storing 0x00000001\n"
);
}
void test_subtract_imm32_from_EAX_unsigned_overflow() {
Reg[EAX].i = 0;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 2d 01 00 00 00 \n" // subtract 1 from EAX
// ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: subtract imm32 0x00000001 from EAX\n"
"run: SF=1; ZF=0; CF=1; OF=0\n"
"run: storing 0xffffffff\n"
);
}
void test_subtract_imm32_from_EAX_signed_and_unsigned_overflow() {
Reg[EAX].i = 0;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 2d 00 00 00 80 \n" // subtract smallest negative signed integer from EAX
// ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: subtract imm32 0x80000000 from EAX\n"
"run: SF=1; ZF=0; CF=1; OF=1\n"
"run: storing 0x80000000\n"
);
}
//:
void test_subtract_imm32_from_mem_at_r32() {
Reg[EBX].i = 0x2000;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 2b 01 00 00 00 \n" // subtract 1 from *EBX
// ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX)
"== 0x2000\n" // data segment
"0a 00 00 00\n" // 0x0000000a
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: imm32 is 0x00000001\n"
"run: subop subtract\n"
"run: storing 0x00000009\n"
);
}
:(before "End Op 81 Subops")
case 5: {
trace(Callstack_depth+1, "run") << "subop subtract" << end();
int32_t signed_result = *signed_arg1 - signed_arg2;
SF = (signed_result < 0);
ZF = (signed_result == 0);
int64_t signed_full_result = static_cast<int64_t>(*signed_arg1) - signed_arg2;
OF = (signed_result != signed_full_result);
// set CF
uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1);
uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
uint32_t unsigned_result = unsigned_arg1 - unsigned_arg2;
uint64_t unsigned_full_result = static_cast<uint64_t>(unsigned_arg1) - unsigned_arg2;
CF = (unsigned_result != unsigned_full_result);
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
*signed_arg1 = signed_result;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
break;
}
:(code)
void test_subtract_imm32_from_mem_at_r32_signed_overflow() {
Reg[EBX].i = 0x2000;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 2b ff ff ff 7f \n" // subtract largest positive signed integer from *EBX
// ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX)
"== 0x2000\n" // data segment
"00 00 00 80\n" // smallest negative signed integer
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: effective address contains 80000000\n"
"run: imm32 is 0x7fffffff\n"
"run: subop subtract\n"
"run: SF=0; ZF=0; CF=0; OF=1\n"
"run: storing 0x00000001\n"
);
}
void test_subtract_imm32_from_mem_at_r32_unsigned_overflow() {
Reg[EBX].i = 0x2000;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 2b 01 00 00 00 \n" // subtract 1 from *EBX
// ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX)
"== 0x2000\n" // data segment
"00 00 00 00\n" // 0
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: effective address contains 0\n"
"run: imm32 is 0x00000001\n"
"run: subop subtract\n"
"run: SF=1; ZF=0; CF=1; OF=0\n"
"run: storing 0xffffffff\n"
);
}
void test_subtract_imm32_from_mem_at_r32_signed_and_unsigned_overflow() {
Reg[EBX].i = 0x2000;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 2b 00 00 00 80 \n" // subtract smallest negative signed integer from *EBX
// ModR/M in binary: 00 (indirect mode) 101 (subop subtract) 011 (dest EBX)
"== 0x2000\n" // data segment
"00 00 00 00\n" // 0
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: effective address contains 0\n"
"run: imm32 is 0x80000000\n"
"run: subop subtract\n"
"run: SF=1; ZF=0; CF=1; OF=1\n"
"run: storing 0x80000000\n"
);
}
//:
void test_subtract_imm32_from_r32() {
Reg[EBX].i = 10;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 eb 01 00 00 00 \n" // subtract 1 from EBX
// ModR/M in binary: 11 (direct mode) 101 (subop subtract) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x00000001\n"
"run: subop subtract\n"
"run: storing 0x00000009\n"
