1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
//: SubX mostly deals with instructions operating on 32-bit operands, but we
//: still need to deal with raw bytes for strings and so on.
//: Unfortunately the register encodings when dealing with bytes are a mess.
//: We need a special case for them.
:(code)
string rname_8bit(uint8_t r) {
switch (r) {
case 0: return "AL"; // lowest byte of EAX
case 1: return "CL"; // lowest byte of ECX
case 2: return "DL"; // lowest byte of EDX
case 3: return "BL"; // lowest byte of EBX
case 4: return "AH"; // second lowest byte of EAX
case 5: return "CH"; // second lowest byte of ECX
case 6: return "DH"; // second lowest byte of EDX
case 7: return "BH"; // second lowest byte of EBX
default: raise << "invalid 8-bit register " << r << '\n' << end(); return "";
}
}
uint8_t* effective_byte_address(uint8_t modrm) {
uint8_t mod = (modrm>>6);
uint8_t rm = modrm & 0x7;
if (mod == 3) {
// select an 8-bit register
trace(Callstack_depth+1, "run") << "r/m8 is " << rname_8bit(rm) << end();
return reg_8bit(rm);
}
// the rest is as usual
return mem_addr_u8(effective_address_number(modrm));
}
uint8_t* reg_8bit(uint8_t rm) {
uint8_t* result = reinterpret_cast<uint8_t*>(&Reg[rm & 0x3].i); // _L register
if (rm & 0x4)
++result; // _H register; assumes host is little-endian
return result;
}
:(before "End Initialize Op Names")
put_new(Name, "88", "copy r8 to r8/m8-at-r32");
:(code)
void test_copy_r8_to_mem_at_r32() {
Reg[EBX].i = 0x224488ab;
Reg[EAX].i = 0x2000;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 88 18 \n" // copy BL to the byte at *EAX
// ModR/M in binary: 00 (indirect mode) 011 (src BL) 000 (dest EAX)
"== 0x2000\n" // data segment
"f0 cc bb aa\n"
);
CHECK_TRACE_CONTENTS(
"run: copy BL to r8/m8-at-r32\n"
"run: effective address is 0x00002000 (EAX)\n"
"run: storing 0xab\n"
);
CHECK_EQ(0xaabbccab, read_mem_u32(0x2000));
}
:(before "End Single-Byte Opcodes")
case 0x88: { // copy r8 to r/m8
const uint8_t modrm = next();
const uint8_t rsrc = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "copy " << rname_8bit(rsrc) << " to r8/m8-at-r32" << end();
// use unsigned to zero-extend 8-bit value to 32 bits
uint8_t* dest = reinterpret_cast<uint8_t*>(effective_byte_address(modrm));
const uint8_t* src = reg_8bit(rsrc);
*dest = *src;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXBYTE << NUM(*dest) << end();
break;
}
//:
:(before "End Initialize Op Names")
put_new(Name, "8a", "copy r8/m8-at-r32 to r8");
:(code)
void test_copy_mem_at_r32_to_r8() {
Reg[EBX].i = 0xaabbcc0f; // one nibble each of lowest byte set to all 0s and all 1s, to maximize value of this test
Reg[EAX].i = 0x2000;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 8a 18 \n" // copy just the byte at *EAX to BL
// ModR/M in binary: 00 (indirect mode) 011 (dest EBX) 000 (src EAX)
"== 0x2000\n" // data segment
"ab ff ff ff\n" // 0xab with more data in following bytes
);
CHECK_TRACE_CONTENTS(
"run: copy r8/m8-at-r32 to BL\n"
"run: effective address is 0x00002000 (EAX)\n"
"run: storing 0xab\n"
// remaining bytes of EBX are *not* cleared
"run: EBX now contains 0xaabbccab\n"
);
}
:(before "End Single-Byte Opcodes")
case 0x8a: { // copy r/m8 to r8
const uint8_t modrm = next();
const uint8_t rdest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "copy r8/m8-at-r32 to " << rname_8bit(rdest) << end();
// use unsigned to zero-extend 8-bit value to 32 bits
const uint8_t* src = reinterpret_cast<uint8_t*>(effective_byte_address(modrm));
uint8_t* dest = reg_8bit(rdest);
trace(Callstack_depth+1, "run") << "storing 0x" << HEXBYTE << NUM(*src) << end();
*dest = *src;
const uint8_t rdest_32bit = rdest & 0x3;
trace(Callstack_depth+1, "run") << rname(rdest_32bit) << " now contains 0x" << HEXWORD << Reg[rdest_32bit].u << end();
break;
}
:(code)
void test_cannot_copy_byte_to_ESP_EBP_ESI_EDI() {
Reg[ESI].u = 0xaabbccdd;
Reg[EBX].u = 0x11223344;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" 8a f3 \n" // copy just the byte at *EBX to 8-bit register '6'
// ModR/M in binary: 11 (direct mode) 110 (dest 8-bit 'register 6') 011 (src EBX)
);
CHECK_TRACE_CONTENTS(
// ensure 8-bit register '6' is DH, not ESI
"run: copy r8/m8-at-r32 to DH\n"
"run: storing 0x44\n"
);
// ensure ESI is unchanged
CHECK_EQ(Reg[ESI].u, 0xaabbccdd);
}
//:
:(before "End Initialize Op Names")
put_new(Name, "c6", "copy imm8 to r8/m8-at-r32 (mov)");
:(code)
void test_copy_imm8_to_mem_at_r32() {
Reg[EAX].i = 0x2000;
run(
"== 0x1\n" // code segment
// op ModR/M SIB displacement immediate
" c6 00 dd \n" // copy to the byte at *EAX
// ModR/M in binary: 00 (indirect mode) 000 (unused) 000 (dest EAX)
"== 0x2000\n" // data segment
"f0 cc bb aa\n"
);
CHECK_TRACE_CONTENTS(
"run: copy imm8 to r8/m8-at-r32\n"
"run: effective address is 0x00002000 (EAX)\n"
"run: storing 0xdd\n"
);
CHECK_EQ(0xaabbccdd, read_mem_u32(0x2000));
}
:(before "End Single-Byte Opcodes")
case 0xc6: { // copy imm8 to r/m8
const uint8_t modrm = next();
const uint8_t src = next();
trace(Callstack_depth+1, "run") << "copy imm8 to r8/m8-at-r32" << end();
trace(Callstack_depth+1, "run") << "imm8 is 0x" << HEXWORD << src << end();
const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits
if (subop != 0) {
cerr << "unrecognized subop for opcode c6: " << NUM(subop) << " (only 0/copy currently implemented)\n";
exit(1);
}
// use unsigned to zero-extend 8-bit value to 32 bits
uint8_t* dest = reinterpret_cast<uint8_t*>(effective_byte_address(modrm));
*dest = src;
trace(Callstack_depth+1, "run") << "storing 0x" << HEXBYTE << NUM(*dest) << end();
break;
}
|