);
}
//:: shift left
:(before "End Initialize Op Names")
put_new(Name, "c1", "shift rm32 by imm8 bits depending on subop (sal/sar/shl/shr)");
:(code)
void test_shift_left_r32_with_imm8() {
Reg[EBX].i = 13;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" c1 e3 01 \n" // shift EBX left by 1 bit
// ModR/M in binary: 11 (direct mode) 100 (subop shift left) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: operate on r/m32\n"
"run: r/m32 is EBX\n"
"run: subop: shift left by CL bits\n"
"run: storing 0x0000001a\n"
);
}
:(before "End Single-Byte Opcodes")
case 0xc1: {
const uint8_t modrm = next();
trace(Callstack_depth+1, "run") << "operate on r/m32" << end();
int32_t* arg1 = effective_address(modrm);
const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits
switch (subop) {
case 4: { // shift left r/m32 by CL
trace(Callstack_depth+1, "run") << "subop: shift left by CL bits" << end();
uint8_t count = next() & 0x1f;
// OF is only defined if count is 1
if (count == 1) {
bool msb = (*arg1 & 0x80000000) >> 1;
bool pnsb = (*arg1 & 0x40000000);
OF = (msb != pnsb);
}
*arg1 = (*arg1 << count);
ZF = (*arg1 == 0);
SF = (*arg1 < 0);
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
break;
}
// End Op c1 Subops
default:
cerr << "unrecognized subop for opcode c1: " << NUM(subop) << '\n';
exit(1);
}
break;
}
//:: shift right arithmetic
:(code)
void test_shift_right_arithmetic_r32_with_imm8() {
Reg[EBX].i = 26;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" c1 fb 01 \n" // shift EBX right by 1 bit
// ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: operate on r/m32\n"
"run: r/m32 is EBX\n"
"run: subop: shift right by CL bits, while preserving sign\n"
"run: storing 0x0000000d\n"
);
}
:(before "End Op c1 Subops")
case 7: { // shift right r/m32 by CL, preserving sign
trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while preserving sign" << end();
uint8_t count = next() & 0x1f;
*arg1 = (*arg1 >> count);
ZF = (*arg1 == 0);
SF = (*arg1 < 0);
// OF is only defined if count is 1
if (count == 1) OF = false;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
break;
}
:(code)
void test_shift_right_arithmetic_odd_r32_with_imm8() {
Reg[EBX].i = 27;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" c1 fb 01 \n" // shift EBX right by 1 bit
// ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: operate on r/m32\n"
"run: r/m32 is EBX\n"
"run: subop: shift right by CL bits, while preserving sign\n"
// result: 13
"run: storing 0x0000000d\n"
);
}
:(code)
void test_shift_right_arithmetic_negative_r32_with_imm8() {
Reg[EBX].i = 0xfffffffd; // -3
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" c1 fb 01 \n" // shift EBX right by 1 bit, while preserving sign
// ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: operate on r/m32\n"
"run: r/m32 is EBX\n"
"run: subop: shift right by CL bits, while preserving sign\n"
// result: -2
"run: storing 0xfffffffe\n"
);
}
//:: shift right logical
:(code)
void test_shift_right_logical_r32_with_imm8() {
Reg[EBX].i = 26;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" c1 eb 01 \n" // shift EBX right by 1 bit, while padding zeroes
// ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: operate on r/m32\n"
"run: r/m32 is EBX\n"
"run: subop: shift right by CL bits, while padding zeroes\n"
"run: storing 0x0000000d\n"
);
}
:(before "End Op c1 Subops")
case 5: { // shift right r/m32 by CL, preserving sign
trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while padding zeroes" << end();
uint8_t count = next() & 0x1f;
// OF is only defined if count is 1
if (count == 1) {
bool msb = (*arg1 & 0x80000000) >> 1;
bool pnsb = (*arg1 & 0x40000000);
OF = (msb != pnsb);
}
uint32_t* uarg1 = reinterpret_cast<uint32_t*>(arg1);
*uarg1 = (*uarg1 >> count);
ZF = (*uarg1 == 0);
// result is always positive by definition
SF = false;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
break;
}
:(code)
void test_shift_right_logical_odd_r32_with_imm8() {
Reg[EBX].i = 27;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" c1 eb 01 \n" // shift EBX right by 1 bit, while padding zeroes
);
CHECK_TRACE_CONTENTS(
"run: operate on r/m32\n"
"run: r/m32 is EBX\n"
"run: subop: shift right by CL bits, while padding zeroes\n"
// result: 13
"run: storing 0x0000000d\n"
);
}
:(code)
void test_shift_right_logical_negative_r32_with_imm8() {
Reg[EBX].i = 0xfffffffd;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" c1 eb 01 \n" // shift EBX right by 1 bit, while padding zeroes
// ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: operate on r/m32\n"
"run: r/m32 is EBX\n"
"run: subop: shift right by CL bits, while padding zeroes\n"
"run: storing 0x7ffffffe\n"
);
}
//:: and
:(before "End Initialize Op Names")
put_new(Name, "25", "EAX = bitwise AND of imm32 with EAX (and)");
:(code)
void test_and_EAX_with_imm32() {
Reg[EAX].i = 0xff;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 25 0a 0b 0c 0d \n" // and 0x0d0c0b0a with EAX
);
CHECK_TRACE_CONTENTS(
"run: and imm32 0x0d0c0b0a with EAX\n"
"run: storing 0x0000000a\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x25: { // and imm32 with EAX
// bitwise ops technically operate on unsigned numbers, but it makes no
// difference
const int32_t signed_arg2 = next32();
trace(Callstack_depth+1, "run") << "and imm32 0x" << HEXWORD << signed_arg2 << " with EAX" << end();
Reg[EAX].i &= signed_arg2;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end();
SF = (Reg[EAX].i >> 31);
ZF = (Reg[EAX].i == 0);
CF = false;
OF = false;
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
//:
:(code)
void test_and_imm32_with_mem_at_r32() {
Reg[EBX].i = 0x2000;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 23 0a 0b 0c 0d \n" // and 0x0d0c0b0a with *EBX
// ModR/M in binary: 00 (indirect mode) 100 (subop and) 011 (dest EBX)
"== 0x2000\n" // data segment
"ff 00 00 00\n" // 0x000000ff
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop and\n"
"run: storing 0x0000000a\n"
);
}
:(before "End Op 81 Subops")
case 4: {
trace(Callstack_depth+1, "run") << "subop and" << end();
// bitwise ops technically operate on unsigned numbers, but it makes no
// difference
*signed_arg1 &= signed_arg2;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
SF = (*signed_arg1 >> 31);
ZF = (*signed_arg1 == 0);
CF = false;
OF = false;
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
//:
:(code)
void test_and_imm32_with_r32() {
Reg[EBX].i = 0xff;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 e3 0a 0b 0c 0d \n" // and 0x0d0c0b0a with EBX
// ModR/M in binary: 11 (direct mode) 100 (subop and) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop and\n"
"run: storing 0x0000000a\n"
);
}
//:: or
:(before "End Initialize Op Names")
put_new(Name, "0d", "EAX = bitwise OR of imm32 with EAX (or)");
:(code)
void test_or_EAX_with_imm32() {
Reg[EAX].i = 0xd0c0b0a0;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 0d 0a 0b 0c 0d \n" // or 0x0d0c0b0a with EAX
);
CHECK_TRACE_CONTENTS(
"run: or imm32 0x0d0c0b0a with EAX\n"
"run: storing 0xddccbbaa\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x0d: { // or imm32 with EAX
// bitwise ops technically operate on unsigned numbers, but it makes no
// difference
const int32_t signed_arg2 = next32();
trace(Callstack_depth+1, "run") << "or imm32 0x" << HEXWORD << signed_arg2 << " with EAX" << end();
Reg[EAX].i |= signed_arg2;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end();
SF = (Reg[EAX].i >> 31);
ZF = (Reg[EAX].i == 0);
CF = false;
OF = false;
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
//:
:(code)
void test_or_imm32_with_mem_at_r32() {
Reg[EBX].i = 0x2000;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 0b 0a 0b 0c 0d \n" // or 0x0d0c0b0a with *EBX
// ModR/M in binary: 00 (indirect mode) 001 (subop or) 011 (dest EBX)
"== 0x2000\n" // data segment
"a0 b0 c0 d0\n" // 0xd0c0b0a0
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop or\n"
"run: storing 0xddccbbaa\n"
);
}
:(before "End Op 81 Subops")
case 1: {
trace(Callstack_depth+1, "run") << "subop or" << end();
// bitwise ops technically operate on unsigned numbers, but it makes no
// difference
*signed_arg1 |= signed_arg2; \
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); \
SF = (*signed_arg1 >> 31); \
ZF = (*signed_arg1 == 0); \
CF = false; \
OF = false; \
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); \
break;
}
:(code)
void test_or_imm32_with_r32() {
Reg[EBX].i = 0xd0c0b0a0;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 cb 0a 0b 0c 0d \n" // or 0x0d0c0b0a with EBX
// ModR/M in binary: 11 (direct mode) 001 (subop or) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop or\n"
"run: storing 0xddccbbaa\n"
);
}
//:: xor
:(before "End Initialize Op Names")
put_new(Name, "35", "EAX = bitwise XOR of imm32 with EAX (xor)");
:(code)
void test_xor_EAX_with_imm32() {
Reg[EAX].i = 0xddccb0a0;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 35 0a 0b 0c 0d \n" // xor 0x0d0c0b0a with EAX
);
CHECK_TRACE_CONTENTS(
"run: xor imm32 0x0d0c0b0a with EAX\n"
"run: storing 0xd0c0bbaa\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x35: { // xor imm32 with EAX
// bitwise ops technically operate on unsigned numbers, but it makes no
// difference
const int32_t signed_arg2 = next32();
trace(Callstack_depth+1, "run") << "xor imm32 0x" << HEXWORD << signed_arg2 << " with EAX" << end();
Reg[EAX].i ^= signed_arg2;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end();
SF = (Reg[EAX].i >> 31);
ZF = (Reg[EAX].i == 0);
CF = false;
OF = false;
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
//:
:(code)
void test_xor_imm32_with_mem_at_r32() {
Reg[EBX].i = 0x2000;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 33 0a 0b 0c 0d \n" // xor 0x0d0c0b0a with *EBX
// ModR/M in binary: 00 (indirect mode) 110 (subop xor) 011 (dest EBX)
"== 0x2000\n" // data segment
"a0 b0 c0 d0\n" // 0xd0c0b0a0
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop xor\n"
"run: storing 0xddccbbaa\n"
);
}
:(before "End Op 81 Subops")
case 6: {
trace(Callstack_depth+1, "run") << "subop xor" << end();
// bitwise ops technically operate on unsigned numbers, but it makes no
// difference
*signed_arg1 ^= signed_arg2;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
SF = (*signed_arg1 >> 31);
ZF = (*signed_arg1 == 0);
CF = false;
OF = false;
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
:(code)
void test_xor_imm32_with_r32() {
Reg[EBX].i = 0xd0c0b0a0;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 f3 0a 0b 0c 0d \n" // xor 0x0d0c0b0a with EBX
// ModR/M in binary: 11 (direct mode) 110 (subop xor) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: subop xor\n"
"run: storing 0xddccbbaa\n"
);
}
//:: compare (cmp)
:(before "End Initialize Op Names")
put_new(Name, "3d", "compare: set SF if EAX < imm32 (cmp)");
:(code)
void test_compare_EAX_with_imm32_greater() {
Reg[EAX].i = 0x0d0c0b0a;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 3d 07 0b 0c 0d \n" // compare EAX with 0x0d0c0b07
);
CHECK_TRACE_CONTENTS(
"run: compare EAX with imm32 0x0d0c0b07\n"
"run: SF=0; ZF=0; CF=0; OF=0\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x3d: { // compare EAX with imm32
const int32_t signed_arg1 = Reg[EAX].i;
const int32_t signed_arg2 = next32();
trace(Callstack_depth+1, "run") << "compare EAX with imm32 0x" << HEXWORD << signed_arg2 << end();
const int32_t signed_difference = signed_arg1 - signed_arg2;
SF = (signed_difference < 0);
ZF = (signed_difference == 0);
const int64_t full_signed_difference = static_cast<int64_t>(signed_arg1) - signed_arg2;
OF = (signed_difference != full_signed_difference);
const uint32_t unsigned_arg1 = static_cast<uint32_t>(signed_arg1);
const uint32_t unsigned_arg2 = static_cast<uint32_t>(signed_arg2);
const uint32_t unsigned_difference = unsigned_arg1 - unsigned_arg2;
const uint64_t full_unsigned_difference = static_cast<uint64_t>(unsigned_arg1) - unsigned_arg2;
CF = (unsigned_difference != full_unsigned_difference);
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
:(code)
void test_compare_EAX_with_imm32_lesser_unsigned_and_signed() {
Reg[EAX].i = 0x0a0b0c07;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 3d 0d 0c 0b 0a \n" // compare EAX with imm32
// ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
);
CHECK_TRACE_CONTENTS(
"run: compare EAX with imm32 0x0a0b0c0d\n"
"run: SF=1; ZF=0; CF=1; OF=0\n"
);
}
void test_compare_EAX_with_imm32_lesser_unsigned_and_signed_due_to_overflow() {
Reg[EAX].i = 0x7fffffff; // largest positive signed integer
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 3d 00 00 00 80\n" // compare EAX with smallest negative signed integer
// ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
);
CHECK_TRACE_CONTENTS(
"run: compare EAX with imm32 0x80000000\n"
"run: SF=1; ZF=0; CF=1; OF=1\n"
);
}
void test_compare_EAX_with_imm32_lesser_signed() {
Reg[EAX].i = 0xffffffff; // -1
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 3d 01 00 00 00\n" // compare EAX with 1
// ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
);
CHECK_TRACE_CONTENTS(
"run: compare EAX with imm32 0x00000001\n"
"run: SF=1; ZF=0; CF=0; OF=0\n"
);
}
void test_compare_EAX_with_imm32_lesser_unsigned() {
Reg[EAX].i = 0x00000001; // 1
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 3d ff ff ff ff\n" // compare EAX with -1
// ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX)
);
CHECK_TRACE_CONTENTS(
"run: compare EAX with imm32 0xffffffff\n"
"run: SF=0; ZF=0; CF=1; OF=0\n"
);
}
void test_compare_EAX_with_imm32_equal() {
Reg[EAX].i = 0x0d0c0b0a;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 3d 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with EAX
);
CHECK_TRACE_CONTENTS(
"run: compare EAX with imm32 0x0d0c0b0a\n"
"run: SF=0; ZF=1; CF=0; OF=0\n"
);
}
//:
void test_compare_imm32_with_r32_greater() {
Reg[EBX].i = 0x0d0c0b0a;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 fb 07 0b 0c 0d \n" // compare 0x0d0c0b07 with EBX
// ModR/M in binary: 11 (direct mode) 111 (subop compare) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x0d0c0b07\n"
"run: SF=0; ZF=0; CF=0; OF=0\n"
);
}
:(before "End Op 81 Subops")
case 7: {
trace(Callstack_depth+1, "run") << "subop compare" << end();
const int32_t tmp1 = *signed_arg1 - signed_arg2;
SF = (tmp1 < 0);
ZF = (tmp1 == 0);
const int64_t tmp2 = static_cast<int64_t>(*signed_arg1) - signed_arg2;
OF = (tmp1 != tmp2);
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
:(code)
void test_compare_imm32_with_r32_lesser() {
Reg[EBX].i = 0x0d0c0b07;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 fb 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with EBX
// ModR/M in binary: 11 (direct mode) 111 (subop compare) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: SF=1; ZF=0; CF=0; OF=0\n"
);
}
:(code)
void test_compare_imm32_with_r32_equal() {
Reg[EBX].i = 0x0d0c0b0a;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 fb 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with EBX
// ModR/M in binary: 11 (direct mode) 111 (subop compare) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: r/m32 is EBX\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: SF=0; ZF=1; CF=0; OF=0\n"
);
}
:(code)
void test_compare_imm32_with_mem_at_r32_greater() {
Reg[EBX].i = 0x2000;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 3b 07 0b 0c 0d \n" // compare 0x0d0c0b07 with *EBX
// ModR/M in binary: 00 (indirect mode) 111 (subop compare) 011 (dest EBX)
"== 0x2000\n" // data segment
"0a 0b 0c 0d\n" // 0x0d0c0b0a
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: imm32 is 0x0d0c0b07\n"
"run: SF=0; ZF=0; CF=0; OF=0\n"
);
}
:(code)
void test_compare_imm32_with_mem_at_r32_lesser() {
Reg[EBX].i = 0x2000;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 3b 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with *EBX
// ModR/M in binary: 00 (indirect mode) 111 (subop compare) 011 (dest EBX)
"== 0x2000\n" // data segment
"07 0b 0c 0d\n" // 0x0d0c0b07
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: SF=1; ZF=0; CF=0; OF=0\n"
);
}
:(code)
void test_compare_imm32_with_mem_at_r32_equal() {
Reg[EBX].i = 0x0d0c0b0a;
Reg[EBX].i = 0x2000;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 81 3b 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with *EBX
// ModR/M in binary: 00 (indirect mode) 111 (subop compare) 011 (dest EBX)
"== 0x2000\n" // data segment
"0a 0b 0c 0d\n" // 0x0d0c0b0a
);
CHECK_TRACE_CONTENTS(
"run: combine imm32 with r/m32\n"
"run: effective address is 0x00002000 (EBX)\n"
"run: imm32 is 0x0d0c0b0a\n"
"run: SF=0; ZF=1; CF=0; OF=0\n"
);
}
//:: copy (mov)
:(before "End Initialize Op Names")
// b8 defined earlier to copy imm32 to EAX
put_new(Name, "b9", "copy imm32 to ECX (mov)");
put_new(Name, "ba", "copy imm32 to EDX (mov)");
put_new(Name, "bb", "copy imm32 to EBX (mov)");
put_new(Name, "bc", "copy imm32 to ESP (mov)");
put_new(Name, "bd", "copy imm32 to EBP (mov)");
put_new(Name, "be", "copy imm32 to ESI (mov)");
put_new(Name, "bf", "copy imm32 to EDI (mov)");
:(code)
void test_copy_imm32_to_r32() {
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" bb 0a 0b 0c 0d \n" // copy 0x0d0c0b0a to EBX
);
CHECK_TRACE_CONTENTS(
"run: copy imm32 0x0d0c0b0a to EBX\n"
);
}
:(before "End Single-Byte Opcodes")
case 0xb9:
case 0xba:
case 0xbb:
case 0xbc:
case 0xbd:
case 0xbe:
case 0xbf: { // copy imm32 to r32
const uint8_t rdest = op & 0x7;
const int32_t src = next32();
trace(Callstack_depth+1, "run") << "copy imm32 0x" << HEXWORD << src << " to " << rname(rdest) << end();
Reg[rdest].i = src;
break;
}
//:
:(before "End Initialize Op Names")
put_new(Name, "c7", "copy imm32 to rm32 (mov)");
:(code)
void test_copy_imm32_to_mem_at_r32() {
Reg[EBX].i = 0x60;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" c7 03 0a 0b 0c 0d \n" // copy 0x0d0c0b0a to *EBX
// ModR/M in binary: 00 (indirect mode) 000 (unused) 011 (dest EBX)
);
CHECK_TRACE_CONTENTS(
"run: copy imm32 to r/m32\n"
"run: effective address is 0x00000060 (EBX)\n"
"run: imm32 is 0x0d0c0b0a\n"
);
}
:(before "End Single-Byte Opcodes")
case 0xc7: { // copy imm32 to r32
const uint8_t modrm = next();
trace(Callstack_depth+1, "run") << "copy imm32 to r/m32" << end();
const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits
if (subop != 0) {
cerr << "unrecognized subop for opcode c7: " << NUM(subop) << " (only 0/copy currently implemented)\n";
exit(1);
}
int32_t* dest = effective_address(modrm);
const int32_t src = next32();
trace(Callstack_depth+1, "run") << "imm32 is 0x" << HEXWORD << src << end();
*dest = src;
break;
}
//:: push
:(before "End Initialize Op Names")
put_new(Name, "68", "push imm32 to stack (push)");
:(code)
void test_push_imm32() {
Mem.push_back(vma(0xbd000000)); // manually allocate memory
Reg[ESP].u = 0xbd000014;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 68 af 00 00 00 \n" // push *EAX to stack
);
CHECK_TRACE_CONTENTS(
"run: push imm32 0x000000af\n"
"run: ESP is now 0xbd000010\n"
"run: contents at ESP: 0x000000af\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x68: {
const uint32_t val = static_cast<uint32_t>(next32());
trace(Callstack_depth+1, "run") << "push imm32 0x" << HEXWORD << val << end();
//? cerr << "push: " << val << " => " << Reg[ESP].u << '\n';
push(val);
trace(Callstack_depth+1, "run") << "ESP is now 0x" << HEXWORD << Reg[ESP].u << end();
trace(Callstack_depth+1, "run") << "contents at ESP: 0x" << HEXWORD << read_mem_u32(Reg[ESP].u) << end();
break;
}
|